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CHUAQUI'S DEFINITION OF PROBABILITY
IN SOME STOCHASTIC PROCESSES

Leopoldo Bertossi*

ABSTRACT. Models for Markov Dependent Bernoulli Trials,
Markov Chains, Random Walks and Brownian Motion are con-
structed in the framework of Chuaqui's Definition of prob-
ability.

Chuaqui 1980 and 1981 explains how a semantical definition of probability can
be applied to random experiments that give rise to compound outcomes. In order
to do this, he introduces what he calls '‘compound probability structures' (CPS).
These CPS are based on causal trees of the form (7,R) where T is a nonempty set
and 7 is a partial order in T which reflects the causal dependence relation
between the simple outcomes which make up the compound outcome.

In the applications we are interested in,the elements of T are time moments
and R is a the natural linear order <.

A compound outcome is a function f with domain 7 for which f(%) is an out-
come in a simple probability structure (SPS) (see Chuaqui 1977 and 1981). Start-
ing with known probability measures on these SPS, he defines a probability mea-
sure on the set of compound outcomes (see Chuaqui 1980). .

In what follows we show how this definition works for some known stochastic
processes.

1. MARKOV DEPENDENT BERNOULLI TRIALS (MDBT)

We repeat n times an experiment which has only two possible outcomes, &
and f (for success and failure). We assume that Pgf is the probability of f an
the (k+1)-st trial, given that the outcome was s on the k-th trial, and that the
analogously defined probabilities ps,s, pf’s, pf,f are known and independent of
k. We also assume the initial probabilities Pgs pf. to be known.

* The work of the author was partially supported by the Organization of American
States through its Regional Scientific and Technological Development Program.
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Here T = {¢y,...,t, 4},and we consider in T the natural order relation:
.t 7 if and only 1f 1 £ J. We associate with each t, 7, i > 0, two simple
probablhty structures K° and Kf The models in K° are of the form <4%55F° {a}>,
with 4° a non-empty set, {S°,F°} a fixed partition of 4° where the proportion of
elements of 4% which are in S° is Ps.s and that of the elements which are in F*
is P, f and a an element of 4°

The appearance of an element of S° gives outcome s and the appearance of an
element of F'Sglves outcome f.

We write @’ for {<4%,5° F® {a}>: a < 5°} and af for (<4%,5°,F%,{a}>:a e F°}
and smlpllfymg, we write Ks {Olf, a } Analogously, we define K/ and write
l(f= {01? f}- at and af give outcome b (lfand OZ give outcone s.

To complete our formulatlon we associate w1th g the simple probability
structure K {OZ R Olf} where the definition of OZ and OZ?. is analogous’ to
that of OL: and ozf, respectively.

The following probabilities follow immediately from the above definition:

wad) =p, . w@p) =p, .
w@P = psp @) = pre
0 0, _
wa ) =p, u(df) =Pp-

A compound outcome is a function f which satisfies the following conditions:
a) Domain of f =
b) f(ty) = Ky ,
€) £(ty) « O implies £(t;,;) « K and £(t5) « & implies £(z,,) <« K,

with * e {s,f} for Kk > 0 and * = 0 for k = 0.

The compound probability structure corresponding to these MDBT is H=<T,<,H>
where H is the set of all functions that satisfy (a)-(c). On the basis of the
probabilities assigned above and the relation < in T, we define a probability
measure u on H. In the case of MDBT, it is interesting to calculate the proba-

bilities:
pz = probability of s on the k-th trial
p;f. = probability of f on the k-th trial.

To do this, it is enough to solve a difference equation whose derivation is
based on the "total probability theorem'" which can be formulated and proved in
this context in the usual fashion.

Clearly, the situation corresponding to Markov Chains can be formulated in
a form completely analogous to that of MDBT. In considering Markov Chains, it
is merely necessary to choose a greater number of simple probability structures
associated with each moment of time and a greater number of transition probabil-

ities.
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2. RANDOM WALKS.

Let us consider a one dimensional random walk which, starting from the ori-
gin, is controlled by a coin thrown n times, where the step size is constant and
equal to 1.

Here T = {to,... t }, T ordered as in §1. We associate with t, the simple

’ n ’
probability structure K = {OLO} with 0y = <{0},{0}>. For each t;, k > 0, define

k’
utk:= {-k, -k+2,...,k-2,k} and uy= {0}.

A random walk (a compound outcome) is a function f which satisfies the following

conditions:

a) Domain of f =T,

b) f(ty) = g ,

c) f(¢3) is a model of the form <u; , {A}> with A€ g,

d) £(tp) = <ugy, {A}> implies f(t;,4) € Kia, 2= {cugy 0, D11, <utk+1,{>\-1}>}.

With each t, €7, k > 0, we associate a family of SPS with the same similarity
type and a common universe, namely the family {l(k’)\:kc: utk_1}.

The probability in Kk,)\ is uniformely distributed if the coin which controls
the walk is unbiased, but, in general,

u(<utk,{)\+1}>) p and

u(<utk,{)\-1}>) 1-p for each k and for each A € ugy q-

we assign to (L, the probability 1.

The CPS corresponding to this kind of random walk is B = <T,<,H>, where H
is the set of all functions which satisfy (a)-(d). On H one obtains a probabil-
ity measure u determined by H and the probabilities assigned above to the SPS
Kk,)(

We can calculate probabilities according to Chuaqui 1980, such as, for ex-
ample, the probability of the path f e« H shown in the given figure.

f 4

i N

k Cug, kD)
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We show that p(f) = p", as expected. In Chuaqui 1980, the measure p on H is de-
fined by induction on ordinals.

let geH, teT and T,:= {seT :s<t, 8#t}, thenH(g,t):= {h(t):h €H,
g[Tt = h[Tt} is an SPS where a probability measure with values p and 1-p is de-

fined. Denote this measure by ug £ We need some definitions from Chuaqui 1980:
T& is the set of all minimal elements of T-U{Té: B =al}

T
o

T

]

U{Tg: 8 caly T := UlTg: B c a}, a ordinal.

P TtU{t}, t e,

H(s) := {fls : f«H}, 5 <.
A(S) :={fls : feA}), Sc7T, AcH.

Then we have Tl! = {ti}’ T, = {to,...,ti_l},_ T, = {tO,...,ti}.

We have to find the measure u on H. Clearly H = H(Ttn) . Then the measure on
H is uy which is defined for A g H by

i (AT:)) = {

(r, )ug)tn(A(g,tn))dutn
n

where A{g,t,) := {h(tn) : h eA and h[Ttn = ngtn}' In our case A = {f}, so
that

u(f) ﬁtn({f}) ={£[ }Ug,tn(A(g: tn))dutn

Ttn

=g, (FG))ong (£172)

p.ut (fthn)-
n
The measure ut, is defined by
He, = ﬂ(ﬁs: ser’ , and s<t)-= ﬁtn-]’

Thus, u(f) = p-ﬂtn_1(fthn). If we calculate ﬁtnq as we calculated ‘]tn’ we
have, upon iteration, w(f) = p”.

Within this formulation we can prove all the results of Probability Calculus
involving random walks.

3. BROWNIAN MOTION.

Our formulation is motivated by the known fact thay by speeding up a random
walk it is possible to obtain a good model of Brownian Motion. We avoid this ex-
plicit acceleration process using non-standard techniques. Let us consider a
Brownian Motion during a wnit of time and a w]—saturated non-standard extension
V(*R) of the superstructure V(R) of the real numbers.

Let n « *N'N be an infinite natural number and 7 = {0,1/n,2/n,...,1} order-
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ed in the natural way. We associate to each ty = X/n € T the set

v e [ T2 A2 2
Ty W’ F"")’W:W’

u, {0}.
. L . o 1
Now, if a & ugy 95 A > 1, then K)\,a'- {a )\,a+’d)\,a-}’ with a)\’w ~'<“t)\:{“’7r']}>

A2l

and a4 Ao- T uyy, {u-7]ﬁ.}> is a simple probability structure with u)"a(a
u)\,a(a)\,a-) = 1/2.
A possible path of Brownian Motion is a function f such that:
a) Domain of f = T,
b) £(0) = <uy, {0}>,
©) £(t) 4) = <uzy _q,{a}> implies i(t) € Kx,a’ A2 1.

)\,a+) -

let H be the set of all possible trajectories. On H one obtains a probability
measure u induced by the u)\’a's. As indicated in Chuaqui 1980, u is defined by
induction on ordinals which in this situation may be hyperfinite.

We define random variables (Xt)\)’; =g on H by Xt)‘(f):= Var.(f(tx)), where
Var. (f(tx)) <™R is the real number that belongs to the variable part of f(t)\).
For example, if f(t)‘) = (ut)‘,{o.b, then Var.(f(tx)) = q.

Using some results of Anderson 1976, it may be shown that this is a good
model for Brownian Motion. Indeed, if f< H, we define X_(f) for each s« *[0,1]
by

X, (£):= Xt[ns] (£)+(ns-[ns])- (Xt[ns]ﬂ (H 'Xt[ns] ().

In this way we have a set H that contains all possible trajectories, a measure
u defined on H, or more precisely, on a family 4 of subsets of H and a family
(Xs)s:*[o,ﬂ of random variables. Furthermore, all these objects (7, the func-
tions f, H, 4, the Xs 's) are internal. This is also the case for the measure o,
because it is defined in terms of standard measures and internal ordinals. H,
A,1) is an internal probability space.

Now, we consider Loeb's standard probability space (H,L(4),P) associated with
(H,A,1) (see Loeb 1975). L(A) is the o-algebra generated by 4, and P is the
probability measure defined on L(4) and generated by the standard part %y of y.
If we now define

Y (£ = °x (5, s <]0,1],
then
1 2
P(Y, @) = = [ exp(-y“/2s)dy, o €R.

- 00

In fact,
o
P(YS sa)=P( X, < a)

= Pk < o)

[gs]—1
(2, Uty iey) <)
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[ne] -1

02 (th+]'xtk)
( k=0

=P

Because the random variables Xty ,1-Xt; are independent with mean 0 and variance
1/n, by a non-standard version of central limit theorem (Anderson 1976) one has
that the last expression equals

1
) n 1 . M
1im ©(*) ( /m (a+2)) = lim W[GTRms ) = ‘P(';s“)’-

mre

where Y is the distribution function of the normal probability law with mean 0
and variance 1. Thus, Y, has normal distribution N(0,s), with mean 0 and vari-
ance s.

It is known (Anderson 1976) that P is an extension of the Wiener measure on
c[o,1].
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