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1. Preliminaries

We will consider topological structures of the form (%, ¢), where % is a classical
algebraic structure for first order logic and o is a topology or a basis for a topology
on the universe 4 of . Given a set of symbols S compatible with the algebraic parts
of the structures under consideration, we construct the formal language LS for ex-
pressing properties of those topological structures. LY is constructed as the classical
first-order language L® adding to it the following rules for building formulas:

if t is a (first-order) term of LS, then f € X (where X is a second-order variable for
open sets) is an atomic formula;

if @ is a formula of L{ positive in X and ¢ is a term of LS, then (VX 3 t) @ is a for.
mula of L,

if g is a formula of L{ negative in X and ¢ is a term of LS, then (3X 2 t) g is a for-
mula of LS,

It is easy to show that the formulas of L are basis-invariant, i.e. for each peLf
and structure <Y, o):

A, o) kg iff W, 6 F .

Here 6 is the topology generated by o: 6 = {Us|s < o}. For historical remarks,
precise definitions and other interesting properties of L,, see [4], [7].

2. The topologieal produect

Let ({¥;, 0,))ier be topological structures and D < P(I) a filter on I. We define
the D-product of the (¥, g;) as the topological structure ([T%,, &,), where ]9, is
1 1
the direct product of the %; and 6}, is the topology generated by the basis
op={I1U,|C €0, and {iel|U, = 4,} e D}.
1

Some facts that are easy to verify are the following:

a) The projection maps p, are continuous iff D 2 Co(I), the filter of cofinite sets.
b) If D = Co(I), then 6, is the Tychonov, topology (the usual product topology).

¢) If D = {I} (the trivial filter), then &), is the trivial topology.

d) If D = P(I) (the improper filter), then &, is the box topology.

e) If D, E are filters on I and D < E, then 6 is finer than Gp.

f) (I:IA,, 6py is Hausdorff iff D 2 Co(I) and all {(4,, 0;> are Hausdorff.
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If $B(I) is the Boolean algebra (P(I), N, \, °, 0, I>, then the structure {B(I), D) is
a Boolean algebra with distinguished filter D. Let LPAF be the first-order language
for such algebras. :

It is also possible to extend the Feferman-Vaught-type theorem [3] given in [4] for
usual topological products to our products:

Theorem. To each sentence @ e LS there can be effectively associated a tuple
(D;0,,...,0,), where D(z;,...,2,) P and 6,,...,0,€ LS are sentences, such that
](07’ all I, (<QI1, 0'1))161, D:

<l—:I W, 6pp E g iff <B(), D)k DSO,), ..., 804
where 8(0;) = {ieI| <Y, o) k0}. O

As in [3], we can everywhere assume that (®; 0, ...,0,) is a partitioning tuple.

Combining this result with ErsHOV’s theorem [2] on the decidability of the first-
order theory of all algebras of the form ($3(), D), we obtain

Theorem. If K is a class of topological structures with decidable L3-theory, then the
L5-theory of the class of all products (in our sense) of structures in K is also decidable.
The same is true if we restrict ourselves to the case where the index sets are infinite andjor
the filters extend the corresponding filter of cofinite sets. [

3. Examples

a) Let K = {(2, o)}, where 2 is the Boolean algebra with two elements and ¢ is the

. discrete topology. Let LBA be the first-order language for Boolean algebras and L4 ‘
the topological language for Boolean algebras with topology. The LPA.theory of K is
decidable since the unique structure contained in it is finite. Thus, the class {¢2%,6p) | |
I is a set and D is a filter on I} has a decidable LPA.theory. Furthermore, we shall see |
that it is possible to classify all its structures according to elementary equivalence.

Theorem. For all filters D and E on I and J, respectively,
21, 6p) =102, 0p) iff (BU), D) =poar (RV), ED.
Proof. One direction follows from the Feferman-Vaught-type theorem. The other
one is obtained interpreting the LPAF.theory of (R(I), D) in the LBA.theory of

(21, 6,,>. More precisely, to each formula g(x) € LPAF we associate a formula ¢*(x) € L34,
such that, for each I, D, a e 2':

(B, Dy k ¢la] iff <2, 6p) F ¢*[a],
where x = (2, ...,%,), @ = (@1, ..., ). ¢* is constructed replacing each subformula :
of ¢ of the form ¢ € D by the LP*formula (3X 5¢) Va(xe X » ant = ). [

Therefore, using the classification in elementary-equivalence types of all algebras
of the form (R(I), D) made by ErsHov [2], it is possible to classify the algebras of
the form (2!, 6p>. In particular, we can see that there are many pairs of them which
are not elementary equivalent. :

b) Let ((A;, 0))ier, ({By,T;))jer» be Ts-spaces (regular and Hausdorff) which are
not singletons. In contrast with that obtained in a), we have
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Theorem. If I, J are infinite and D 2 Co(I), E 2 Co(J), then
<11_[ A;,6p) =y, <II_I B, tg).

Proof. {I14,,6p) and {J] B, gy are T;-spaces without isolated points. It is known
1 7
[4] that all T;-spaces without isolated points are L,-equivalent. []

¢) Let us consider the non-regular T, topological space (R, ¢), where the basic
neighbourhoods of points different from O are as usual, but the basic neighbourhoods
of 0 are of the form (¢, d)\ {+1/k| ke N}. It is possible to show that the L,-theory
of (R, ¢ is decidable. Consequently, the theory of all topological powers (R!, 5> is
also decidable. Not all these powers are elementary equivalent; for example, (R, o)
and {R’, 5,>, with |I| > 2, are not elementary equivalent since ‘“there exists a unique
non-regular point’’ is expressible in L,. It is an open problem to classify all these
powers according to elementary equivalence; in particular, for infinite index sets and
filters that extend the filter of cofinite sets. In this context, it may be of interest to
recall that the L,-theory of all Hausdorff spaces is undecidable [4].

4, Properties of formulas which are preserved under topological products

A sentence g € L{ is preserved (under topological products) if for all I, (¥, 0,>)er,
filter D on I: for all 1 eI, {U;, 0,) k ¢ implies {JTY,;,6p) F @.
1

From now on, the set of symbols S will be finite.
Theorem. The class of all preserved sentences of Ly is recursively enumerable.

Proof. By the Feferman-Vaught-type theorem, we can associate effectively to each
sentence ¢ € L7 a partitioning tuple (®;6,,...,0,) with ®(x,, ..., 2,_;) € LP4F and
6,,...,0, L5 sentences.

If ¢ is the LBAF.sentence

Voo .. Vi, { AN oynz;=0Aa50.. .Uz =1A A 2,=0
i<j<n jeC(e)
= ¢(x0) e & -1)):

where C(p) = {j |0 £ j < n and k s@ — —10,}, then it is easy to verify that ¢ is
preserved iff ¢ belongs to the LPAF-theory of all algebras of the form {$(I), D). As
we have seen, this theory is decidable; furthermore, {6 € L{ | ks —» 716} is recur-
sively enumerable and ¢ can be obtained effectively from ¢ and C(g). From this
we can conclude that the class of all preserved sentences is recursively enumer-
able. [

For the usual first-order logic there is a theorem by VAucur [3] that establishes
that a formula is preserved under direct products iff it is preserved under products
of two factors. In [4] it is shown that this fact, which simplifies the study of preserved
first-order formulas, does not hold for L, and Tychonov topological products. In our
case, we have the following lemma as a substitute for VAugHT’s theorem. This lemma
can be proved using SKOLEM’s decision method for the LBA-theory of all algebras of
the form R(I) (see e.g. [6]).

T*
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Lemma. To each sentence ¢ € L{ there can be effectively associated a nalural number n,,
such that for all (U, o) if (A, D™ F @, then for all m = ny (A, D™ F @. (U, od™ is the
usual topological power). []

From this lemma and a series of technical results with classical analogues, it follows,
as in [5] for first-order logic and reduced products, the following theorem:

Theorem. Each sentence of LY is logically equivalent to a Boolean combination of
sentences which are preserved under topological products with respect to non-trivial filters. [

In what follows, we assume that the filters extend the corresponding filter of cofinite
sets. The next two theorems give us a large syntactical class of formulas of L, which
are preserved. The first one can be proved by induction.

Theorem.
a) Atomic formulas and negations of atomic formulas are preserved.
b) If ¢ is preserved, then Ixp and Vxp are preserved.
¢) If ¢ and y are preserved, then @ Ay is preserved.
d) If @ is preserved and positive in X, then (VX 3t) ¢ ts preserved.

Theorem. If ¢ € LS is positive, without second-order quantifiers and Q is a block of
second-order existential quantifiers, then the following formulas of L7 are preserved:

a) @ — 0 if @ is preserved.

b) Qg — 0) if 0 is preserved and positive.

c) QVy(p — 0) if 0 is a second-order atomic formula, i.e. of the form t e X.
Proof.

a) It is possible to show that the formulas of L which are preserved under contin-
uous surjective homomorphisms are those that are equivalent to positive formulas
without second-order existential quantifiers. On the other hand, by the hypothesis on
the filters, the projection maps are continuous. The combination of these facts gives
the proof.

b) As Q(¢ — 6) e L, the second-order variables in Q do not appear in 6; hence
Qg - 0)1+ Q@ — 6, where Q' is a block of second-order universal quantifiers.
Therefore we can apply a).

¢) For simplicity, we restrict ourselves to the case Q = (3Y 3¢), y = v, that is, we
have to prove that

pi= (Y3t .. ) VYW, 2, ..., ¥, X, .. ) > 0@ @, . . ., X))
is preserved.

Let us suppose that for all s I
Aoy, X, .. )b, ..., U, 0]
(here b,...€114,,TIU,,...€0p). Then, for each 1el, let Y €o; be such that
tm‘[b,,...]eY,Iand !
1) My, o0 EVY(ply, 2, ..., Y, X, ..)> 0y, x,...., X)) [b,...,. Y, U,y 0]

o
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If, for all i€ I, one has (¥;,0,) k Vyb(y,2,..., X)[b,,..., U], then, by the pre-
ceding theorem, <JT¥;,dp) k Vyb(y,2,...,X)[b,...,[1U,] Taking ¥ =T 4,, it
follows that (I'IQI,,lch,)Ftp[b,...,HU,,...]. ! !
Otherwise, tilel‘e exist sets I, < 111 € D such that
o€l iff (U, 0.)F Iy =00y, ..., Uy 1

Then, for all ioEIo and all a‘oeAio Such that <Q[(O,O',°> ‘: _Ie[a,o, bto’ v ey U,o],
one has by (1) that Uy 000 @y, 2, ..., ¥, X) [ai,s biys e .oy Y,,U

As g is negative without second-order universal quantifiers, —1¢ is preserved
under preimages of continuous surjective homomorphisms, hence

<l:[ Q[h 5D> F _”P(.’/: Tyvuey Y’ X: v ') [dios 5i°: e pi—ol(ylo): I’Z,I(U:o)’ ‘ ']’

fgr+ ol

where d;, b; ,...€[]4, are preimages of @iys biy, o .. under pi! (in particular, we
T

can take b; ,...=b,...). In consequence, letting V:= N (¥, < N Y g

€ pi.}(Y,,), we obtain el iely

(2) <].I_.[9’[!’6D>'=_I¢[dio»b:-"» V:l:_[U(,--.].

Notice that V € o, and therefore we can replace p{ol(Y,o) by V because —1¢ is negative.
Now let us suppose that ([T, 6,) F [b,...,[TU,,.. .]; then
1 1

<l:[9[u5n> FVYate,...) Iylew. 2,..., ¥, X,.. ) A
A0y, ..., X)Ib,.. .,];[ Uu,...l
In particular, taking the above defined V as assignment for Y, we obtain an a € 14,
such that !
(3) <nmi=60> l: 9’0(?/: Zy.on, Y:X, .. ) [a':b: LS V:I-IUH [ '] a’nd
1 1

<l;19iu opy F 0y, 2, ..., X) [a,D, .. -.l;I Uil.

From this last fact there follows the existence of i, eI, such that Hiys 000 F

F-0(y, z, ..., X) (@i, b1ys .., Uy ). As we now are in the situation that led us to
(2), we conclude that

(I;[QI,,6D> Faew, ..., Y, X,...) @i, 0, ..., V,]'IIU,, AP
In particular, with d;, = a, it follows
<II_IQ[(’6D> F _'99(.%95, L] Y: X» ‘. ) [a: b: U] VsI;_[Uh o ~]:

which contradicts (3). ]

Applying systematically the two preceding theorems it is possible to verify syn-
tactically that the following topological properties expressable in L, are preserved:

VaVy(VX s 2)ye XA (VY 3y)zeY) » & = y) (“To™,
VaVy(VX a2)ye X —» 2 = y) (“T."),
VaVy(3X a2) (AY 3 y) (R2(ze X AzeY) > = Y) (“Hausdorff"),
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Ve(VX 32) 3Y 22) Vy(YWay)J2(ze WArze Y) - ye X) (“regular.;-.’) ,

Ve(VX 5 f(x)) (AY a2) Vz2(z€ ¥ — f(2) e X) (“‘f is continuous”),

Vo((VX 3 2) Jy(Py Ay e X) » Px) (“P is closed”).
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