Statistical Relational Extension of Answer Set Programming

@Reasoning Web School 2022 Joohyung Lee

Global AI Center School of Computing and AI Samsung Research **Arizona State University**

Combining Logic and Probability

- The main goal of the representation in SRL is to express probabilistic models in a compact way that reflects the relational structure of the domain, and ideally supports efficient learning and inference.
	- BLP, BLOG, PRM, MLN, PSL, ProbLog, RBN, RDN, . . .
- Related to Neuro-symbolic AI

What the Tutorial is About

| **ASP (Answer Set Programming) is a declarative programming paradigm that is based on the stable model semantics**

| **ASP is effective and widely used on knowledge intensive domains and combinatorial search problems**

| **However, the deterministic nature of ASP limits its application in domains involving probability and inconsistencies**

Answer Set Programming

| **Declarative programming paradigm combining**

- a rich yet simple modeling language
- with high-performance solving capacities

| **ASP is useful for knowledge-intensive tasks and combinatorial search problems**

| **ASP has its roots in**

- logic programming
- knowledge representation
- constraint solving (in particular SAT)
- (deductive) databases

$ASP = LP + KR + SAT + DB$

| **Markov logic combines first-order logic with Markov networks**

- | **A Markov logic network consists of a set of weighted firstorder formulas**
- | **The probability of a world is proportional to the exponential of the sum of the formulae that are true in the world**
- | **The idea is to view logical formulas as soft constraints on the set of possible worlds**

Markov Logic vs. ASP

| **Markov Logic**

- + Uncertainty with knowledge base
- Based on classical first-order logic

Can't handle inductive definition, causality, …

| **ASP**

- + Rich KR constructs (choice rules, aggregates, …)
- + Rule-based semantics

Can handle transitive closure, causality

- Does not handle (probabilistic) uncertainty well

| **A logic formalism with weighted rules under the stable model semantics, following the log-linear models of Markov Logic**

| **It provides versatile methods to overcome the deterministic nature of the stable model semantics, such as:**

- Resolving inconsistencies in answer set programs $\mathcal{C}_{\mathcal{A}}$
- Define ranking/probability distribution over stable models $\mathcal{C}_{\mathcal{A}}$
- Apply methods from machine learning to compute KR formalisms

• A simple approach to combining answer set programming (ASP) and Markdov Logic (MLN)

Outline

- 1. Introduction
- **2. Intro to ASP**
- 3. Stable Model Semantics
- 4. Syntax and Semantics of LPMLN
- 5. Relating LPMLN to Other Languages
- 6. Inference in LPMLN
- 7. Learning in LPMLN
- 8. Extension to Embrace Neural Networks

Problem Solving

Traditional Programming

Declarative Programming

What is Answer Set Programming

| **Declarative programming paradigm suitable for knowledge intensive and combinatorial search problems**

| **Theoretical basis: stable model semantics (Gelfond and Lifschitz, 1988)**

| **Expressive representation language**

- defaults
- negation as failure
- recursive definitions
- aggregates
- preferences
- $-$ etc.

What is Answer Set Programming, cont'd

| **ASP solvers**

- …

- smodels (Helsinki University of Technology, 1996)
- dlv (Vienna University of Technology, 1997)
- cmodels (University of Texas at Austin, 2002)
- pbmodels (University of Kentucky, 2005)
- Clasp/clingo (University of Potsdam, 2006) winning several first places at ASP, SAT, Max-SAT, PB, CADE competitions
- Wasp (University of Cabria, 2013)
- dlv-hex for computing HEX programs
- oClingo for reactive answer set programming

| **ASP Core 2: Standard language**

Declarative Problem Solving using ASP

| **The basic idea is**

- to present the given problem by a set of rules,
- to find answer sets for the program using an ASP solver,
- and to extract the solutions from the answer sets.

N-Queens Puzzle

No two queens can share the same row, column, or diagonal

N-Queens Puzzle, cont'd

No two queens can share the same row, column, or diagonal

a b c d e f g h

- % Each row has exactly one queen
- 1 {queen(R,1..n)} 1 :- R=1..n.
- % No two queens are on the same column :- queen(R1, C), queen(R2, C), R1!=R2.

% No two queens are on the same diagonal :- queen(R1,C1), queen(R2,C2), R1!=R2, $|R1-R2| = |C1-C2|$.

Finding One Solution for the 8-Queens Puzzle

```
$ clingo queens.lp -c n=8
clingo version 5.2.1
Reading from queens.lp
Solving...
Answer: 1
queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)
queen(3,7) queen(5,8)
SATISFIABLE
Models : 1+
Calls : 1
Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.004s
```
Finding All Solutions for the 8-Queens Puzzle

```
$ clingo queens.lp -c n=8 0
clingo version 5.2.1
Reading from queens.lp
Solving...
Answer: 1
queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)
queen(3,7) queen(5,8)
Answer: 2
[[ truncated ]]
Answer: 92
queen(5,1) queen(1,2) queen(8,3) queen(4,4) queen(2,5) queen(7,6)
queen(3,7) queen(6,8)
SATISFIABLE
Models : 92
Calls : 1
Time : 0.011s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s
```
Outline

- 1. Introduction
- 2. Intro to ASP
- **3. Stable Model Semantics**
- 4. Syntax and Semantics of LPMLN
- 5. Relating LPMLN to Other Languages
- 6. Inference in LPMLN
- 7. Learning in LPMLN
- 8. Extension to Embrace Neural Networks

Stable Model Semantics

Syntax of Propositional Rules

| **We consider rules as the restricted form of formulas in which implications occur in a limited way.**

- We write $F \leftarrow G$ to denote $G \rightarrow F$

A (propositional) rule is a formula of the form $F \leftarrow G$ **where F and G are implicationfree (** \bot , \top , \neg , \wedge , \vee **are allowed in F and G**)

- We often write $F \leftarrow T$ simply as F

| **Example: Is each of the following a propositional rule?**

- $-p \leftarrow (q \vee \neg r)$
- $-p \rightarrow (q \rightarrow r)$
- $(p \vee q) \wedge \neg r$

| **A propositional program is a set of propositional rules.**

Representing Interpretations as Sets

| **We identify an interpretation with the set of atoms that are true in it.**

- **Example:** interpretations of signature $\{p, q\}$

- **Example:** for signature $\{p, q\}$, the formula $p \vee q$ has three models:

Minimal Models: Definition

About a model *I* of a formula *F*, we say that it is **minimal if no other model of is a subset of .**

- **Example:** For signature $\{p, q\}$, the formula $p \vee q$ has three models: $\{p\}$, $\{q\}$, $\{p\}q\}$
- The minimal models are
	- $\{p\}$ and $\{q\}$

Exercise: Find all minimal models of the program

$$
\{p \leftarrow q, \quad q \vee r\}.
$$

| **Statement: If two formulas are equivalent under propositional logic, then they have the same minimal models.**

| **Question: Is the converse true, that two formulas having the same minimal models are equivalent?**

 $325, 385$

Informal Reading: Rationality Principle

| **Informally, program Π can be viewed as a specification for stable models—sets of beliefs that could be held by a rational reasoner associate with Π.**

Informal Reading: Rationality Principle, cont'd

| **Stable models will be represented by collections of atoms. In forming such sets the reasoner must be guided by the following informal principles:**

- Satisfy the rules of Π . In other words, if one believes in the body of a rule, one must also believe in its head.
- Adhere to the "the rationality principle," which says, "Believe nothing you are not forced to believe.

 $r \leftarrow p \wedge q$

Stable Models of Programs with Negation

Prolog vs. ASP

$$
\frac{7}{4}
$$

$$
\begin{bmatrix} p & \cdots & \text{not } q \\ q & \cdots & \text{not } p \end{bmatrix}
$$

$$
\begin{matrix}\n\rho < -18 \\
0 < -18\n\end{matrix}
$$

Prolog does not terminate on query p or q

?- p .

ERROR: Out of local stack Exception: (729,178)

clingo returns

```
Answer: 1
```

```
p
Answer: 2
```
 \mathbf{P}

Finite ASP programs are guaranteed to terminate

Negation as Failure

| **Q:** How do we extend the definition of a stable model in the presence of negation?

$$
p
$$
, p , p , p , p , p , q , $r \leftarrow p$, $r \leftarrow p$, $r \leftarrow p \land \frac{r}{s}$, $r \leftarrow q$.

| **Add r to the model if p is included under the condition that s is not included in the model and will not be included in the future.**

Informal Reading: Rationality Principle

| **Informally, program** Π **can be viewed as a specification for stable models--sets of beliefs that could be held by a rational reasoner associated with** Π**.**

| **Stable models will be represented by collections of atoms.**

In forming such sets the reasoner must be guided by the following informal **principles:**

- Satisfy the rules of Π.
	- If one believes in the body of a rule, one must also believe in its head.
- Adhere to the "the rationality principle."
	- "Believe nothing you are not forced to believe."

Critical Part

| **A critical part of a propositional rule is a subformula of its head or body that begins with negation but is not part of another subformula that begins with negation.**

| **Example: Find the critical parts of the formulas**

Stable Models of Programs with Negation

| **The reduct** Π **of** Π **relative to an interpretation** X is the **positive propositional program obtained from** Π **by replacing each critical** part $\neg H$ of each of its rules

- $-$ by \top if *X* satisfies $\neg H$;
- by ⊥ otherwise

| **Example:**

 $\Gamma^{p,q,r}$ $\left(\frac{\partial \rho}{\partial s} \right)$ Γ $\frac{p,q}{p}$ Γ Γ Γ $q,$ $s \leftarrow q.$

| **is a stable model of** Π **If is a minimal model of the reduct** Π^X

NSS M

Steps to Find Stable Models (Succinct)

Given a propositional program Π

1. Guess an interpretation X

2. Find the reduct of Π **relative to X (i.e.,** Π X)

3. Check if X is a minimal model of Π^X (note that Π^X is a positive **program; has no negation)**

- a. If yes, conclude X is a stable model of Π
- b. If no, conclude X is **not** a stable model of Π

Steps to Find Stable Models (Verbose)

Given a propositional program Π

- **1. Guess an interpretation X**
- **2.** Find the reduct of Π relative to X (i.e., Π^X)
- **3. Check if X satisfies** Π X **(Alternatively, check if X satisfies** Π**)**
	- a. If yes, continue
	- b. If no, conclude X is **not** a stable model of Π
- **4. Check if no other interpretation that is smaller than X satisfies** Π X **. I.e., for each interpretation Y that is smaller than X,**
	- a. If Y satisfies Π X , conclude X is **not** a stable model of Π
	- b. Else continue
- **5. Conclude X is a stable model of** Π

NOTES:

- Every stable model is a model.
- The red part can't be replaced with Π .
Classical Equivalence vs. Stable Models

| **Equivalent propositional programs can have different stable models.**

| **Example:** γ)

 $p \leftarrow \neg q$, $q \leftarrow \neg p$, $p \vee q$

 $p \vee \neg p$ and $q \vee \neg q$

Minimal Models vs. Stable Models

| **Recall the definition:**

X is a stable model of Π if X is a minimal model of Π^X

| **Claim: For any program** Π**,**

X is a stable model of Π if X is a minimal model of Π

True or false? $X = \emptyset$ $\pi^{\emptyset} = \rho \vee T \Leftrightarrow T$ SM $X = \frac{2}{5}$ $\pi^{3p5} = P \vee \perp \Leftrightarrow P$

Choice Rule

| Stable models of *p* ∨ ¬*p* | β {ρς

Stable models of $(p \lor \neg p) \land (q \lor \neg q)$ of \forall , $\forall p$, $\forall \forall s$, $\forall p$, $\forall \forall s$

Stable models of $(p_1 \vee \neg p_1) \wedge (p_2 \vee \neg p_2) \wedge \cdots \wedge (p_n \vee \neg p_n)$

We abbreviate the formula $(p_1 \vee \neg p_1) \wedge (p_2 \vee \neg p_2) \wedge \cdots \wedge (p_n \vee \neg p_n)$ as $\{p_1; \ldots; p_n\}$ and call it choice rule.

Choice Rules in Clingo

Choice rules describe several ways to form a stable model.

```
{p(a);q(b)}.
```

```
says choose which of the atoms p(a), q(b) to include in
the model
```

```
% clingo choice.lp 0
```
Answer: 1

Answer: 2 q(b)

```
Answer: 3 p(a)
```

```
Answer: 4 p(a) q(b)
```
Choice Rules with Intervals and Pools

 ${p(1..3)}$.

has the same meaning as

```
{p(1);p(2);p(3)}.
```
 ${p(a;b;c)}$.

has the same meaning as

 ${p(a);p(b);p(c)}$.

Choice Rules with Cardinality Bounds

 $1 \{p(1..3)\}$ 2.

describes the subsets of {1,2,3} that consists of 1 or 2 elements.

Answer: 1 p(2)

Answer: 2 p(3)

Answer: 3 p(2) p(3)

Answer: 4 p(1)

Answer: 5 p(1) p(3)

Answer: 6 p(1) p(2)

Choice Rules with Variables

 $1 \{p(X):q(X)\}\ 1 \ \cdots \ X=1...2.$ $13p(1)$; $2(1)$ } 1 Answer: 1 $13p(2)3p(3)4$ $q(1)$ $p(2)$ Answer: 2 $q(1)$ $q(2)$ Answer: 3 p(1) p(2) Answer: 4

 $p(1)$ q(2)

X is a global variable ${p(I): I=1..7}.$

| I **is a local variable**

| **A local variable is a variable such that all its occurrences in the rule are in between { … }**

| **Other variables are global variables**

| **The rule expands into**

 $\{p(1); p(2); p(3); p(4); p(5); p(6); p(7)\}.$

| **Q: How many stable models are there?**

(a) 0 (b) 7 (c) 64

Local vs. Global Variables, cont'd

```
{p(I)} : I=1..7.
```
| I **is a global variable because it has an occurrence outside { … }**

| **The rule expands into**

 ${p(1)}$. ${p(2)}$. ${p(3)}.$ ${p(4)}$. ${p(5)}$. ${p(6)}$. ${p(7)}$.

| **Q: How many stable models are there?**

(a) 0 (b) 7 (c) 64 (d) 128

Local vs. Global Variables, cont'd

$$
\{q(I,J): J=1..3\} : - I = 1..2. \qquad \qquad \frac{1}{9}(1, 5): J=1..3
$$
\n**Q. How many stable models are there?**\n
$$
\Rightarrow \frac{1}{3}(1, 1): J(1, 2): J(1, 3): J=1..3
$$
\n
$$
\Rightarrow \frac{1}{3}(2, 3): J=1..3
$$
\n
$$
\Rightarrow \frac{1}{3}(2, 3): J=1..3
$$
\n
$$
\Rightarrow \frac{1}{3}(3, 1): J(2, 3): J=1..3
$$
\n
$$
\Rightarrow \frac{1}{3}(4, 1): J(1, 2): J(1, 3): J=1..3
$$
\n
$$
\Rightarrow \frac{1}{3}(4, 1): J(2, 2): J(1, 3): J=1..3
$$

Constraints

| **A constraint is a rule that has no head, e.g., :- p(1)**

- which can be understood as ⊥← **p(1)**

| **Constraints are often used with choice rules to weed out "undesirable" stable models, for which the constraint is "violated."**

Queens Puzzle

Generate-(Define)-Test

| **A way to organize rules in ASP**

- GENERATE part: generates a "search space" a set of potential solutions
- DEFINE part: defines new atoms in terms of other atoms
- TEST part: weed out the elements of the search space that do not represent solutions

N-Queens Puzzle

| **No two queens can share the same row, column, or diagonal.**

N-Queens in ASP

% Each row has exactly one queen 1 {queen(R,1..n)} 1 :- R=1..n.

% or

{queen(R, 1..n)}=1 :- R=1..n.

 $(R=1)$ \Rightarrow 38(1, 1..3)}=1 $38(2, 1.3) = 1$
 $38(3, 1.3) = 1$ $(R=2)$ $(R=3)$

$$
\Rightarrow \frac{1}{3} \frac{2}{6} (1, 1); \frac{1}{6} (1, 2); \frac{1}{6} (1, 3) \cdot 5 = 1
$$

$$
\frac{1}{3} \frac{1}{6} (2, 1); \frac{1}{6} (2, 2); \frac{1}{6} (2, 3) \cdot 5 = 1
$$

$$
\frac{1}{6} \frac{1}{6} (3, 1); \frac{1}{6} (3, 2); \frac{1}{6} (3, 3) \cdot 5 = 1
$$

N-Queens in ASP

```
% Each row has exactly one queen
{queen(R,1..n)}=1:-R=1...n.
```
% No two queens are on the same column $:$ queen(R1,C), queen(R2,C), R1!=R2.

% No two queens are on the same diagonal :- queen(R1,C1), queen(R2,C2), R1!=R2, |R1-R2|=|C1-C2|.

Finding One Solution for the 8-Queens Puzzle

```
$ clingo queens.lp -c n=8
clingo version 5.2.1
Reading from queens.lp
Solving...
Answer: 1
queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)
queen(3,7) queen(5,8)
SATISFIABLE
Models : 1+
Calls : 1
Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.004s
```
|

Finding All Solutions for the 8-Queens Puzzle

```
$ clingo queens.lp -c n=8 0
clingo version 5.2.1
Reading from queens.lp
Solving...
Answer: 1
queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)
queen(3,7) queen(5,8)
Answer: 2
[[ truncated ]]
Answer: 92
queen(5,1) queen(1,2) queen(8,3) queen(4,4) queen(2,5) queen(7,6)
queen(3,7) queen(6,8)
SATISFIABLE
Models : 92
Calls : 1
Time : 0.011s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.010s
```
|

Outline

- 1. Introduction
- 2. Intro to ASP
- 3. Stable Model Semantics
- **4. Syntax and Semantics of LPMLN**
- 5. Relating LPMLN to Other Languages
- 6. Inference in LPMLN
- 7. Learning in LPMLN
- 8. Extension to Embrace Neural Networks

| **A probabilistic extension of Answer Set Programs, following the log-linear models of Markov Logic**

| **It provides versatile methods to overcome the deterministic nature of the stable model semantics, such as:**

- Resolving inconsistencies in answer set programs
- Defining ranking/probability distribution over stable models
- Applying methods from machine learning to compute KR formalisms

Language LPMLN

| **Overcomes the weakness of ASP in handling uncertainty.**

| **Overcomes the weakness of MLN in handling expressive commonsense reasoning.**

bird(x) <- residentBird(x).
bird(x) <- migratoryBird(x).
<- residentBird(x), migratoryBird(x).

$$
-\mathsf{KB}_2
$$

residentBird(Jo).

KB₃
migratoryBird(Jo).

LPMLN (1 of 3)

| **Syntactically, it's a simple extension of answer set programs where each rule is prepended by weights**

- infinite weight (∞) tells the rule expresses a definite knowledge

| **Each stable model gets weights from the rules that are true in the stable model**

- a stable model does not have to satisfy all rules
- the more rules true, the more likely the stable model

LPMLN (2 of 3)

| **Adopting the log-linear models of MLN, language LPMLN provides a simple and intuitive way to incorporate the concept of weights into the stable model semantics**

- While MLN is an undirected approach, LP^{MLN} is a directed approach, where the directionality comes from the stable model semantics

| **Probabilistic answer set computation can be reduced to sampling and optimization problems**

Syntax of LPMLN

| w: R **where**

- w is a real number or α for denoting the infinite weight
- R is an ASP rule

| **Variables are understood in terms of grounding same as in MLN**

 $\vert \Box$ denotes the set of rules $w : R$ in \Box such that $I \models R$

| I is a soft stable model of Π if I is a (standard) stable model of Π_I

The unnormalized weight of an interpretation *I* **under** Π **is defined**

as $W_{\Pi}(I) = \begin{cases} exp \left(\sum_{w: R \in \Pi_I} w \right) & \text{if } I \text{ is a soft stable model of } \Pi \\ 0 & \text{otherwise} \end{cases}$

| **The normalized weight (probability) of an interpretation under** ⨅**, denotes** ⊓()**, is defined as** \overline{u} \overline{r} \overline{r}

$$
P_{\Pi}(I) = \lim_{\alpha \to \infty} \frac{W_{\Pi}(I)}{\sum_{J} W_{\Pi}(J)}
$$

 $P(R(Jo)) =$

 $P(B(Jo)) =$

 $P(B(JO) | R(Jo)) =$

 $P(R(JO) | B(JO)) =$

 $P(R(JO) & M(JO)) =$

 $\alpha: \quad Bird(x) \leftarrow ResidentBird(x)$ KB_1 $\alpha: \quad Bird(x) \leftarrow MigratoryBird(x)$ $\alpha: \leftarrow ResidentBird(x), MigratoryBird(x)$

 KB'_2 2: ResidentBird(Jo) $(r4')$ KB'_3 1: MigratoryBird(Jo) $(r5')$

 $P(R(J_0)) = 0.67$
 $P(M(J_0)) = 0.29$ $P(TRT_{0})\wedge TM(J_{0})) = 0.09$ $P(B(Js)) = 0.67 + 0.24 = 0.9$ $P(R(J_0 | B(J_0)) = \frac{0.67}{0.67 + 0.24})$ $= 0.74$.

 $\begin{array}{c} (r1)\ (r2) \end{array}$

 $(r3)$

Reward-Based Weight

| **REWARD-BASED WEIGHT**

$$
W_{\Pi}(I) = exp(\sum_{w: R \in \Pi, I \vDash R} w)
$$

| **Probability**

$$
P_{\Pi}(I) = \lim_{\alpha \to \infty} \frac{W_{\Pi}(I)}{\sum_{J} W_{\Pi}(J)}.
$$

Penalty-Based Weight

| **PENALTY-BASED WEIGHT**

$$
W_{\Pi}^{pnt}(I) = exp(-\sum_{w: R \in \Pi, I \neq R} w)
$$

| **Probability**

$$
P_{\Pi}^{pnt}(I) = \lim_{\alpha \to \infty} \frac{W_{\Pi}^{pnt}(I)}{\sum_{J} W_{\Pi}^{pnt}(J)}
$$

Example (Penalty-based)

- $KB_1 \qquad \alpha: \quad Bird(x) \leftarrow ResidentBird(x)$ $\alpha:$ Bird $(x) \leftarrow$ MigratoryBird (x) $\alpha: \leftarrow ResidentBird(x), MigratoryBird(x)$
- KB'_2 2: ResidentBird(Jo) $(r4')$
- KB'_3 1: MigratoryBird(Jo) $(r5')$

 $\frac{(r1)}{(r2)}$

 $(r3)$

Reward vs. Penalty based Weights

Theorem. For any LPMLN program Π **and any interpretation I,**

 $W_{\Pi}(I) \propto W_{\Pi}^{pnt}(I)$

 $P_{\Pi}(I) = P_{\Pi}^{pnt}(I)$

Outline

- 1. Introduction
- 2. Intro to ASP
- 3. Stable Model Semantics
- 4. Syntax and Semantics of LPMLN
- **5. Relating LPMLN to Other Languages**
- 6. Inference in LPMLN
- 7. Learning in LPMLN
- 8. Extension to Embrace Neural Networks
LPMLN vs. ASP vs. MLN

From ASP to LPMLN

ASP as a Special Case of LPMLN

| **Any answer set program** Π **can be viewed as a special case of an LP^{MLN} program** P_{Π} by assigning the infinite weight to each rule
 P_{Π} \uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \downarrow $\mathsf{P}(\mathsf{I})$

 $\left| \begin{array}{c} e^{2\pi} \\ e^{2\pi} \end{array} \right|$

 $e^{2\alpha}$

うっと

 385

 $3P.85$

 $rac{1}{2}$

 \boldsymbol{O}

| **Theorem: For any answer set program** Π**, the (deterministic) stable models of** Π **are exactly the (probabilistic) stable models of LPMLN** program P_{Π} whose weight is $e^{k\alpha}$, where k is the number of all ground **rules in** Π

Example

| **If Π has at least one (deterministic) stable model, then all (probabilistic) stable models of** P _Π **have the same probability, and are thus the stable models of Π as well**

Q: What if Π has no stable models?

- Π Bird(Jo) \leftarrow ResidentBird(Jo) Bird(Jo) ← MigratoryBird(Jo) ⊥ ← ResidentBird(Jo), MigratoryBird(Jo) ResidentBird(Jo) MigratoryBird(Jo)
- P_{Π} α : Bird(Jo) ← ResidentBird(Jo)
	- α : Bird(Jo) ← MigratoryBird(Jo)
	- α : ⊥ ← ResidentBird(Jo), MigratoryBird(Jo)
	- α : ResidentBird(Jo)
	- α : MigratoryBird(Jo)

 $3B(J_{0}), R(S_{0}), 3B(J_{0}), M(S_{0}), 3B(J_{0})$ **Q: What are the stable models** P _Π?

From MLN to LPMLN

Outline

- 1. Introduction
- 2. Intro to ASP
- 3. Stable Model Semantics
- 4. Syntax and Semantics of LPMLN
- 5. Relating LPMLN to Other Languages
- **6. Inference in LPMLN**
- 7. Learning in LPMLN
- 8. Extension to Embrace Neural Networks

Weak Constraints (1 of 3)

| **A weak constraint has the form**

```
:∼ F. [Weight @ Level]
```
 $\frac{0}{2}$

| **Weight is an integer and Level is a nonnegative integer**

Weak Constraints (2 of 3)

| Let Π be a program $\Pi_1 \cup \Pi_2$, where Π_1 is a usual ASP **program and Π₂ is a set of weak constraints.**

| **We call a stable model of** Π **if** it is a stable model of Π_1 .

| **For every stable model of** Π **and any nonnegative integer ,** the penalty of I at level L , denoted by $Penalty_{\Pi}(I, L)$, is **defined as**

 $w.$ $:\sim F[w@l] \in \Pi_2,$ $I\vert =F$ | **ex:** {p; q}. :~ p. [10@0] :~ q. [5@1]

Weak Constraints (3 of 3)

| **For any two stable models and** ′ **of** Π**, we say is dominated by** ' **if**

- there is some level L such that $Penalty_{\Pi}(I', L) < Penalty_{\Pi}(I, L)$ and
- for all integers $K > L$, $Penalty_{\Pi}(I', K) = Penalty_{\Pi}(I, K)$

| **A stable model of** Π **is called optimal if it is not dominated by another stable model of** Π

From LPMLN to ASP: Weak Constraints

In clingo

% test

{p;q}. :~ p. [10@0] $: ~ q. [501]$

\$ clingo test

Answer: 1

Optimization: 0 0 OPTIMUM FOUND

\$ clingo test --opt-mode=enum 0 Solving... Answer: 1

```
Optimization: 0 0
Answer: 2 q
Optimization: 5 0
Answer: 3 p
Optimization: 0 10
Answer: 4
p q
Optimization: 5 10
OPTIMUM FOUND
Models : 4
```
Translation lpmln2asp

| **Soft Rules:**

 $w_i : Head_i \leftarrow Body_i$

 $\left| \mu n sat(i) \right| \leftarrow Bodyi, not \, Head_i$ Head $_i \leftarrow Body_i$, not unsat(i $: \sim$ unsat(i) $[w_i@0]$

| **Hard Rules:**

 $\alpha\; : Head_i \leftarrow Body_i \qquad \quad \mid \: unsat(\textbf{A})\textbf{A} \leftarrow Body_i, not \; Head_i$ Head $_i \leftarrow Body_i$, not unsat(i $: ~ \sim$ unsat(i) $[1@1]$

Theorem: For any LPMLN program Π, the most probable stable models of Π are precisely the optimal stable models of lpmln2asp(Π).

Example

Theorem: For any LPMLN program Π, the most probable stable models of Π are precisely the optimal stable models of lpmln2asp(Π).

LPMLN program | **Q: What is the most probable stable model?** $\alpha : p \quad (r_1)$ $W(I)$ --------------------------
0 $10:q \leftarrow p \quad (r_2)$ {} e^{x}
 $e^{x^2+10-20}$ $\{p\}$ $-20:q(r_3)$ {q} {p,q}

Example

LPMLN program $\alpha : p$ (r_1) $10: q \leftarrow p$ $(r₂)$ $-20 : q$ (r_3) Clingo program $unsat(1) :- not p.$ $p : -not$ unsat(1). $: ~^{\sim}$ unsat(1). [1@1] $unsat(2) :- p, not q.$ $q : -p$, not unsat(2). $: \sim$ unsat(2) [10@0] $unsat(3) : -not q.$ $q: -\textit{not} \textit{unsat}(3).$ $: ~^{\sim}$ unsat(3). [-20@0] Clingo Output Solving… Answer: 1 p unsat(2) unsat(3) Optimization: 0-10 OPTIMUM FOUND % The number in blue is the penalty at level 1. % The number in red is the penalty at level 0.

Implementation of LPMLN2ASP

The most probable stable models correspond to optimal stable models

Weight of stable models can be calculated with

$$
W_{\Pi}^{\text{pnt}}(I) = exp \left(- \sum_{\text{unsat}(i, \underline{w}_i, \mathbf{c}) \in \phi(I)} w_i \right).
$$

$$
W_{\Pi}^{\text{pnt}}(I) = exp \left(- \sum_{\text{unsat}(i, \underline{w}_i, \mathbf{c}) \in \phi(I)} w_i \right).
$$

$$
W_{\Pi}^{\text{pnt}}(I) = exp \left(- \sum_{\text{unsat}(i, \underline{w}_i, \mathbf{c}) \in \phi(I)} w_i \right).
$$

The corresponding stable model of the corresponding ASP program $P_{\Pi}(a) = \sum_{J \vdash a} P_{\Pi}(J)$

Conditional probability of an atom a given evidence E

 $P_{\Pi}(a \mid E) = \sum P_{\Pi \cup E}(J)$

 $J \vDash a$

(E is encoded as a set of ASP constraints)

System Architecture

| http://github.com/azreasoners/lpmln

| lpmln2asp can compute MAP inference, marginal and conditional probability

MAP inference is directly computed by clingo

Probability calculations are computed by a probability computation module

Input Language of lpmln-infer

| **The input language resembles the input language of clingo** | **Hard rules are encoded exactly the same as clingo rules** | **Soft rules are clingo rules with weight prepended**

% File: bird.lpmln

bird(X) :- residentbird(X).

 $bird(X)$:- migratorybird(X).

- :- residentbird(X), migratorybird(X).
- 2 residentbird(jo).

1 migratorybird(jo).

Example: Finding Most Probable Stable Models

```
% bird.lpmln
bird(X) :- residentbird(X).
bird(X) :- migratorybird(X).
:- residentbird(X), migratorybird(X).
2 residentbird(jo).
1 migratorybird(jo).
```

```
$ lpmln-infer bird.lpmln
```

```
Answer: 1
unsat(5,
"1") unsat(4,
"2")
Optimization: 3000
Answer: 2
unsat(5,"1") residentbird(jo) bird(jo)
Optimization: 1000
OPTIMUM FOUND
```
Example: Probabilities of All Stable Models

```
% bird.1pmln
bird(X) :- residentbird(X).
bird(X) : - migratorybird(X).
: residentbird(X), migratorybird(X).
2 residentbird(jo).
1 migratorybird(jo).
```

```
$ lpmln-infer bird.lpmln -all
```
[unsat(5,"1"), unsat(4,"2")] : 0.09003057317038046 [residentbird(jo), bird(jo), unsat(5,"1")] : 0.6652409557748219 [bird(jo), migratorybird(jo), unsat(4,"2")] : 0.24472847105479767

Example: Marginal Probability of Query

% bird.lpmln $bird(X)$:- residentbird(X). $bird(X)$:- migratorybird(X). $:$ residentbird(X), migratorybird(X). 2 residentbird(jo). 1 migratorybird(jo).

query atoms

\$ lpmln-infer bird.lpmln -q residentbird

residentbird(jo) 0.665240955775

| **The command is same as**

\$ lpmln-infer bird.lpmln -q residentbird –exact

| **Alternatively one can use sampling-based inference**

\$ lpmln-infer bird.lpmln -q residentbird –mcasp

Example: Conditional Probability of Query

P(residentbird(jo) | bird(jo))

% bird.lpmln

 $bird(X)$:- residentbird (X) .

 $bird(X)$:- migratorybird(X).

:- residentbird(X), migratorybird(X).

2 residentbird(jo).

1 migratorybird(jo).

% bird-evid.db

:- not bird(jo).

\$ lpmln-infer bird.lpmln -e bird-evid.db -q residentbird

evidence file: set of asp constraints

residentbird(jo) : 0.7310585786300049

Example: Debugging in ASP

```
$ lpmln-infer bird1.lpmln -all -hard
                                      translate hard rules
 % bird1.lpmln
 bird(X) :- residentbird(X).
 bird(X) :- migratorybird(X).
  :- residentbird(X), migratorybird(X).
 residentbird(jo).
 migratorybird(jo).
```
[bird(jo), migratorybird(jo), unsat(4,"a")] : 0.3333333333333333 [residentbird(jo), bird(jo), unsat(3,"a",jo), migratorybird(jo)] : 0.3333333333333333 [residentbird(jo), bird(jo), unsat(5,"a")] : 0.3333333333333333

Representing Bayesian networks in LPMLN

Recall: Example

Representing Bayesian Networks in LPM

@log(0.02/0.98) pf(t). @log(0.01/0.99) pf(f). $\lceil \omega \log(0.5/0.5) \rfloor$ pf(a,t1f1). @log(0.85/0.15) pf(a,t1f0). @log(0.99/0.01) pf(a,t0f1). @log(0.0001/0.9999) pf(a,t0f0). ω log(0.9/0.1) pf(s,f1). $Qlog(0.01/0.99)$ pf(s, f0). @log(0.88/0.12) pf(l,a1). @log(0.001/0.999) pf(l,a0). ω log(0.75/0.25) pf(r,l1). $@$ log(0.01/0.99) pf(r,l0).

Representing Bayesian Networks in LP

Encode DAG in rules:

tampering :- pf(t).

fire :- $pf(f)$.

alarm :- tampering, fire, pf(a,t1f1). alarm :- tampering, not fire, pf(a,t1f0). alarm :- not tampering, fire, pf(a,t0f1). alarm :- not tampering, not fire, pf(a,t0f0).

smoke :- fire, pf(s,f1). smoke :- not fire, pf(s,f0).


```
leaving :- alarm, pf(l,a1).
leaving :- not alarm, pf (l,a0).
```
report :- leaving, $pf(r,1)$. report :- not leaving, $pf(r,10)$.

Representing Bayesian Networks in LPMLN

// fire-bayes.lpmln $Q \log(0.02/0.98)$ pf(t). @log(0.01/0.99) pf(f). $0.5/0.5$ pf(a,t1f1). @log(0.85/0.15) pf(a,t1f0). $0.99/0.01$ pf(a,t0f1). @log(0.0001/0.9999) pf(a,t0f0). $\lbrack 0.9/0.1\rbrack$ pf(s, f1). θ log(0.01/0.99) pf(s,f0). $\lbrack 0.88/0.12)$ pf(l,a1). $Q \log(0.001/0.999)$ pf $(1, a0)$. Q log(0.75/0.25) pf(r,11). $\lbrack 0.01/0.99)$ pf(r, 10).

```
tampering :- pf(t).
fire :- pf(f).
alarm :- tampering, fire, pf(a,t1f1).
alarm :- tampering, not fire, pf(a, t1f0).
alarm :- not tampering, fire, pf(a,t0f1).
alarm :- not tampering, not fire, pf(a,t0f0).
smoke :- fire, pf(s,f1).
smoke :- not fire, pf(s,f0).
leaving :- alarm, pf(1, a1).
leaving :- not alarm, pf (1, a0).
report :- leaving, pf(r,11).
report :- not leaving, pf(r,10).
```
Example Run

| **To compute P(fire | alarm,** ¬**tampering)**

- -Write into fire-evid.db contains
	- :- not alarm.
	- :- tampering.
- -Call

\$ lpmln-infer fire-bayes.lpmln –e fire-evid.db –q fire

Diagnostic Inference

Compute the probability of the cause given the effect

To compute P(fire = t | leaving = t), the user can invoke

\$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q fire

where fire-evid.db contains the line

:- not leaving.

This outputs

fire : 0.35215453804538244

Compute the probability of effect given the cause.

To compute P(leaving = t | fire = t), the user can invoke

\$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q leaving

where fire-evid.db contains the line

:- not fire.

This outputs

leaving 0.862603541626

Combine predictive and diagnostic inference.

To compute P(alarm = t | fire = f, leaving = t), the user can invoke

\$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q alarm

where fire-evid.db contains two lines

:- fire.

:- not leaving.

This outputs

alarm : 0.9386803111482813

Intercausal inference (Explaining Away)

Reasons about the mutual causes (effects) of a common effect

Knowing that there was tampering explains away alarm, and hence affecting the probability of fire.

 P (fire $=$ t | alarm $=$ t, tamp f ing $=$ t) using lpmln-infer outputs fire : 0.005906674542232707

P(fire = t | alarm = t, tampring = f) using lpmln-infer outputs fire : 0.9900990099009899

Representing Probabilistic Graph Problems

Example: Probabilistic Path (1 of 2)

| **ASP encoding of graph problems can be easily turned into probabilistic extensions. E.g.,**

- "given that there is a path between two nodes, what is the most likely graph?": MAP inference
- "given two nodes, what is the probability that there exists a path between them?": probabilistic query

| **We put ln(p/(1-p)) as the weight of the rule edge(X, Y)**

 $\text{Q} \log (0.3/0.7) \text{ edge} (0, 1).$

 $\text{dlog}(0.2/0.8)$ edge(1, 2).

Example: Probabilistic Path (2 of 2)

| **We represent path relation as hard rules:**

```
path(X, Y) :- edge(X, Y).
```

```
path(X, Y) :- path(X, Z), path(Z, Y), Y!= Z.
```
| **Probabilistic Traveling Salesman: "Given a graph with uncertain edges, what is the probability that there is a Hamiltonian circuit? "**

Example: Network Connectivity (1 of 3)

node(1..4).

```
\text{Qlog}(0.8/0.2) fail(2).
\text{Qlog}(0.5/0.5) fail(3).
\text{Qlog}(0.2/0.8) fail(4).
```
edge(1,2). edge(2,4). edge(1,3). edge(3,4). edge(2,3).

connected(X, Y) :- edge(X, Y), not fail(X), not fail(Y). connected(X, Y) $:$ - connected(X, Z), connected(Z, Y).
Example: Network Connectivity (2 of 3)

Example: Network Connectivity (3 of 3)

\$ lpmln-infer networks.lpmln -q connected

connected(1, 2) : 0.19999999999999998 connected(2, 4) : 0.16 connected(1, 3) : 0.5 connected(3, 4) : 0.4 connected(2, 3) : 0.1 connected(1, 4) : 0.48000000000000004

Example: Virus (1 of 2)

person(a;b;c;d;e;f;g).

- 1.5 has $discase(X)$:- carries virus (X) .
- 1.1 carries_virus(Y) :- contact(X, Y), carries_virus(X).

carries_virus(a). contact(a,(b;c;d)). contact(e,(f;g)). contact(f,g). $contact(X, Y)$:- contact (Y, X) .

\$ lpmln-infer input.lpmln -exact -q carries virus,has disease

carries_virus("A") : 1.0000000000000002 carries virus("B") : 0.7860727393281469 carries virus("C") : 0.786072739328147 carries virus("D") : 0.786072739328147 has disease("B") : 0.6426730081063122 has disease("C") : 0.6426730081063122 has disease("D") : 0.6426730081063122 has disease("A") : 0.8175744761936435

Outline

- 1. Introduction
- 2. Intro to ASP
- 3. Stable Model Semantics
- 4. Syntax and Semantics of LPMLN
- 5. Relating LPMLN to Other Languages
- 6. Inference in LPMLN
- **7. Learning in LPMLN**
- 8. Extension to Embrace Neural Networks

Example

- LPMLN weight learning can be used to learn the certainty degree of hypothesis
- Hypothesis can involve recursive definitions

```
\Pi_{Virus}w_1: HasDisease(x) \leftarrow CarriesVirus(x).
w_2: CarriesVirus(y) \leftarrow Contact(x, y),Carries Virus(x).\cdots\alpha : Carries Virus (A).
 \alpha: Context(A, B).
 \alpha: Context(B, C).
```

```
Training Data:
```

```
:- not carries virus (\mathbb{T}^{\mathsf{T}}).
: - not carries_virus("G").
: - carries_virus("B").
: - carries virus("C").
A 100
:- not has_disease("A").
: - not has_disease("E").
```
 $:$ - has disease ("B").

ALC N

Example

"Markov Logic has the drawback that it cannot express (non-ground) inductive definitions" (Fierens et al. 2015) because it relies on classical models.

Where do we get weights?

| **It can be manually specified by the user**

- which may be okay for a simple program
- | **A systematic assignment of weights for a complex program could be challenging** Virus Transmission

Gradient Ascent Method for Finding MLE

| **Gradient ascent algorithm use the gradient** scaled by a learning rate, λ , to update the weight **vector w in each step:**

- Initialize the weights $w = \{w_1, ..., w_m\}$
- Repeat the following until the weight converges:

•
$$
w_j := w_j + \lambda \cdot \frac{\partial L}{\partial w_j}
$$
 for $j \in \{1, ..., m\}$

| **Move in direction of steepest ascent scaled by learning rate:**

Learning in LPMLN

| **Data is a relational database**

| **For now assume that it gives a complete interpretation (data = an interpretation)**

| **Learning parameters (weights)**

| **Learning structure (rules)**

- A form of inductive logic programming
- Also related to learning features for Markov nets

LPMLN Weight Learning (1 of 4)

| **A parameterized LPMLN program:**

- Defined similar to an LP^{MLN} program except that soft weights are replaced with distinct parameters to be learned.

| **Weight Learning:**

- Find the Maximum Likelihood Estimation (MLE) of the parameters, given one complete interpretation as observed data

```
% parameterized program
w_1: has disease(X) :- carries virus(X).
w_2: carries virus(Y) :- contact(X, Y), carries virus(X).
% Observed Data (a soft stable model)
carries virus(E) -carries virus(H) has disease(A) -has disease(H)
what are the values of w1 and w2 that maximizes the probability of the observed data?
```
LPMLN Weight Learning (2 of 4)

| **Gradient Ascent**

LPMLN Weight Learning (3 of 4)

| **Algorithm MC-ASP**

- Adapted from MC-SAT for Markov Logic (Poon and Domingos, 2006)
- Start from a random probabilistic stable model
- Each sampling iteration:

LPMLN Weight Learning (4 of 4)

| **Algorithm MC-ASP**

- Adapted from MC-SAT for Markov Logic (Poon and Domingos, 2006)
- Start from a random probabilistic stable model
- Each sampling iteration:

Outline

- 1. Introduction
- 2. Intro to ASP
- 3. Stable Model Semantics
- 4. Syntax and Semantics of LPMLN
- 5. Relating LPMLN to Other Languages
- 6. Inference in LPMLN
- 7. Learning in LPMLN
- **8. Extension to Embrace Neural Networks**

NeurASP

- NeurASP = Neural Networks + Prob. Answer Set Programs
- *"A first desirable property of frameworks that integrate two other frameworks A and B, is to have the original frameworks A and B as a special case of the integrated one."*
- *"one should not only integrate logic with neural networks in neuro-symbolic computation, but also probability*. "
	- —— De Raedt, Luc, et al. 2019
- DeepProbLog, NeurASP, NeuroLog, …

Simple Answer Set Programs

choices

```
digit(d<sub>1</sub>)=0 | ... | digit(d<sub>1</sub>)=9.
digit(d<sub>2</sub>)=0 | ... | digit(d<sub>2</sub>)=9.
addition(A, B, N) \leftarrow digit(A) = N_1,digit(B)=N_2,
                                 N = N_1 + N_2.
```
This program has 10 x 10 answer sets (a.k.a. stable models): $I_{0,0} = \{$ digit(d1)=0, digit(d2)=0, addition(0,0,0)}, $I_{0,1} = \{$ digit(d1)=0, digit(d2)=1, addition(0,1,1)},

...

Probabilistic ASP

probabilistic choices

$$
p_{1,0}: digit(d_1) = 0 | ... | p_{1,9}: digit(d_1) = 9.
$$

\n
$$
P_{2,0}: digit(d_2) = 0 | ... | p_{2,9}: digit(d_2) = 9.
$$

\naddition(A, B, N) \leftarrow digit(A) = N₁,
\ndigit(B) = N₂,
\nN = N₁ + N₂.

 $P_{\Pi}(\text{addition}(d_1,d_2,3))$

- = $P_{\Pi}(\mathbb{I}_{0,3}) + P_{\Pi}(\mathbb{I}_{1,2})$ + $P_{\Pi}(\mathbb{I}_{2,1})$ + $P_{\Pi}(\mathbb{I}_{3,0})$
- $p_{1,0} \times p_{2,3}$ $=$
	- $+ p_{1,1} \times p_{2,2}$
	- $+ p_{1,2} \times p_{2,1}$
	- $+$ p_{1,3} \times p_{2,0}

NeurASP: Inference

NeurASP = Neural Networks + Prob. Answer Set Programs

 $+$ p_{1,3} \times p_{2,0}

NeurASP: Semantics

The probability of a stable model I of Π is defined as the product of the probability of each atom $c = v$ in $I|_{\sigma^{nn}}$, divided by the number of stable models of Π that agree with $I|_{\sigma^{nn}}$ on σ^{nn} . That is, for any interpretation I,

$$
P_{\Pi}(I) = \begin{cases} \frac{\prod\limits_{c=v \in I|_{\sigma^{nn}}} P_{\Pi}(c=v)}{Num(I|_{\sigma^{nn}}, \Pi)} & \text{if } I \text{ is a stable model of } \Pi; \\ 0 & \text{otherwise.} \end{cases}
$$

An *observation* is a set of ASP constraints (i.e., rules of the form $\bot \leftarrow Body$. The probability of an observation O is defined as

$$
P_{\Pi}(O) = \sum_{I \models O} P_{\Pi}(I)
$$

 $(I \models O$ denotes that I satisfies O).

NeurASP Example: Sudoku (Inference)

Task: given an image of Sudoku board and a pre-trained neural network to identify the value in each cell, predict the solution.

Use NN identify to identify the digits in each of the 81 grid cells.

 $nn(identify(81, img)$, $[empty, 1, 2, 3, 4, 5, 6, 7, 8, 9])$.

• Assign one number to each cell \pm for $\pm \in \{1, ..., 81\}$.

 $a(R,C,N) \leftarrow \text{identity}_i(\text{img}) = N$, R=i/9, C=i\9, N≠empty.

 ${a(R,C,1)}$; ...; $a(R,C,9)$ =1 \leftarrow identifyi(img) = empty, R=i/9, C=i\9.

- No number repeats in the same row, column, and 3×3 box.
	- \leftarrow a (R, C₁, N), a (R, C₂, N), C₁ \neq C₂.
	- \leftarrow a (R₁, C, N), a (R₂, C, N), R₁ \neq R₂.
	- ← a(R1, C1, N), a(R2, C2, N), R1≠R2, C1≠C2, ((R1/3) $X3+C1/3$) = ((R2/3) $X3+C2/3$

NeurASP Advantages (Inference)

- Edit Master text styles
	- Second level
		- Third level

NeurASP Advantages (Inference)

- Edit Master text styles
	- Second level
		- Third level

NeurASP Advantages (Inference)

- Edit Master text styles
	- Second level

For solving offset sudoku: add

:- $a(R1,C1,N)$, $a(R2,C2,N)$, $R1\3 = R2\3$, $C1\3 = C2\3$, $R1$!= R2, $C1$!= C2.

NeurASP: Learning

• Given the sum as the label, learn a digit classifier.

Learning is to find the weights of neural network that maximizes the probability of the observation:

$$
\hat{\theta} \in \underset{\theta}{\operatorname{argmax}} \sum_{O \in \mathbf{O}} log(P_{\Pi(\theta)}(O)).
$$
\n
$$
\frac{\partial log(P_{\Pi(\theta)}(addition(d_1, d_2, 3))}{\partial \theta} = \sum_{\substack{i \in \{1, 2\} \\ j \in \{0, ..., 9\}}} \frac{\partial log(P_{\Pi(\theta)}(addition(d_1, d_2, 3))}{\partial p_{i,j}} \times \frac{\partial p_{i,j}}{\partial \theta}
$$

Consider a simpler case that there is only one stable model I satisfying O.

$$
\frac{\partial \log(P_{\Pi(\theta)}(O))}{\partial p} = \begin{cases} \frac{1}{p} & \text{if } I \models c = v; \\ -\frac{1}{p'} & \text{if } I \models c = v' \text{ and } v' \neq v. \end{cases}
$$

NeurASP Example: Sudoku

Task: given an image of Sudoku board and a pre-trained neural network to identify the value in each cell, predict the solution.

- Use NN identify to identify the digits in each of the 81 grid cells. $nn(identify(81, img)$, $[empty, 1, 2, 3, 4, 5, 6, 7, 8, 9])$.
- Assign one number to each cell \pm for $\pm \in \{1, ..., 81\}$.
	- $a(R,C,N) \leftarrow \text{identity}_i(\text{img}) = N$, R=i/9, C=i\9, N≠empty.

 ${a(R,C,1)}$; ...; $a(R,C,9)$ =1 \leftarrow identifyi(img) = empty, R=i/9, C=i\9.

- No number repeats in the same row, column, and 3×3 box.
	- \leftarrow a (R, C₁, N), a (R, C₂, N), C₁ \neq C₂.
	- \leftarrow a (R₁, C, N), a (R₂, C, N), R₁ \neq R₂.
	- ← a (R1, C1, N), a (R2, C2, N), R1≠R2, C1≠C2, ((R1/3) X3+C1/3) = ((R2/3) X3+C2/3)

NeurASP Advantages (Learning)

4. NeurASP can be used to inject constraints into neural networks

NeurASP Advantages (Learning)

4. NeurASP can be used to inject constraints into neural networks


```
\leftarrow X=0..15, #count{Y: sp(X,Y)} = 1.
\leftarrow X=0..15, #count{Y: sp(X,Y)} \geq 3.
reachable (X, Y) :- sp (X, Y).
                                                     <sup>……</sup>Path
                                                                     Shortest Path
reachable(X, Y) :- reachable(X, Z), sp(Z, Y).
:- sp(X, A), sp(Y, B), not reachable(X, Y). ...
:~ sp(X, g, true). [1, X]
```
NeurASP Advantages (Learning)

5. NeurASP allows one to train a NN under weak supervision.

add2x2

Outline

- 1. Introduction
- 2. Review of Stable Model Semantics
- 3. Syntax and Semantics of LPMLN
- 4. Relation to Other Languages
- 5. Inference in LPMLN
- 6. Learning in LPMLN
- 7. Extension to Embrace Neural Network Components
- 8. Other Related works

Papers Related to LPMLN

- Language LPMLN proposed [AAAI 2015**,** KR 2016, ICLP 2015, Commonsense 2016]
- LP^{MLN} inference & LP^{MLN} solver [TPLP 2017]
- Splitting theorem for LP^{MLN} [Wang et al. AAAI 2018]
- Parallel LP^{MLN} solver [Wu et al. ICTAI 2018]
- Relationship between LP^{MLN} and P-Log [Gelfond and Balai IJCAI 2017; AAAI 2017]
- Using LP^{MLN} for hybrid classification with contextual knowledge [Eiter & Kaminski, JELIA 2016]

Papers Related to LPMLN

- Weight learning in LP^{MLN} [KR 2018]
- Probabilistic action language pBC+ based on LPMLN [TPLP 2018]
- Decision-theoretic LP^{MLN} [LPNMR 2019]
- Extension of pBC+ for elaboration tolerant representation of (PO)MDP [LPNMR 2019]
- Strong equivalence for LPMLN [ICLP 2019]
- Explainable fact checking LPMLN [TTO 2019]
- NeurASP [IJCAI 2020]
- PLINGO [Hahn et al., 2022]

