
CSE 579 Knowledge Representation and Reasoning (Spring 2017) – Joohyung LeeCSE 579 Knowledge Representation and Reasoning (Spring 2017) – Joohyung Lee 1

Statistical Relational Extension

of Answer Set Programming

@Reasoning Web School 2022
Joohyung Lee

Global AI Center School of Computing and AI

Samsung Research Arizona State University

Combining Logic and Probability

• The main goal of the representation in SRL is to express probabilistic models

in a compact way that reflects the relational structure of the domain, and

ideally supports efficient learning and inference.

• BLP, BLOG, PRM, MLN, PSL, ProbLog, RBN, RDN, . . .

• Related to Neuro-symbolic AI

What the Tutorial is About

Answer Set Programs
(ASP)

Markov Logic Networks
(MLN)

LPMLN

[Lee & Wang, 2016]

LPMLN

ASP

MLN

ProbLogP-log

PCM

suitable for expressing various aspects
of knowledge

suitable for reasoning under
uncertainty

Relationship between LPMLN and several other
formalisms were established:
[Lee & Wang, 2016; Lee, Meng & Wang 2015;
Lee & Wang, 2015]

| ASP (Answer Set Programming) is a declarative programming

paradigm that is based on the stable model semantics

| ASP is effective and widely used on knowledge intensive

domains and combinatorial search problems

| However, the deterministic nature of ASP limits its application

in domains involving probability and inconsistencies

Answer Set Programming

| Declarative programming paradigm combining

- a rich yet simple modeling language

- with high-performance solving capacities

| ASP is useful for knowledge-intensive tasks and combinatorial search
problems

| ASP has its roots in

- logic programming

- knowledge representation

- constraint solving (in particular SAT)

- (deductive) databases

ASP = LP + KR + SAT + DB

Answer Set Programming

| Markov logic combines first-order logic with Markov networks

| A Markov logic network consists of a set of weighted first-

order formulas

| The probability of a world is proportional to the exponential of

the sum of the formulae that are true in the world

| The idea is to view logical formulas as soft constraints on the

set of possible worlds

Markov Logic

| Markov Logic

+ Uncertainty with knowledge base

- Based on classical first-order logic

Can’t handle inductive definition, causality, …

| ASP

+ Rich KR constructs (choice rules, aggregates, …)

+ Rule-based semantics

Can handle transitive closure, causality

- Does not handle (probabilistic) uncertainty well

Markov Logic vs. ASP

| A logic formalism with weighted rules under the stable model

semantics, following the log-linear models of Markov Logic

| It provides versatile methods to overcome the deterministic

nature of the stable model semantics, such as:

Resolving inconsistencies in answer set programs

Define ranking/probability distribution over stable models

Apply methods from machine learning to compute KR formalisms

LPMLN

LPMLN

• A simple approach to combining answer set programming (ASP) and
Markdov Logic (MLN)

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

Problem Solving

Problem Solution

OutputComputer

“What is the problem?” “How to solve the problem?”versus

Traditional Programming

Problem Solution

OutputProgram

“What is the problem?” “How to solve the problem?”versus

Programming

Executing

Interpreting

Declarative Programming

Problem Solution

OutputRepresentation

“What is the problem?” “How to solve the problem?”versus

Modeling

Solving

Interpreting

| Declarative programming paradigm suitable for knowledge
intensive and combinatorial search problems

| Theoretical basis: stable model semantics (Gelfond and Lifschitz,
1988)

| Expressive representation language

- defaults

- negation as failure

- recursive definitions

- aggregates

- preferences

- etc.

What is Answer Set Programming

| ASP solvers
- smodels (Helsinki University of Technology, 1996)

- dlv (Vienna University of Technology, 1997)

- cmodels (University of Texas at Austin, 2002)

- pbmodels (University of Kentucky, 2005)

- Clasp/clingo (University of Potsdam, 2006) – winning several first places at
ASP, SAT, Max-SAT, PB, CADE competitions

- Wasp (University of Cabria, 2013)

- dlv-hex for computing HEX programs

- oClingo for reactive answer set programming

- …

| ASP Core 2: Standard language

What is Answer Set Programming, cont’d

Declarative Problem Solving using ASP

Problem Solution

OutputASP Program

Modeling

Solving
using ASP Solver

Interpreting

| The basic idea is

- to present the given problem by a set of rules,

- to find answer sets for the program using an ASP solver,

- and to extract the solutions from the answer sets.

No two queens can share the same row,
column, or diagonal

N-Queens Puzzle

n # sol

3 none

4 2

5 20

6 4

7 40

8 92

a b c d e f g h

a b c d e f g h

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

No two queens can share the same row,
column, or diagonal

N-Queens Puzzle, cont’d

% Each row has exactly one queen

1 {queen(R,1..n)} 1 :- R=1..n.

% No two queens are on the same column

:- queen(R1,C), queen(R2,C), R1!=R2.

% No two queens are on the same diagonal

:- queen(R1,C1), queen(R2,C2), R1!=R2, |R1-R2|=|C1-C2|.

a b c d e f g h

a b c d e f g h

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

Finding One Solution for the 8-Queens Puzzle

$ clingo queens.lp -c n=8

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)

queen(3,7) queen(5,8)

SATISFIABLE

Models : 1+

Calls : 1

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.004s

Finding All Solutions for the 8-Queens Puzzle

$ clingo queens.lp -c n=8 0

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)

queen(3,7) queen(5,8)

Answer: 2

[[truncated]]

Answer: 92

queen(5,1) queen(1,2) queen(8,3) queen(4,4) queen(2,5) queen(7,6)

queen(3,7) queen(6,8)

SATISFIABLE

Models : 92

Calls : 1

Time : 0.011s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

Stable Model Semantics

| We consider rules as the restricted form of formulas in which implications occur in
a limited way.

- We write 𝐹 ← 𝐺 to denote 𝐺 → 𝐹

| A (propositional) rule is a formula of the form 𝐹 ← 𝐺 where 𝐹 and 𝐺 are implication-
free (⊥, ⊤, ¬, ∧, ∨ are allowed in 𝑭 and 𝑮)

- We often write 𝐹 ← ⊤ simply as 𝐹

| Example: Is each of the following a propositional rule?

- 𝑝 ← (𝑞 ∨ ¬𝑟)

- 𝑝 → 𝑞 → 𝑟

- 𝑝 ∨ 𝑞 ∧ ¬𝑟

| A propositional program is a set of propositional rules.

Syntax of Propositional Rules

| We identify an interpretation with the set of

atoms that are true in it.

- Example: interpretations of signature {𝑝, 𝑞}

- Example: for signature 𝑝, 𝑞 , the formula 𝑝 ∨ 𝑞 has

three models:

Representing Interpretations as Sets

| About a model 𝐼 of a formula 𝐹, we say that it is

minimal if no other model of 𝐹 is a subset of 𝐼.

- Example: For signature {𝑝, 𝑞}, the formula 𝑝 ∨ 𝑞 has three

models: 𝑝 , 𝑞 , {𝑝, 𝑞}.

- The minimal models are

• 𝑝 𝑎𝑛𝑑 𝑞

| Exercise: Find all minimal models of the program

{𝑝 ← 𝑞, 𝑞 ∨ 𝑟}.

Minimal Models: Definition

| Statement: If two formulas are equivalent

under propositional logic, then they have the

same minimal models.

| Question: Is the converse true, that two

formulas having the same minimal models

are equivalent?

Minimal Models: A Question

Informal Reading: Rationality Principle

| Informally, program Π can be

viewed as a specification for

stable models—sets of beliefs

that could be held by a rational

reasoner associate with Π.

Informal Reading: Rationality Principle, cont’d

| Stable models will be represented by

collections of atoms. In forming such sets

the reasoner must be guided by the

following informal principles:

- Satisfy the rules of Π. In other words, if one

believes in the body of a rule, one must also

believe in its head.

- Adhere to the “the rationality principle,” which

says, “Believe nothing you are not forced to

believe.

Stable Models of Programs with Negation

Prolog does not terminate on

query p or q

?- p.

ERROR: Out of local stack

Exception: (729,178)

Prolog vs. ASP

clingo returns

Answer: 1

p

Answer: 2

Q

Finite ASP programs are

guaranteed to terminate

p :- not q

q :- not p

| Q: How do we extend the definition of a stable model in the

presence of negation?

| Add r to the model if p is included under the condition that s is

not included in the model and will not be included in the future.

Negation as Failure

| Informally, program Π can be viewed as a specification for stable models--sets of

beliefs that could be held by a rational reasoner associated with Π.

| Stable models will be represented by collections of atoms.

| In forming such sets the reasoner must be guided by the following informal

principles:

- Satisfy the rules of Π.

• If one believes in the body of a rule, one must also believe in its head.

- Adhere to the “the rationality principle.”

• “Believe nothing you are not forced to believe.”

Informal Reading: Rationality Principle

| A critical part of a propositional rule is a subformula of its
head or body that begins with negation but is not part of
another subformula that begins with negation.

| Example: Find the critical parts of the formulas

- r ← p ∧ ¬s

- ¬p ← ¬(q ∧ ¬r)

- 𝑝 ← ¬¬𝑝

- 𝑝 ∨ ¬𝑝

Critical Part

| The reduct Π𝑋of Π relative to an

interpretation 𝑋 is the positive

propositional program obtained

from Π by replacing each critical

part ¬𝐻 of each of its rules

- by ⊤ if 𝑋 satisfies ¬𝐻;

- by ⊥ otherwise

Stable Models of Programs with Negation

| 𝑋 is a stable model of Π If 𝑋 is a

minimal model of the reduct Π𝑋

| Example:

Γ Γ 𝑝,𝑞,𝑠 Γ 𝑝,𝑞 Γ 𝑝,𝑞,𝑟

Given a propositional program Π

1. Guess an interpretation X

2. Find the reduct of Π relative to X (i.e., ΠX)

3. Check if X is a minimal model of ΠX (note that ΠX is a positive

program; has no negation)

a. If yes, conclude X is a stable model of Π

b. If no, conclude X is not a stable model of Π

Steps to Find Stable Models (Succinct)

Given a propositional program Π

1. Guess an interpretation X

2. Find the reduct of Π relative to X (i.e., ΠX)

3. Check if X satisfies ΠX (Alternatively, check if X satisfies Π)

a. If yes, continue

b. If no, conclude X is not a stable model of Π

4. Check if no other interpretation that is smaller than X satisfies
ΠX. I.e., for each interpretation Y that is smaller than X,

a. If Y satisfies ΠX, conclude X is not a stable model of Π

b. Else continue

5. Conclude X is a stable model of Π

Steps to Find Stable Models (Verbose)

• Every stable model is a
model.

• The red part can’t be

replaced with Π .

NOTES:

| Equivalent propositional programs can have different

stable models.

| Example:

𝑝 ← ¬𝑞 , 𝑞 ← ¬𝑝 , 𝑝 ∨ 𝑞

𝑝 ∨ ¬𝑝 and 𝑞 ∨ ¬𝑞

Classical Equivalence vs. Stable Models

| Recall the definition:

X is a stable model of Π if X is a minimal model of Π𝑋

| Claim: For any program Π,

X is a stable model of Π if X is a minimal model of Π

True or false?

Minimal Models vs. Stable Models

| Stable models of 𝑝 ∨ ¬𝑝

| Stable models of 𝑝 ∨ ¬𝑝 ∧ (𝑞 ∨ ¬𝑞)

| Stable models of 𝑝1 ∨ ¬𝑝1 ∧ 𝑝2 ∨ ¬𝑝2 ∧ ⋯ ∧ (𝑝𝑛 ∨ ¬𝑝𝑛)

| We abbreviate the formula 𝑝1 ∨ ¬𝑝1 ∧ 𝑝2 ∨ ¬𝑝2 ∧ ⋯ ∧ (𝑝𝑛 ∨ ¬𝑝𝑛) as

{𝑝1; … ; 𝑝𝑛} and call it choice rule.

Choice Rule

Choice rules describe several ways to form a stable model.

{p(a);q(b)}.

says choose which of the atoms p(a),q(b) to include in
the model

% clingo choice.lp 0

Answer: 1

Answer: 2 q(b)

Answer: 3 p(a)

Answer: 4 p(a) q(b)

Choice Rules in Clingo

{p(1..3)}.

has the same meaning as

{p(1);p(2);p(3)}.

{p(a;b;c)}.

has the same meaning as

{p(a);p(b);p(c)}.

Choice Rules with Intervals and Pools

1 {p(1..3)} 2.

describes the subsets of {1,2,3} that consists of 1 or 2 elements.

Answer: 1 p(2)

Answer: 2 p(3)

Answer: 3 p(2) p(3)

Answer: 4 p(1)

Answer: 5 p(1) p(3)

Answer: 6 p(1) p(2)

Choice Rules with Cardinality Bounds

1 {p(X);q(X)} 1 :- X=1..2.

Answer: 1

q(1) p(2)

Answer: 2

q(1) q(2)

Answer: 3

p(1) p(2)

Answer: 4

p(1) q(2)

Choice Rules with Variables

X is a

global

variable

{p(I): I=1..7}.

| I is a local variable

| A local variable is a variable such that all its occurrences in the rule are
in between { … }

| Other variables are global variables

| The rule expands into

{p(1); p(2); p(3); p(4); p(5); p(6); p(7)}.

| Q: How many stable models are there?

(a) 0 (b) 7 (c) 64 (d) 128

Local vs. Global Variables

{p(I)} : I=1..7.

| I is a global variable because it has an occurrence outside { … }

| The rule expands into
{p(1)}.

{p(2)}.

{p(3)}.

{p(4)}.

{p(5)}.

{p(6)}.

{p(7)}.

| Q: How many stable models are there?

(a) 0 (b) 7 (c) 64 (d) 128

Local vs. Global Variables, cont’d

{q(I,J): J=1..3} :- I = 1..2.

| Q: How many stable models are there?

(a) 6 (b) 8 (c) 12 (d) 64

| The rule expands into

{q(1,1);q(1,2);q(1,3)}.

{q(2,1);q(2,2);q(2,3)}.

Local vs. Global Variables, cont’d

| A constraint is a rule that has no head, e.g., :- p(1)

- which can be understood as ⊥← p(1)

| Constraints are often used with choice rules to weed out “undesirable”

stable models, for which the constraint is “violated.”

Constraints

∅ 𝑝 1 , 𝑝 2
𝑝 1 , 𝑝 2 , 𝑝 3
𝑝 2 , 𝑝 1 , 𝑝 3
𝑝 3 , 𝑝 1 , 𝑝 2 , 𝑝 3

{p(X): X=1..3}. {p(X): X=1..3}. {p(X): X=1..3}.
:- p(1). :- not p(1). :- not p(1), not p(2).

∅ 𝑝 1 , 𝑝 2
𝑝 1 , 𝑝 2 , 𝑝 3
𝑝 2 , 𝑝 1 , 𝑝 3
𝑝 3 , 𝑝 1 , 𝑝 2 , 𝑝 3

∅ 𝑝 1 , 𝑝 2
𝑝 1 , 𝑝 2 , 𝑝 3
𝑝 2 , 𝑝 1 , 𝑝 3

𝑝 3 , 𝑝 1 , 𝑝 2 , 𝑝 3

Queens Puzzle

| A way to organize rules in ASP

- GENERATE part: generates a “search space” – a set of potential

solutions

- DEFINE part: defines new atoms in terms of other atoms

- TEST part: weed out the elements of the search space that do not

represent solutions

Generate-(Define)-Test

| No two queens can share the same row, column, or

diagonal.

N-Queens Puzzle

n # sol

3 none

4 2

5 10

6 4

7 40

8 92

N-Queens in ASP

% Each row has exactly one queen

1 {queen(R,1..n)} 1 :- R=1..n.

% or

{queen(R,1..n)}=1 :- R=1..n.

N-Queens in ASP

% Each row has exactly one queen

{queen(R,1..n)}=1 :- R=1..n.

% No two queens are on the same column

:- queen(R1,C), queen(R2,C), R1!=R2.

% No two queens are on the same diagonal

:- queen(R1,C1), queen(R2,C2), R1!=R2, |R1-R2|=|C1-C2|.

|

Finding One Solution for the 8-Queens Puzzle

$ clingo queens.lp -c n=8

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)

queen(3,7) queen(5,8)

SATISFIABLE

Models : 1+

Calls : 1

Time : 0.004s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.004s

|

Finding All Solutions for the 8-Queens Puzzle

$ clingo queens.lp -c n=8 0

clingo version 5.2.1

Reading from queens.lp

Solving...

Answer: 1

queen(4,1) queen(6,2) queen(8,3) queen(2,4) queen(7,5) queen(1,6)

queen(3,7) queen(5,8)

Answer: 2

[[truncated]]

Answer: 92

queen(5,1) queen(1,2) queen(8,3) queen(4,4) queen(2,5) queen(7,6)

queen(3,7) queen(6,8)

SATISFIABLE

Models : 92

Calls : 1

Time : 0.011s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.010s

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

| A probabilistic extension of Answer Set Programs, following the

log-linear models of Markov Logic

| It provides versatile methods to overcome the deterministic nature

of the stable model semantics, such as:

- Resolving inconsistencies in answer set programs

- Defining ranking/probability distribution over stable models

- Applying methods from machine learning to compute KR formalisms

Language LPMLN

| Overcomes the weakness of ASP in handling uncertainty.

| Overcomes the weakness of MLN in handling expressive

commonsense reasoning.

Language LPMLN

Example

Example

| Syntactically, it’s a simple extension of answer set programs where

each rule is prepended by weights

- infinite weight (∞) tells the rule expresses a definite knowledge

| Each stable model gets weights from the rules that are true in the

stable model

- a stable model does not have to satisfy all rules

- the more rules true, the more likely the stable model

LPMLN (1 of 3)

| Adopting the log-linear models of MLN, language LPMLN provides a

simple and intuitive way to incorporate the concept of weights into

the stable model semantics

- While MLN is an undirected approach, LPMLN is a directed approach, where the

directionality comes from the stable model semantics

| Probabilistic answer set computation can be reduced to sampling

and optimization problems

LPMLN (2 of 3)

| w: R where

- 𝑤 is a real number or 𝛼 for denoting the infinite weight

- R is an ASP rule

| Variables are understood in terms of grounding

same as in MLN

Syntax of LPMLN

| ⨅𝑰 denotes the set of rules 𝒘 ∶ 𝑹 in ⨅ such that 𝑰 ⊨ 𝑹

| 𝑰 is a soft stable model of 𝚷 if 𝑰 is a (standard) stable model of 𝚷𝑰

| The unnormalized weight of an interpretation 𝑰 under 𝚷 is defined

as

| The normalized weight (probability) of an interpretation 𝑰 under ⨅,

denotes 𝑷⊓(𝑰), is defined as

Semantics of LPMLN

Example 1

Example 1

P(R(Jo)) =

P(B(Jo)) =

P(B(Jo) | R(Jo)) =

P(R(Jo) | B(Jo)) =

P(R(Jo) & M(Jo)) =

Example 2

Example 2

| REWARD-BASED WEIGHT

| Probability

Reward-Based Weight

| PENALTY-BASED WEIGHT

| Probability

Penalty-Based Weight

Example (Penalty-based)

| Theorem. For any LPMLN program 𝚷 and any

interpretation 𝑰,

Reward vs. Penalty based Weights

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

LPMLN vs. ASP vs. MLN

ASP

LPMLN

MLN

From ASP to LPMLN

ASPLPMLN

| Any answer set program Π can be viewed as a special case of an

LPMLN program 𝑃Π by assigning the infinite weight to each rule

| Theorem: For any answer set program Π, the (deterministic) stable

models of Π are exactly the (probabilistic) stable models of LPMLN

program 𝑷𝚷 whose weight is 𝒆𝒌𝜶 , where k is the number of all ground

rules in Π

ASP as a Special Case of LPMLN

Π p ← not q

q ← not p

PΠ 𝛼: p ← not q

𝛼: q ← not p

| If Π has at least one (deterministic) stable model, then all

(probabilistic) stable models of 𝑃Π have the same probability, and

are thus the stable models of Π as well

| Q: What if 𝚷 has no stable models?

| Q: What are the stable models 𝑃Π?

Example

Π Bird(Jo) ← ResidentBird(Jo)

Bird(Jo) ← MigratoryBird(Jo)

⊥ ← ResidentBird(Jo), MigratoryBird(Jo)

ResidentBird(Jo)

MigratoryBird(Jo)

𝑃Π 𝛼: Bird(Jo) ← ResidentBird(Jo)

𝛼: Bird(Jo) ← MigratoryBird(Jo)

𝛼: ⊥ ← ResidentBird(Jo), MigratoryBird(Jo)

𝛼: ResidentBird(Jo)

𝛼: MigratoryBird(Jo)

From MLN to LPMLN

MLNLPMLN

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

| A weak constraint has the form

:∼ F. [Weight @ Level]

| Weight is an integer and Level is a nonnegative integer

Weak Constraints (1 of 3)

Weak Constraints (2 of 3)

| Let Π be a program Π1 ∪ Π2 ,

where Π1 is a usual ASP

program and Π2 is a set of weak

constraints.

| We call 𝐼 a stable model of Π if

it is a stable model of Π1 .

| For every stable model 𝐼 of Π
and any nonnegative integer 𝑙,
the penalty of 𝐼 at level 𝐿,

denoted by 𝑃𝑒𝑛𝑎𝑙𝑡𝑦Π(𝐼, 𝐿), is

defined as

| ex:

{p; q}.

:~ p. [10@0]

:~ q. [5@1]

| For any two stable models 𝐼 and 𝐼′ of Π, we say 𝐼 is

dominated by 𝐼’ if

- there is some level 𝐿 such that 𝑃𝑒𝑛𝑎𝑙𝑡𝑦Π(𝐼’, 𝐿) < 𝑃𝑒𝑛𝑎𝑙𝑡𝑦Π(𝐼, 𝐿)
and

- for all integers 𝐾 > 𝐿, 𝑃𝑒𝑛𝑎𝑙𝑡𝑦Π(𝐼’, 𝐾) = 𝑃𝑒𝑛𝑎𝑙𝑡𝑦Π(𝐼, 𝐾)

| A stable model of Π is called optimal if it is not

dominated by another stable model of Π

Weak Constraints (3 of 3)

From LPMLN to ASP: Weak Constraints

ASPLPMLN

In clingo

% test

{p;q}.

:~ p. [10@0]

:~ q. [5@1]

$ clingo test

Answer: 1

Optimization: 0 0

OPTIMUM FOUND

Models : 1

Optimum : yes

Optimization : 0 0

$ clingo test --opt-mode=enum 0

Solving...

Answer: 1

Optimization: 0 0

Answer: 2

q

Optimization: 5 0

Answer: 3

p

Optimization: 0 10

Answer: 4

p q

Optimization: 5 10

OPTIMUM FOUND

Models : 4

| Soft Rules:

| Hard Rules:

Translation lpmln2asp

Theorem: For any LPMLN program Π, the most probable stable models

of Π are precisely the optimal stable models of lpmln2asp(Π).

𝑤𝑖 ∶ 𝐻𝑒𝑎𝑑𝑖 ← 𝐵𝑜𝑑𝑦
𝑖

𝑢𝑛𝑠𝑎𝑡 𝑖 ← 𝐵𝑜𝑑𝑦𝑖, 𝑛𝑜𝑡 𝐻𝑒𝑎𝑑𝑖

𝐻𝑒𝑎𝑑𝑖 ← 𝐵𝑜𝑑𝑦𝑖, 𝑛𝑜𝑡 𝑢𝑛𝑠𝑎𝑡 𝑖
∶ ∼ 𝑢𝑛𝑠𝑎𝑡 𝑖 [𝑤𝑖@0]

𝛼 ∶ 𝐻𝑒𝑎𝑑𝑖 ← 𝐵𝑜𝑑𝑦𝑖 𝑢𝑛𝑠𝑎𝑡 𝐼 ← 𝐵𝑜𝑑𝑦𝑖, 𝑛𝑜𝑡 𝐻𝑒𝑎𝑑𝑖

𝐻𝑒𝑎𝑑𝑖 ← 𝐵𝑜𝑑𝑦𝑖, 𝑛𝑜𝑡 𝑢𝑛𝑠𝑎𝑡 𝑖
∶ ∼ 𝑢𝑛𝑠𝑎𝑡 𝑖 [1@1]

| Q: What is the most

probable stable model?

Example

Theorem: For any LPMLN program Π, the most probable stable models
of Π are precisely the optimal stable models of lpmln2asp(Π).

LPMLN program

𝛼 ∶ 𝑝 (𝑟1)

10 ∶ 𝑞 ← 𝑝 (𝑟2)

−20 ∶ 𝑞 (𝑟3)

I W(I)

{}

{p}

{q}

{p,q}

Example

LPMLN program

𝛼 ∶ 𝑝 (𝑟1)

10 ∶ 𝑞 ← 𝑝 (𝑟2)

−20 ∶ 𝑞 (𝑟3)

Clingo program

𝑢𝑛𝑠𝑎𝑡 1 ∶ − 𝑛𝑜𝑡 𝑝.
𝑝 ∶ −𝑛𝑜𝑡 𝑢𝑛𝑠𝑎𝑡 1 .
∶ ∼ 𝑢𝑛𝑠𝑎𝑡 1 . [1@1]

𝑢𝑛𝑠𝑎𝑡 2 ∶ −𝑝, 𝑛𝑜𝑡 𝑞.
𝑞 ∶ −𝑝, 𝑛𝑜𝑡 𝑢𝑛𝑠𝑎𝑡 2 .
∶ ∼ 𝑢𝑛𝑠𝑎𝑡 2 [10@0]

𝑢𝑛𝑠𝑎𝑡 3 ∶ −𝑛𝑜𝑡 𝑞.
𝑞 ∶ − 𝑛𝑜𝑡 𝑢𝑛𝑠𝑎𝑡 3 .
∶ ∼ 𝑢𝑛𝑠𝑎𝑡 3 . [−20@0]

Clingo Output

Solving…

Answer: 1

p unsat(2) unsat(3)

Optimization: 0 -10

OPTIMUM FOUND

% The number in blue is the penalty at level 1.

% The number in red is the penalty at level 0.

| A

| a

| a

| a

a

Implementation of LPMLN2ASP

(E is encoded as a set of ASP constraints)

lpmln2asp(Π)

System Architecture

a

| http://github.com/azreasoners/lpmln

| lpmln2asp can compute MAP inference, marginal and conditional probability

| MAP inference is directly computed by clingo

| Probability calculations are computed by a probability computation module

| The input language resembles the input language of clingo

| Hard rules are encoded exactly the same as clingo rules

| Soft rules are clingo rules with weight prepended

% File: bird.lpmln

bird(X) :- residentbird(X).

bird(X) :- migratorybird(X).

:- residentbird(X), migratorybird(X).

2 residentbird(jo).

1 migratorybird(jo).

Input Language of lpmln-infer

Example: Finding Most Probable Stable Models

$ lpmln-infer bird.lpmln

Answer: 1
unsat(5,"1") unsat(4,"2")
Optimization: 3000
Answer: 2
unsat(5,"1") residentbird(jo) bird(jo)
Optimization: 1000
OPTIMUM FOUND

Example: Probabilities of All Stable Models

$ lpmln-infer bird.lpmln -all

[unsat(5,"1"), unsat(4,"2")] : 0.09003057317038046
[residentbird(jo), bird(jo), unsat(5,"1")] : 0.6652409557748219
[bird(jo), migratorybird(jo), unsat(4,"2")] : 0.24472847105479767

| The command is same as

$ lpmln-infer bird.lpmln -q residentbird –exact

| Alternatively one can use sampling-based inference

$ lpmln-infer bird.lpmln -q residentbird –mcasp

Example: Marginal Probability of Query

$ lpmln-infer bird.lpmln -q residentbird

query atoms

Example: Conditional Probability of Query

$ lpmln-infer bird.lpmln -e bird-evid.db -q residentbird

evidence file: set of asp constraints

residentbird(jo) : 0.7310585786300049

% bird.lpmln

bird(X) :- residentbird(X).

bird(X) :- migratorybird(X).

:- residentbird(X), migratorybird(X).

2 residentbird(jo).

1 migratorybird(jo).

% bird-evid.db

:- not bird(jo).

P(residentbird(jo) | bird(jo))

Example: Debugging in ASP

$ lpmln-infer bird1.lpmln -all -hard

translate hard rules

[bird(jo), migratorybird(jo), unsat(4,"a")] : 0.3333333333333333
[residentbird(jo), bird(jo), unsat(3,"a",jo), migratorybird(jo)] : 0.3333333333333333
[residentbird(jo), bird(jo), unsat(5,"a")] : 0.3333333333333333

% bird1.lpmln

bird(X) :- residentbird(X).

bird(X) :- migratorybird(X).

:- residentbird(X), migratorybird(X).

residentbird(jo).

migratorybird(jo).

Representing Bayesian networks in LPMLN

Recall: Example

Encode CPT using auxiliary atoms

Representing Bayesian Networks in LPMLN

@log(0.02/0.98) pf(t).
@log(0.01/0.99) pf(f).
@log(0.5/0.5) pf(a,t1f1).
@log(0.85/0.15) pf(a,t1f0).
@log(0.99/0.01) pf(a,t0f1).
@log(0.0001/0.9999) pf(a,t0f0).
@log(0.9/0.1) pf(s,f1).
@log(0.01/0.99) pf(s,f0).
@log(0.88/0.12) pf(l,a1).
@log(0.001/0.999) pf(l,a0).
@log(0.75/0.25) pf(r,l1).
@log(0.01/0.99) pf(r,l0).

Encode DAG in rules:

Representing Bayesian Networks in LPMLN

tampering :- pf(t).

fire :- pf(f).

alarm :- tampering, fire, pf(a,t1f1).
alarm :- tampering, not fire, pf(a,t1f0).
alarm :- not tampering, fire, pf(a,t0f1).
alarm :- not tampering, not fire, pf(a,t0f0).

smoke :- fire, pf(s,f1).
smoke :- not fire, pf(s,f0).

leaving :- alarm, pf(l,a1).
leaving :- not alarm, pf (l,a0).

report :- leaving, pf(r,l1).
report :- not leaving, pf(r,l0).

Representing Bayesian Networks in LPMLN

// fire-bayes.lpmln

@log(0.02/0.98) pf(t).

@log(0.01/0.99) pf(f).

@log(0.5/0.5) pf(a,t1f1).

@log(0.85/0.15) pf(a,t1f0).

@log(0.99/0.01) pf(a,t0f1).

@log(0.0001/0.9999) pf(a,t0f0).

@log(0.9/0.1) pf(s,f1).

@log(0.01/0.99) pf(s,f0).

@log(0.88/0.12) pf(l,a1).

@log(0.001/0.999) pf(l,a0).

@log(0.75/0.25) pf(r,l1).

@log(0.01/0.99) pf(r,l0).

tampering :- pf(t).

fire :- pf(f).

alarm :- tampering, fire, pf(a,t1f1).

alarm :- tampering, not fire, pf(a,t1f0).

alarm :- not tampering, fire, pf(a,t0f1).

alarm :- not tampering, not fire, pf(a,t0f0).

smoke :- fire, pf(s,f1).

smoke :- not fire, pf(s,f0).

leaving :- alarm, pf(l,a1).

leaving :- not alarm, pf (l,a0).

report :- leaving, pf(r,l1).

report :- not leaving, pf(r,l0).

| To compute P(fire | alarm, ¬tampering)

-Write into fire-evid.db contains

:- not alarm.

:- tampering.

-Call

$ lpmln-infer fire-bayes.lpmln –e fire-evid.db –q fire

Example Run

Compute the probability of the cause given the effect

To compute P(fire = t | leaving = t), the user can invoke

$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q fire

where fire-evid.db contains the line

:- not leaving.

This outputs

fire : 0.35215453804538244

Diagnostic Inference

Compute the probability of effect given the cause.

To compute P(leaving = t | fire = t), the user can invoke

$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q leaving

where fire-evid.db contains the line

:- not fire.

This outputs

leaving 0.862603541626

Predictive Inference

Combine predictive and diagnostic inference.

To compute P(alarm = t | fire = f, leaving = t), the user can invoke

$ lpmln-infer fire-bayes.lpmln -e fire-evid.db -q alarm

where fire-evid.db contains two lines

:- fire.

:- not leaving.

This outputs

alarm : 0.9386803111482813

Mixed Inference

Reasons about the mutual causes (effects) of a common

effect

Knowing that there was tampering explains away alarm, and

hence affecting the probability of fire.

P(fire = t | alarm = t, tampring = t) using lpmln-infer outputs

fire : 0.005906674542232707

P(fire = t | alarm = t, tampring = f) using lpmln-infer outputs

fire : 0.9900990099009899

Intercausal inference (Explaining Away)

Representing Probabilistic Graph Problems

| ASP encoding of graph problems can be easily turned into

probabilistic extensions. E.g.,

- “given that there is a path between two nodes, what is the most

likely graph?”: MAP inference

- “given two nodes, what is the probability that there exists a path

between them?”: probabilistic query

| We put ln(p/(1-p)) as the weight of the rule edge(X, Y)

@log(0.3/0.7) edge(0, 1).

@log(0.2/0.8) edge(1, 2).

…

Example: Probabilistic Path (1 of 2)

| We represent path relation as hard rules:

path(X,Y) :- edge(X, Y).

path(X,Y) :- path(X, Z), path(Z, Y), Y != Z.

| Probabilistic Traveling Salesman: ”Given a graph with

uncertain edges, what is the probability that there is a

Hamiltonian circuit? “

Example: Probabilistic Path (2 of 2)

node(1..4).

@log(0.8/0.2) fail(2).

@log(0.5/0.5) fail(3).

@log(0.2/0.8) fail(4).

edge(1,2). edge(2,4). edge(1,3). edge(3,4).

edge(2,3).

connected(X,Y) :- edge(X, Y), not fail(X), not fail(Y).

connected(X,Y) :- connected(X,Z), connected(Z,Y).

Example: Network Connectivity (1 of 3)

Q: What is the probability that 1 and 4 are connected?

A. 0.32 B. 0.4 C. 0.16 D. 0.6

Example: Network Connectivity (2 of 3)

2

4

3

1

$ lpmln-infer networks.lpmln -q connected

connected(1, 2) : 0.19999999999999998

connected(2, 4) : 0.16

connected(1, 3) : 0.5

connected(3, 4) : 0.4

connected(2, 3) : 0.1

connected(1, 4) : 0.48000000000000004

Example: Network Connectivity (3 of 3)

person(a;b;c;d;e;f;g).

1.5 has_disease(X) :- carries_virus(X).

1.1 carries_virus(Y) :- contact(X, Y), carries_virus(X).

carries_virus(a).

contact(a,(b;c;d)).

contact(e,(f;g)).

contact(f,g).

contact(X,Y) :- contact(Y,X).

Example: Virus (1 of 2)

F

G

E

A

B

C D

Example: Virus (2 of 2)

$ lpmln-infer input.lpmln -exact -q carries_virus,has_disease

carries_virus("A") : 1.0000000000000002

carries_virus("B") : 0.7860727393281469

carries_virus("C") : 0.786072739328147

carries_virus("D") : 0.786072739328147

has_disease("B") : 0.6426730081063122

has_disease("C") : 0.6426730081063122

has_disease("D") : 0.6426730081063122

has_disease("A") : 0.8175744761936435

F

G

E

A

B

C D

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

Example

Example

| It can be manually specified by the user

- which may be okay for a simple program

| A systematic assignment of weights for a

complex program could be challenging

Where do we get weights?

w1 has_disease(X) :-

carries_virus(X).

w2 carries_virus(Y) :-

contact(X, Y),

carries_virus(X).

Virus Transmission

| Gradient ascent algorithm use the gradient

scaled by a learning rate, 𝜆, to update the weight

vector w in each step:

- Initialize the weights 𝑤 = {𝑤1, … , 𝑤𝑚}

- Repeat the following until the weight converges:

• 𝑤𝑗 ∶= 𝑤𝑗 + 𝜆 ·
𝜕 𝐿

𝜕𝑤𝑗
for 𝑗 ∈ {1, … , 𝑚}

| Move in direction of steepest ascent

scaled by learning rate:

Gradient Ascent Method for Finding MLE

| Data is a relational database

| For now assume that it gives a complete

interpretation (data = an interpretation)

| Learning parameters (weights)

| Learning structure (rules)

- A form of inductive logic programming

- Also related to learning features for Markov nets

Learning in LPMLN

| A parameterized LPMLN program:

- Defined similar to an LPMLN program except that soft weights are replaced with distinct

parameters to be learned.

| Weight Learning:

- Find the Maximum Likelihood Estimation (MLE) of the parameters, given one complete

interpretation as observed data

LPMLN Weight Learning (1 of 4)

LPMLN Weight Learning (2 of 4)

| Gradient Ascent

LPMLN Weight Learning (3 of 4)

| Algorithm MC-ASP

- Adapted from MC-SAT for Markov Logic (Poon

and Domingos, 2006)

- Start from a random probabilistic stable model

- Each sampling iteration:

LPMLN Weight Learning (4 of 4)

| Algorithm MC-ASP

- Adapted from MC-SAT for Markov Logic (Poon

and Domingos, 2006)

- Start from a random probabilistic stable model

- Each sampling iteration:

Outline

1. Introduction

2. Intro to ASP

3. Stable Model Semantics

4. Syntax and Semantics of LPMLN

5. Relating LPMLN to Other Languages

6. Inference in LPMLN

7. Learning in LPMLN

8. Extension to Embrace Neural Networks

NeurASP

• NeurASP = Neural Networks + Prob. Answer Set
Programs

• “A first desirable property of frameworks that
integrate two other frameworks A and B, is to have
the original frameworks A and B as a special case of
the integrated one.”

• “one should not only integrate logic with neural
networks in neuro-symbolic computation, but also
probability. “

—— De Raedt, Luc, et al. 2019

• DeepProbLog, NeurASP, NeuroLog, …

digit(d1)=0 | … | digit(d1)=9.

digit(d2)=0 | … | digit(d2)=9.

addition(A, B, N) ← digit(A)=N1,

digit(B)=N2,

N = N1 + N2.

Simple Answer Set Programs

This program has 10 x 10 answer sets (a.k.a. stable models):
I0,0 = {digit(d1)=0, digit(d2)=0, addition(0,0,0)},
I0,1 = {digit(d1)=0, digit(d2)=1, addition(0,1,1)},
...

choices

p1,0:digit(d1)=0 | … | p1,9:digit(d1)=9.

P2,0:digit(d2)=0 | … | p2,9:digit(d2)=9.

addition(A, B, N) ← digit(A)=N1,

digit(B)=N2,

N = N1 + N2.

Probabilistic ASP

P𝚷(addition(d1,d2,3))

p1,0 ⨉ p2,3

+ p1,1 ⨉ p2,2

+ p1,2 ⨉ p2,1

+ p1,3 ⨉ p2,0

= P𝚷(I0,3) + P𝚷(I1,2)
+ P𝚷(I2,1) + P𝚷(I3,0)

=

probabilistic choices

p1,0:digit(d1)=0 | … | p1,9:digit(d1)=9.

P2,0:digit(d2)=0 | … | p2,9:digit(d2)=9.

addition(A, B, N) ← digit(A)=N1,

digit(B)=N2,

N = N1 + N2.

NeurASP: Inference

p1,0

…
p1,9

p2,0

…
p2,9

P𝚷(addition(d1,d2,3))
neural

network

NeurASP = Neural Networks + Prob. Answer Set Programs

p1,0 ⨉ p2,3

+ p1,1 ⨉ p2,2

+ p1,2 ⨉ p2,1

+ p1,3 ⨉ p2,0

= P𝚷(I0,3) + P𝚷(I1,2)
+ P𝚷(I2,1) + P𝚷(I3,0)

=

NeurASP: Semantics

NeurASP Example: Sudoku (Inference)

NeurASP Advantages (Inference)

• Edit Master text styles

– Second level

• Third level
– Fourth level

» Fifth level

NeurASP Advantages (Inference)

• Edit Master text styles

– Second level

• Third level
– Fourth level

» Fifth level

NeurASP Advantages (Inference)

• Edit Master text styles

– Second level

• Third level
– Fourth level

» Fifth level

For solving offset sudoku: add
:- a(R1,C1,N), a(R2,C2,N), R1\3 = R2\3, C1\3 = C2\3, R1 != R2, C1 != C2.

p1,0:digit(d1)=0 | … | p1,9:digit(d1)=9.

P2,0:digit(d2)=0 | … | p2,9:digit(d2)=9.

addition(A, B, N) ← digit1(A)=N1,

digit1(B)=N2,

N = N1 + N2.

NeurASP: Learning

• Given the sum as the label, learn a digit classifier.

p1,0

…
p1,9

p2,0

…
p2,9

addition(d1,d2,3))

neural

network

(𝜃)

d1

d2

Label:

Learning is to find the weights of neural network that maximizes the probability of the observation:

Gradients Computation

Consider a simpler case that there is only one stable model I satisfying O.

neural

network

c=vp
p’
…

prob. atom

c=v’
…

NeurASP Example: Sudoku

NeurASP Advantages (Learning)
4. NeurASP can be used to inject constraints into neural networks

MLP with Cross-entropy loss MLP trained with NeurASP

NeurASP Advantages (Learning)
4. NeurASP can be used to inject constraints into neural networks

Predictions satisfying

Path constraints

Predictions satisfying Shortest

Path constraints constraints

MLP trained with cross-entropy 28.3% 23.0%

MLP trained with NeurASP

Using rules for Path constraints
96.6% 33.2%

MLP trained with NeurASP

Using rules for Shortest Path constraints
100% 45.7%

NeurASP Advantages (Learning)

5. NeurASP allows one to train a NN under weak supervision.
add2x2

input

label 12 6

7

11

apply2x2

input

1, 9, 4

label -4 -32

-12

40

CSE 579 Knowledge Representation and Reasoning (Spring 2017) – Joohyung LeeCSE 579 Knowledge Representation and Reasoning (Spring 2017) – Joohyung Lee 160

Outline

1. Introduction

2. Review of Stable Model Semantics

3. Syntax and Semantics of LPMLN

4. Relation to Other Languages

5. Inference in LPMLN

6. Learning in LPMLN

7. Extension to Embrace Neural Network Components

8. Other Related works

Papers Related to LPMLN

• Language LPMLN proposed [AAAI 2015, KR 2016, ICLP 2015, Commonsense
2016]

• LPMLN inference & LPMLN solver [TPLP 2017]

• Splitting theorem for LPMLN [Wang et al. AAAI 2018]

• Parallel LPMLN solver [Wu et al. ICTAI 2018]

• Relationship between LPMLN and P-Log [Gelfond and Balai IJCAI 2017; AAAI
2017]

• Using LPMLN for hybrid classification with contextual knowledge [Eiter &
Kaminski, JELIA 2016]

Papers Related to LPMLN

• Weight learning in LPMLN [KR 2018]

• Probabilistic action language pBC+ based on LPMLN [TPLP 2018]

• Decision-theoretic LPMLN [LPNMR 2019]

• Extension of pBC+ for elaboration tolerant representation of (PO)MDP
[LPNMR 2019]

• Strong equivalence for LPMLN [ICLP 2019]

• Explainable fact checking LPMLN [TTO 2019]

• NeurASP [IJCAI 2020]

• PLINGO [Hahn et al., 2022]

CSE 579 Knowledge Representation and Reasoning (Spring 2017) – Joohyung LeeCSE 579 Knowledge Representation and Reasoning (Spring 2017) – Joohyung Lee 163

Thank you!

