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CONTENTS:

. Explanations and Causality in Databases

. The Causal-Effect Score in DBs

. The Shapley-Value as Explanation Score in DBs

. Score-Based Explanations for Classification

. The SHAP-Score (based on Shapley-Value)

. The RESP-Score (based on Causal Responsibility)

This is not an exhaustive or broad survey

This presentation is largely influenced by my own research in these areas
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Explanations in Databases

• In data management (DM), we need to understand why certain
results are obtained or not

And characterize and compute “reasons” therefor

E.g. for query answers, violation of semantic conditions, ...

• A DB system should provide explanations

In our case, causality-based explanations (Halpern & Pearl, 2001)

There are other (related) approaches, e.g. lineage, provenance

• Our specific interest: model, specify and compute causes

• More generally: understand causality in DM from different perspectives; and
profit from the connections
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Causality in DBs

Example: DB D as below

Boolean conjunctive query (BCQ):

Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y))

R A B

a b
c d
b b

S A

a
c
b

D |= Q Causes?
(Meliou, Gatterbauer, Moore & Suciu; 2010)

• Tuple τ ∈ D is counterfactual cause for Q if D |= Q and D r {τ} 6|= Q

S(b) is counterfactual cause for Q: if S(b) is removed from D, Q is not
true anymore
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Causality in DBs
Example: DB D as below

Boolean conjunctive query (BCQ):

Q : ∃x∃y(S(x) ∧R(x, y) ∧ S(y))

R A B

a b
c d
b b

S A

a
c
b

D |= Q Causes?
(Meliou, Gatterbauer, Moore & Suciu; 2010)

• Tuple τ ∈ D is counterfactual cause for Q if D |= Q and D r {τ} 6|= Q

S(b) is counterfactual cause for Q: if S(b) is removed from D, Q is not
true anymore

• Tuple τ ∈ D is actual cause for Q if there is a contingency set Γ ⊆ D, such
that τ is a counterfactual cause for Q in D r Γ

R(a, b) is an actual cause forQ with contingency set {R(b, b)}: if R(a, b)
is removed from D, Q is still true, but further removing R(b, b) makes
Q false
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• How strong are these as causes? (Chockler & Halpern, 2004)

• The responsibility of an actual cause τ for Q:

ρ
D
(τ) := 1

|Γ| + 1 |Γ| = size of smallest contingency set for τ
(0 otherwise)

Responsibility of R(a, b) is 1
2 = 1

1+1 (its several smallest contingency
sets have all size 1)

R(b, b) and S(a) are also actual causes with responsibility 1
2

S(b) is actual (counterfactual) cause with responsibility 1 = 1
1+0
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• How strong are these as causes? (Chockler & Halpern, 2004)

• The responsibility of an actual cause τ for Q:

ρ
D
(τ) := 1

|Γ| + 1 |Γ| = size of smallest contingency set for τ
(0 otherwise)

Responsibility of R(a, b) is 1
2 = 1

1+1 (its several smallest contingency
sets have all size 1)

R(b, b) and S(a) are also actual causes with responsibility 1
2

S(b) is actual (counterfactual) cause with responsibility 1 = 1
1+0

High responsibility tuples provide more interesting explanations

• Causes in this case are tuples that come with their responsibilities as “scores”

All tuples can be seen as actual causes and only the non-zero scores matter
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• Causality can be extended to attribute-value level (Bertossi & Salimi; TOCS 2017)
(Bertossi; KAIS 20)

• Causality under ICs (Bertossi & Salimi; IJAR, 2017)
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Causality Connections: Repairs and Diagnosis

• There are mutual reductions with repairs of DBs wrt. integrity constraints (ICs)

Very useful connection

• The same with consistency-based diagnosis and abductive diagnosis

• This led to new complexity and algorithmic results for causality and responsibility
(Bertossi & Salimi; TOCS, IJAR, 2017)

• Model-Based Diagnosis is an older area of Knowledge Representation

A logic-based model is used

Elements of the model are identified as explanations

• Causality-based explanations are “newer”

Still a model is used, representing a possibly much more complex scenario than
a DB and a query
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• Pearl’s causality: Perform counterfactual interventions on a structural,
logico/probabilistic model

What would happen if we change ...?
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• Pearl’s causality: Perform counterfactual interventions on a structural,
logico/probabilistic model

What would happen if we change ...?

• In the case of DBs the underlying logical model is query lineage (coming ...)

• Much newer in “explainable AI”: Provide explanations in the possible absence
of a model

• Explaination scores have become popular (coming ...)

They usually have a counterfactual component: What would happen if ...?

Responsibility can be seen as such ...
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The Causal Effect Score

Example: Boolean Datalog query Π becomes true on E if there is a path between
a and b

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)
P (x, y) ← E(x, y)
P (x, y) ← P (x, z), E(z, y)

E ∪Π |= yes
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The Causal Effect Score

Example: Boolean Datalog query Π becomes true on E if there is a path between
a and b

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

yes ← P (a, b)
P (x, y) ← E(x, y)
P (x, y) ← P (x, z), E(z, y)

E ∪Π |= yes

All tuples are actual causes: every tuple appears in a path from a to b

All the tuples have the same causal responsibility: 1
3

Maybe counterintuitive: t1 provides a direct path from a to b
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• Alternative notion to responsibility: causal effect (Salimi et al., TaPP’16)

• Causal responsibility has been criticized for other reasons and from different
angles

• Retake question: How answer to Q changes if τ deleted from D? (inserted)

An intervention on a structural causal model

In this case provided by the the lineage of the query
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Example: Database D
R A B

a b
a c
c b

S B
b
c

BCQ Q : ∃x∃y(R(x, y) ∧ S(y)) True in D

Query lineage instantiated on D given by propositional formula:

ΦQ(D) = (XR(a,b) ∧XS(b)) ∨ (XR(a,c) ∧XS(c)) ∨ (XR(c,b) ∧XS(b)) (∗)

Xτ : propositional variable that is true iff τ ∈ D

ΦQ(D) takes value 1 in D
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Example: Database D
R A B

a b
a c
c b

S B
b
c

BCQ Q : ∃x∃y(R(x, y) ∧ S(y)) True in D

Query lineage instantiated on D given by propositional formula:

ΦQ(D) = (XR(a,b) ∧XS(b)) ∨ (XR(a,c) ∧XS(c)) ∨ (XR(c,b) ∧XS(b)) (∗)

Xτ : propositional variable that is true iff τ ∈ D

ΦQ(D) takes value 1 in D

• Want to quantify contribution of a tuple to a query answer, say, S(b)

Assign probabilities, uniformly and independently, to the tuples in D
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernouilli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernouilli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?

• Interventions of the form do(X = x): In the structural equations make X take
value x

For {y, x} ⊆ {0, 1}: P (Q = y | do(Xτ = x))? (i.e. make Xτ false/true)

E.g. with do(XS(b) = 0) lineage (∗) becomes: ΦQ(D)XS(b)
0 := (XR(a,c) ∧XS(c))
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• A probabilistic database Dp (tuples outside D get probability 0)

Rp A B prob
a b 1

2
a c 1

2
c b 1

2

Sp B prob
b 1

2
c 1

2

• The Xτ ’s become independent, identically distributed random variables; and
Q is Bernouilli random variable

What’s the probability that Q takes truth value 1 (or 0) when an intervention
is done on D?

• Interventions of the form do(X = x): In the structural equations make X take
value x

For {y, x} ⊆ {0, 1}: P (Q = y | do(Xτ = x))? (i.e. make Xτ false/true)

E.g. with do(XS(b) = 0) lineage (∗) becomes: ΦQ(D)XS(b)
0 := (XR(a,c) ∧XS(c))

• The causal effect of τ : CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))
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CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))

Example: (cont.) With Dp, when XS(b) is made false, probability that
instantiated lineage becomes true in Dp:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1)× P (XS(c) = 1) = 1
4

When XS(b) is made true, probability of lineage becoming true in Dp:

ΦQ(D)XS(b)
1 := XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b)

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b) = 1)
= · · · = 13

16
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CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))

Example: (cont.) With Dp, when XS(b) is made false, probability that
instantiated lineage becomes true in Dp:

P (Q = 1 | do(XS(b) = 0)) = P (XR(a,c) = 1)× P (XS(c) = 1) = 1
4

When XS(b) is made true, probability of lineage becoming true in Dp:

ΦQ(D)XS(b)
1 := XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b)

P (Q = 1 | do(XS(b) = 1)) = P (XR(a,b) ∨ (XR(a,c) ∧XS(c)) ∨XR(c,b) = 1)
= · · · = 13

16

E(Q | do(XS(b) = 0)) = P (Q = 1 | do(XS(b) = 0)) = 1
4

E(Q | do(XS(b) = 1)) = 13
16

CED,Q(S(b)) = 13
16 −

1
4 = 9

16 > 0 causal effect for actual cause S(b)!
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Example: (cont.) The Datalog query (here as a union of BCQs) has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧Xt3) ∨ (Xt4 ∧Xt5 ∧Xt6)

CED,Q(t1) = 0.65625

CED,Q(t2) = CED,Q(t3) = 0.21875

CED,Q(t4) = CED,Q(t5)
= CED,Q(t6) = 0.09375

The causal effects are different for different tuples!

More intuitive result than responsibility!
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Example: (cont.) The Datalog query (here as a union of BCQs) has the lineage:

ΦQ(D) = Xt1 ∨ (Xt2 ∧Xt3) ∨ (Xt4 ∧Xt5 ∧Xt6)

CED,Q(t1) = 0.65625

CED,Q(t2) = CED,Q(t3) = 0.21875

CED,Q(t4) = CED,Q(t5)
= CED,Q(t6) = 0.09375

The causal effects are different for different tuples!

More intuitive result than responsibility!

• Rather ad hoc or arbitrary? (we’ll be back ...)
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Scores and Coalition Games

• A starting point for a research direction: By how much a database tuple
contributes to the inconsistency of a DB? (violation of an IC)

; Contribution of a DB tuple to a query answer?
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Scores and Coalition Games

• A starting point for a research direction: By how much a database tuple
contributes to the inconsistency of a DB? (violation of an IC)

; Contribution of a DB tuple to a query answer?

• There had been research in KR on the Shapley-value to measure the
inconsistency of a propositional KB

• The Shapley-value is firmly established in Game Theory, and used in several
areas

Why not investigate its application to query answering in DBs?
(Livshits et al.; ICDT’20)
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Scores and Coalition Games
• A starting point for a research direction: By how much a database tuple

contributes to the inconsistency of a DB? (violation of an IC)

; Contribution of a DB tuple to a query answer?

• There had been research in KR on the Shapley-value to measure the
inconsistency of a propositional KB

• The Shapley-value is firmly established in Game Theory, and used in several
areas

Why not investigate its application to query answering in DBs?
(Livshits et al.; ICDT’20)

• Several tuples together are necessary to violate an IC or produce a query result

Like players in a coalition game, some may contribute more than others

The Shapley-value of a tuple will be a score for its contribution
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p})− G(S))

(|S|!(|D| − |S| − 1)! is number of permutations of D with all players in S
coming first, then p, and then all the others)
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The Shapley Value

• Consider a set of players D, and a wealth-distribution (game) function
G : P(D) −→ R (P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S|!(|D| − |S| − 1)!
|D|! (G(S ∪ {p})− G(S))

(|S|!(|D| − |S| − 1)! is number of permutations of D with all players in S
coming first, then p, and then all the others)

Expected contribution of player p under
all possible additions of p to a partial
random sequence of players followed
by a random sequence of the rest of
the players

Shapley Value

Livshits et al. ICDT 2020 8

⊆∖{}

72
21 25

+4

The Shapley value is the expected delta 
due to the addition in a random permutation
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• Shapley value is the only function that satisfies certain natural conditions

The result of a categorical set of axioms/properties

• Shapley difficult to compute; provably #P-hard in general

• Counterfactual flavor: What happens having p vs. not having it?
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Shapley as Score for QA

• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S 6|= Q
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Shapley as Score for QA

• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S 6|= Q

• Concentrated on BCQs (and some aggregation on CQs)

Shapley(D,Q, τ) :=
∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

Quantifies the contribution of tuple τ to query result (Livshits et al.; ICDT’20)
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Shapley as Score for QA
• Back to QA in DBs, players are tuples in DB D

Boolean query Q becomes game function: for S ⊆ D

Q(S) =
{

1 if S |= Q
0 if S 6|= Q

• Concentrated on BCQs (and some aggregation on CQs)

Shapley(D,Q, τ) :=
∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

Quantifies the contribution of tuple τ to query result (Livshits et al.; ICDT’20)

• So as with actual causality/responsibility, players (tuples) can be split into
endogenous and exogenous tuples

One wants to measure the contribution of endogenous tuples

E.g. they could be those in a particular table
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D,Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D,Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete

• Q is hierarchical if for every two existential variables x and y:

• Atoms(x) ⊆ Atoms(y), or

• Atoms(y) ⊆ Atoms(x), or

• Atoms(x) ∩Atoms(y) = ∅
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• Dichotomy Theorem: Q BCQ without self-joins

If Q hierarchical, then Shapley(D,Q, τ) can be computed in PTIME

Otherwise, the problem is FP#P -complete

• Q is hierarchical if for every two existential variables x and y:

• Atoms(x) ⊆ Atoms(y), or

• Atoms(y) ⊆ Atoms(x), or

• Atoms(x) ∩Atoms(y) = ∅

Example: Q : ∃x∃y∃z(R(x, y) ∧ S(x, z))

Atoms(x) = {R(x, y), S(x, z)}, Atoms(y) = {R(x, y)}, Atoms(z) = {S(x, z)}

Hierarchical!
Example: Qnh : ∃x∃y(R(x) ∧ S(x, y) ∧ T (y))

Atoms(x) = {R(x), S(x, y)}, Atoms(y) = {S(x, y), T (y)} Not hierarchical!
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• Same criteria as for QA over probabilistic DBs (Dalvi & Suciu; 2004)

• Positive case: reduced to counting subsets of D of fixed size that satisfy Q

A dynamic programming approach works

• Negative case: requires a fresh approach (not from probabilistic DBs)

Use query Qnh above

Reduction from counting independent sets in a bipartite graph
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• Same criteria as for QA over probabilistic DBs (Dalvi & Suciu; 2004)

• Positive case: reduced to counting subsets of D of fixed size that satisfy Q

A dynamic programming approach works

• Negative case: requires a fresh approach (not from probabilistic DBs)

Use query Qnh above

Reduction from counting independent sets in a bipartite graph

• Dichotomy extends to summation over CQs; same conditions and cases

Shapley value is an expectation, that is linear

• Hardness extends to aggregate non-hierarchical queries: max, min, avg

• What to do in hard cases?
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• Approximation:

For every fixed BCQ Q, there is a multiplicative fully-polynomial randomized
approximation scheme (FPRAS)

P (τ ∈ D | Sh(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Sh(D,Q, τ)}) ≥ 1− δ

Also applies to summations
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• Approximation:

For every fixed BCQ Q, there is a multiplicative fully-polynomial randomized
approximation scheme (FPRAS)

P (τ ∈ D | Sh(D,Q, τ)
1 + ε

≤ A(τ, ε, δ) ≤ (1 + ε)Sh(D,Q, τ)}) ≥ 1− δ

Also applies to summations

• A related and popular score is the Bahnzhaf Power Index (order ignored)

Banzhaf (D,Q, τ) := 1
2|D|−1 ·

∑
S⊆(D\{τ})(Q(S ∪ {τ})−Q(S))

Bahnzhaf also difficult to compute; provably #P-hard in general

• We proved “Causal Effect” coincides with the Banzhaf Index! (op. cit.)
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Score-Based Explanations for Classification

eL(e)

B

e = 〈x1, . . . , xn〉 entity requesting a
loan

• Black-box binary classification model returns label L(e) = 1, i.e. rejected

Why???!!!

• Similarly if we had a model, e.g. a classification
tree or a logistic regression model

X1

X2

Xn

.

.

.

L

O
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Score-Based Explanations for Classification

eL(e)

B

e = 〈x1, . . . , xn〉 entity requesting a
loan

• Black-box binary classification model returns label L(e) = 1, i.e. rejected

Why???!!!

• Similarly if we had a model, e.g. a classification
tree or a logistic regression model

X1

X2

Xn

.

.

.

L

O

• Which feature values xi contribute the most?

Assign numerical scores to feature values in e

Capturing the relevance of the feature value for the outcome

• In general they are (but not always) based on counterfactual interventions

42



• Some scores can be applied both with black-box and open models

E.g. Shapley ; SHAP has become popular (Lee & Lundberg; 2017, 2020)
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• Some scores can be applied both with black-box and open models

E.g. Shapley ; SHAP has become popular (Lee & Lundberg; 2017, 2020)

• Players are features in F

• Game function determined by e: Ge(S) := E(L(e′) | e′S = eS)
In this way features values for e are being assessed (eS : projection of e on S)

• For a feature F ∈ F , compute: Shapley(F ,Ge, F )

• Assuming an underlying probability space of entities e′

• L acts as a Bernoulli random variable
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• Some scores can be applied both with black-box and open models

E.g. Shapley ; SHAP has become popular (Lee & Lundberg; 2017, 2020)

• Players are features in F (relative to e)

• Game function determined by e: Ge(S) := E(L(e′) | e′S = eS)
In this way features values for e are being assessed (eS : projection of e on S)

• For a feature F ∈ F , compute: Shapley(F ,Ge, F )

• Assuming an underlying probability space of entities e′

• L acts as a Bernoulli random variable

• This requires computing

∑
S⊆F\{F}

|S|!(|F|−|S|−1)!
|F|! (E(L(e′) | e′S∪{F} = eS∪{F})− E(L(e′) | e′S = eS))
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• As already mentioned SHAP can be applied with black-box, and also with open,
explicit models

• With black-box models, using the classifier many times

• With the entire space, and a given underlying distribution
Not very appealing ...

• Using a sample of the population, and computing weighted averages
More natural and realistic in practice (more on this coming)
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• As already mentioned SHAP can be applied with black-box, and also with open,
explicit models

• With black-box models, using the classifier many times

• With the entire space, and a given underlying distribution
Not very appealing ...

• Using a sample of the population, and computing weighted averages
More natural and realistic in practice (more on this coming)

• With explicit, open models

• As with black-box models

• Using the given classification model, and computing the expectation
For some models and population distributions, SHAP computation can be
done exactly and efficiently
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• Original paper on SHAP claims it can be computed in PTIME for decision-trees
(actually, random forests)

Actually, introduced, discussed and experimented in this context

The “statement” and “proof” are impossible to understand ...

In essence, an open problem
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• Original paper on SHAP claims it can be computed in PTIME for decision-trees
(actually, random forests)

Actually, introduced, discussed and experimented in this context

The “statement” and “proof” are impossible to understand ...

In essence, an open problem Not anymore!

. SHAP can be computed in PTIME on a series of Binary Decision Circuits
as classifiers Result applies in particular to decision-trees
Marcelo Arenas, Pablo Barcelo, Leopoldo Bertossi, Mikael Monet. “The Tractability of SHAP-scores
over Deterministic and Decomposable Boolean Circuits”. Proc. AAAI 2021. arXiv: 2007.14045

Most of the paper deals with uniform distribution for population

. Another (“companion”) paper deals with same problem for other models
and underlying distributions
Guy Van den Broeck, Anton Lykov, Maximilian Schleich, Dan Suciu. “On the Tractability of SHAP
Explanations”. Proc. AAAI 2021. arXiv: 2009.08634
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Yet Another Score: RESP

• Same classification setting (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e)− E(L(e′) | e′Fr{F} = eFr{F}), F ∈ F

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores
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Yet Another Score: RESP

• Same classification setting (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e)− E(L(e′) | e′Fr{F} = eFr{F}), F ∈ F

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores

• So as with SHAP: underlying probability space? (if any)

No need to access the internals of the classification model
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Yet Another Score: RESP

• Same classification setting (Bertossi, Li, Schleich, Suciu, Vagena; DEEM@SIGMOD’20)

• COUNTER(e, F ) := L(e)− E(L(e′) | e′Fr{F} = eFr{F}), F ∈ F

This score can be applied to same scenarios, it is easy to compute

Gives reasonable results, intuitively and in comparison to other scores

• So as with SHAP: underlying probability space? (if any)

No need to access the internals of the classification model

• One problem: changing one value may not switch the label

No explanations are obtained

• Extend this score bringing in contingency sets of feature values!

The RESP-score (simplified version for binary features first)
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- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)
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- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y

z y

• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)

• x counterfactual explanation for L(e) = 1 if L(e x
x′ ) = 0, for x′ ∈ Dom(F )

• x actual explanation for L(e) = 1 if there is a set of values Y in e,
x /∈ Y, and (all) new values Y′ ∪ {x′}:

(a) L(e Y
Y′ ) = 1 (b) L(e xY

x′Y′ ) = 0

54



- xe 1

x’ 1

- - -

xy’z’ 1

z’ y’ x’ 0

{z,y} contingency set for x x actual cause for 1

z y
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• Want explanation for
classification “1” for e

• Through interventions,
changes of feature values,
try to change it to “0”

• Fix a feature value x= F (e)

• x counterfactual explanation for L(e) = 1 if L(e x
x′ ) = 0, for x′ ∈ Dom(F )

• x actual explanation for L(e) = 1 if there is a set of values Y in e,
x /∈ Y, and (all) new values Y′ ∪ {x′}:

(a) L(e Y
Y′ ) = 1 (b) L(e xY

x′Y′ ) = 0

• If Y is minimum in size, RESP(x) := 1
1+|Y|
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Example: C
entity (id) F1 F2 F3 L

e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0
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Example: C
entity (id) F1 F2 F3 L

e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

. Due to e7, F2(e1) is counterfactual explanation; with RESP(e1, F2) = 1

. Due to e4, F1(e1) is actual explanation; with {F2(e1)} as contingency set

And RESP(e1, F1) = 1
2
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Example: C
entity (id) F1 F2 F3 L

e1 0 1 1 1
e2 1 1 1 1
e3 1 1 0 1
e4 1 0 1 0
e5 1 0 0 1
e6 0 1 0 1
e7 0 0 1 0
e8 0 0 0 0

. Due to e7, F2(e1) is counterfactual explanation; with RESP(e1, F2) = 1

. Due to e4, F1(e1) is actual explanation; with {F2(e1)} as contingency set

And RESP(e1, F1) = 1
2

• For non-binary features, RESP can be expressed as an expected value
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• Consider: e entity under classification, with L(e) = 1, and Fi ∈ F

Assume we have:

1. Γ ⊆ F r {Fi}, a set of features that may end up accompanying Fi

2. w̄ = (wF )F∈Γ, wF ∈ dom(F ), wF 6= eF , new values for features in Γ

3. e′ := e[Γ := w̄], i.e. reset e’s values for Γ as in w̄

4. L(e′) = L(e) = 1, no label change with w̄, but maybe with extra change

5. Pick v ∈ dom(Fi), e′′ := e[Γ := w̄, Fi := v]
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• Consider: e entity under classification, with L(e) = 1, and Fi ∈ F

Assume we have:
1. Γ ⊆ F r {Fi}, a set of features that may end up accompanying Fi
2. w̄ = (wF )F∈Γ, wF ∈ dom(F ), wF 6= eF , new values for features in Γ

3. e′ := e[Γ := w̄], i.e. reset e’s values for Γ as in w̄

4. L(e′) = L(e) = 1, no label change with w̄, but maybe with extra change

5. Pick v ∈ dom(Fi), e′′ := e[Γ := w̄, Fi := v]
When Fi(e) 6= v and L(e) 6= L(e′′) = 0, Fi(e) is an actual causal explanation
for L(e) = 1 with contingency 〈Γ, eΓ〉

To define the “local” RESP-score make v vary randomly under conditions 1.-5.:

RESP(e, Fi,F ,Γ, w̄) :=
L(e′)−E[L(e′′) | e′′Fr{Fi}

=e′Fr{Fi}
]

1+|Γ| (∗)

Globally: RESP(e, Fi) := maxw̄ RESP(e, Fi,F ,Γ, w̄)
|Γ|min., (∗)>0
〈Γ, w̄〉 |= 1.−4.
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Experiments and Foundations

• We compared COUNTER, RESP, SHAP, Banzhaf

Kaggle loan data set, and XGBoost with Python library for classification model
(opaque enough)
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Experiments and Foundations

• We compared COUNTER, RESP, SHAP, Banzhaf

Kaggle loan data set, and XGBoost with Python library for classification model
(opaque enough)

• Also comparison with Rudin’s FICO-Score: model dependent, open model

Uses outputs and coefficients of two nested logistic-regression models

Model designed for FICO data; so, we used FICO data

• Here we are interested more in the experimental setting than in results
themselves
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• RESP score: appealed to “product probability space”: for n, say, binary features

• Ω = {0, 1}n, T ⊆ Ω a sample

• pi = P (Fi = 1) ≈ |{ω∈T | ωi=1}|
|T | =: p̂i (estimation of marginals)

• Product distribution over Ω:
P (ω) := Π

ωi=1 p̂i ×Π
ωj=0(1− p̂j), for ω ∈ Ω

64



• RESP score: appealed to “product probability space”: for n, say, binary features

• Ω = {0, 1}n, T ⊆ Ω a sample

• pi = P (Fi = 1) ≈ |{ω∈T | ωi=1}|
|T | =: p̂i (estimation of marginals)

• Product distribution over Ω:
P (ω) := Π

ωi=1 p̂i ×Π
ωj=0(1− p̂j), for ω ∈ Ω

• Not very good at capturing feature correlations

• RESP score computation for e ∈ Ω:

• Expectations relative to product probability space

• Choose values for interventions from feature domains, as determined by T

• Call the classifier

• Restrict contingency sets to, say, two features
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• SHAP score appealed to “empirical probability space”

• Computing it on the product probability space may be #P -hard (c.f. paper)
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• SHAP score appealed to “empirical probability space”

• Computing it on the product probability space may be #P -hard (c.f. paper)

• Use sample T ⊆ Ω, test data

Labels L(ω), ω ∈ T , computed with learned classifier

• Empirical distribution: P (ω) :=
{ 1
|T | if ω ∈ T
0 if ω /∈ T ,for ω ∈ Ω
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• SHAP score appealed to “empirical probability space”

• Computing it on the product probability space may be #P -hard (c.f. paper)

• Use sample T ⊆ Ω, test data

Labels L(ω), ω ∈ T , computed with learned classifier

• Empirical distribution: P (ω) :=
{ 1
|T | if ω ∈ T
0 if ω /∈ T ,for ω ∈ Ω

• SHAP value with expectations over this space, directly over data/labels in T

• The empirical distribution is not suitable for the RESP score (c.f. the paper)
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Final Remarks

• Explainable AI (XAI) is an effervescent area of research

Its relevance can only grow

Legislation around explainability, transparency and fairness of AI/ML systems
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Final Remarks

• Explainable AI (XAI) is an effervescent area of research

Its relevance can only grow

Legislation around explainability, transparency and fairness of AI/ML systems

• Different approaches and methodologies

Causality, counterfactuals and scores have relevant role to play

• Much research needed on the use of contextual, semantic and domain knowledge

Some approaches are more appropriate, e.g. declarative (Bertossi; RuleML+RR’20)

• Still fundamental research is needed on what is a good explanation

And the desired properties of an explanation score

Shapley originally emerged from a list of desiderata
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