
Attribution-Scores in Data
Management and Explainable

Machine Learning

Leopoldo Bertossi

Tutorial at ADBIS 2023 www.scs.carleton.ca/∼bertossi

https://people.scs.carleton.ca/~bertossi/

Explanations in Databases

Receives R.1 R.2
s2 s1
s3 s3
s4 s3

Store S .1
s2
s3
s4

• Query: Are there pairs of official stores in a receiving
relationship?

• Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

The query is true in D: D |= Q
• What tuples “cause” the query to be true?

• How strong are they as causes?

• We expect tuples Receives(s3, s3) and Receives(s4, s3) to be
“causes”

• Explanations for a query result ...
2 / 67

• Explanations for violation of semantic conditions, integrity
constraints, etc.

• A DB system could provide explanations

• Explanations come in different forms

• Some of them are causal explanations

• Want to model, specify and compute causes

• Large part of our recent research is about the use of causality

In different ways

In data management and machine learning

3 / 67

Explanations in Machine Learning

• Bank client e = ⟨john, 18, plumber, 70K, harlem, . . .⟩
As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

• e requests a loan from a bank that uses a classifier

classifier

e
loan?

No!

• The client asks Why?

• What kind of explanation?

How?

From what?

4 / 67

A Score-Based Approach: Responsibility

• Causality has been developed in AI for three decades or so

• In particular: Actual Causality

• Also the quantitative notion of Responsibility: a measure of
causal contribution

• Both based on Counterfactual Interventions

• Hypothetical changes of values in a causal model to detect
other changes

“What would happen if we change ...”?

By so doing identify actual causes

• Does the deletion of the DB tuple invalidates the query?

• Does a change of this feature value leads to label “Yes”?

5 / 67

• We have investigated actual causality and responsibility in
data management and ML-based classification

• Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.

• Also other explanation scores; a.k.a. “attribution scores”

• Assign numbers to, e.g., database tuples or features values to
capture their causal, or, more generally, explanatory strength

• Some of them (in data management or ML)

• Responsibility (in its original and generalized versions)

• The Causal Effect score

• The Shapley value (as Shap in ML)

6 / 67

This Tutorial

1. Causality in DBs

2. The DB repair connection

3. Responsibility

4. Causality under integrity constraints

5. Causal responsibility vs. causal effect

6. Shapley value in DBs

7. Responsibility of explanations for classification

8. Shapley value of explanations for classification

Companion papers: [11], [12]

7 / 67

Causality in DBs

• Causal explanations for a query result: (Meliou et al., 2010)

• Relational instance D and boolean conjunctive query (BCQ) Q

• A tuple τ ∈ D is a counterfactual cause for Q if D |= Q and
D ∖ {τ} ̸|= Q

• A tuple τ ∈ D is an actual cause for Q if there is a
contingency set Γ ⊆ D, such that τ is a counterfactual cause
for Q in D ∖ Γ (Halpern and Pearl, 2001)

• The responsibility of an actual cause τ for Q:
ρ
D
(τ) := 1

|Γ| + 1 , |Γ| = size of smallest contingency set for τ

(0 otherwise)

• High responsibility tuples provide more interesting
explanations (Chockler and Halpern, 2004)

8 / 67

Example

• Database D with relations R and S below
Q : ∃x∃y(S(x) ∧ R(x , y) ∧ S(y)) Here: D |= Q

R A B

a4 a3
a2 a1
a3 a3

S A

a4
a2
a3

• Causes for Q to be true in D?

• S(a3) is counterfactual cause for Q:
If S(a3) is removed from D, Q is no longer an answer

• Its responsibility is 1 = 1
1+|∅|

• R(a4, a3) is actual cause with contingency set {R(a3, a3)}
If R(a3, a3) is removed from D, Q is still true, but further
removing R(a4, a3) makes Q false

• Responsibility of R(a4, a3) is
1
2 = 1

1+1

Its smallest contingency sets have size 1

• R(a3, a3) and S(a4) are actual causes, with responsibility 1
2

9 / 67

Computational Problems

• Among many of them:

• Computing causes

• Deciding if a tuple is a cause

• Computing responsibilities

• Computing most responsible causes (MRC)

• Deciding if a tuple has responsibility above a threshold

• Rather complete complexity picture for CQs and UCQs

• Obtained mostly via connection between: [2]

• causality and database repairs, and

• causality and consistency-based diagnosis

10 / 67

Database Repairs

D

ICs

Q

ICs

Q

repairs of D

(different

repair semantics)

? (Arenas et al., PODS 99)

Example: Denial constraints (DCs) (in particular, FDs)

¬∃x∃y(P(x) ∧ Q(x , y))

¬∃x∃y(P(x) ∧ R(x , y))
P A

a
e

Q A B
a b

R A C
a c

• Subset-repairs (S-repairs): (maximal consistent subinstances)

D1 = {P(e),Q(a, b),R(a, c)} D2 = {P(e),P(a)}

• Cardinality-repairs (C-repairs): (max-cardinality
consistent subinstances)D1

11 / 67

The Repair/Causality Connection

• BCQ: Q : ∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m))

• ¬Q becomes a DC

κ(Q) : ¬∃x̄(P1(x̄1) ∧ · · · ∧ Pm(x̄m))

• Q holds in D iff D inconsistent wrt. κ(Q)
• S-repairs associated to causes and minimal contingency sets

Database tuple τ is actual cause with subset-minimal
contingency set Γ ⇐⇒ D ∖ (Γ ∪ {τ}) is S-repair

And its responsibility is 1
1+|Γ|

• C-repairs associated to causes, minimum contingency sets,
and maximum responsibilities

τ is actual cause with min-cardinality contingency set Γ
⇐⇒ D ∖ (Γ ∪ {τ}) is C-repair And τ is MRAC

12 / 67

Exploiting the Connection

• Algorithmic and complexity results for repairs can be used

• Causality problem (CP): Computing/deciding actual causes
can be done in polynomial time in data for CQs and UCQs

(Meliou et al., 2010; [2])

• Most computational problems related to repairs, in particular,
C-repairs, are provably hard (data complexity) [16]

• Responsibility problem: Deciding if a tuple has responsibility
above a certain threshold is NP-complete for UCQs [2]

But fixed-parameter tractable (parameter inverse of threshold)

• Computing ρ
D
(τ) is FPNP(log(n))-complete for BCQs

The functional version of the responsibility problem

• Deciding if τ is a most responsible cause is
PNP(log(n))-complete for BCQs [2]

13 / 67

• Why repairs? Nothing special, but

• Results for them were available

• And obtained via more fundamental algorithmic/complexity
results for graphs and hypergraphs (much more investigated)

• Repairs can be formulated in (hyper)graph-theoretic terms [16]

Example: Inconsistent DB D = {A(a),B(a),C (a),D(a),E (a)}
Σ = {¬∃x(B(x) ∧ E(x)), ¬∃x(B(x) ∧ C(x) ∧ D(x)), ¬∃x(A(x) ∧ C(x))}

Conflict hypergraph (CHG): tuples are the
nodes; hyperedges connect tuples that
together violate a DC (bounded-size hyperedges)

E(a)

B(a)
C(a)

A(a)

D(a)

S-repairs are maximal independent sets:

D1 = {B(a),C(a)}, D2 = {C(a),D(a),E(a)}, D3 = {A(a),B(a),D(a)}

C-repairs: D2, D3 (correspond to minimum hitting sets for hyperedges)

• A tuple’s responsibility is the size of a minimum vertex cover
that contains it

14 / 67

Causality under Integrity Constraints

• ICs reflect some sort of (in)dependence among DB tuples
(when satisfied)

They should have an impact on causality

• Need a definition that involves them

Counterfactual subinstances obtained by tuple deletions
should satisfy them [3]

• Start assuming that D |= Σ (the ICs)

• For τ ∈ D to be actual cause for Q(ā), the contingency set Γ
must satisfy:

D ∖ Γ |= Σ D ∖ Γ |= Q(ā)
D ∖ (Γ ∪ {τ}) |= Σ D ∖ (Γ ∪ {τ}) ̸|= Q(ā)

• Responsibility ρD,Σ
Q(ā)

(τ) defined as before

15 / 67

• Example:

Dep DName TStaff
t1 Computing John
t2 Philosophy Patrick
t3 Math Kevin

Course CName TStaff DName
t4 COM08 John Computing
t5 Math01 Kevin Math
t6 HIST02 Patrick Philosophy
t7 Math08 Eli Math
t8 COM01 John Computing

(A) Q(x) : ∃y∃z(Dep(y , x) ∧ Course(z , x , y)) ⟨John⟩ ∈ Q(D)

(a) t1 is counterfactual

(b) t4 with single minimal contingency set Γ1 = {t8}
(c) t8 with single minimal contingency set Γ2 = {t4}
• IC ψ: ∀x∀y (Dep(x , y)→ ∃u Course(u, y , x)) (satisfied)

• t4, t8 not actual causes anymore: D ∖ Γ1 |= ψ, but
D ∖ (Γ1 ∪ {t4}) ̸|= ψ

• t1 still is counterfactual cause

(B) Q1(x) : ∃y Dep(y , x) ⟨John⟩ ∈ Q1(D)

• Under IC: same causes as Q: Q ≡ψ Q1

16 / 67

(C) Q2(x) : ∃y∃zCourse(z , x , y) ⟨John⟩ ∈ Q2(D)

• W/O ψ: t4 and t8 only actual causes, with Γ1 = {t8} and
Γ2 = {t4}, resp.
• With IC: t4 and t8 still actual causes

• Contingency sets?

• We lose Γ1 and Γ2:

D ∖ (Γ1 ∪ {t4}) ̸|= ψ, D ∖ (Γ2 ∪ {t8}) ̸|= ψ

• Smallest contingency set for t4: Γ3 = {t8, t1}
Smallest contingency set for t8: Γ4 = {t4, t1}
• Responsibilities of t4, t8 decrease:

ρD
Q2(John)

(t4) =
1
2 , but ρD,ψ

Q2(John)
(t4) =

1
3

• t1 is still not an actual cause, but affects the responsibility of
actual causes

17 / 67

Additional Results

• Causality and ICs:

• Causes preserved under logical equivalence of queries under ICs

• Without ICs, deciding causality for CQs is tractable, but their
presence may make complexity grow

• There are a CQ Q and an inclusion dependency ψ, for which
deciding causality is NP-complete (in data) [3]

• Causality beyond UCQs:

• What about causality for Datalog queries?

• For Datalog queries, cause computation can be NP-complete

(vs. PTIME for UCQs)

• Through a connection to Datalog abduction [3]

18 / 67

Causal Responsibility and Causal Effect

• Causal responsibility can be seen as an explanation score for
database tuples in relation to query results

• It is not the only possible score

• Example: BQ Π is true if there is a path between a and b

yes ← P(a, b)

P(x , y) ← E(x , y)

P(x , y) ← P(x , z),

E(z , y)

E X Y
t1 a b
t2 a c
t3 c b
t4 a d
t5 d e
t6 e b

• E ∪ Π |= yes (query in Datalog, also union of CQs)

• All tuples are actual causes: every tuple in a path from a to b

• All tuples have the same responsibility: 1
3

• Maybe counterintuitive: t1 provides a direct path from a to b

19 / 67

• We proposed using an alternative to causal responsibility [17]

A causal effect score

• With origin in causality for observational studies

• Retake question about how answer to query Q changes if τ is
deleted/inserted from/into D

• Formulated as an intervention on a structural causal model

What model?

• In this case provided by the the lineage of the query

20 / 67

Example: D = {R(a, b),R(a, c),R(c , b), S(b), S(c)}
BCQ Q : ∃x(R(x , y) ∧ S(y))

• True in D, with lineage instantiated on D given by
propositional formula:

ΦQ(D) = (XR(a,b) ∧ XS(b)) ∨ (XR(a,c) ∧ XS(c)) ∨ (XR(c,b) ∧ XS(b)) (∗)

• Xτ : propositional variable that is true iff tuple τ ∈ D

• Want to quantify contribution of a tuple to a query answer

• Assign uniform and independent probabilities to tuples in D

Rp A B prob

a b 1
2

a c 1
2

c b 1
2

Sp B prob

b 1
2

c 1
2

Probabilistic database Dp

(tuples outside D get probability 0)

• Xτ ’s independent, identically distributed Bernouilli random
variables

Q is Bernouilli random variable

21 / 67

• This is because causal effect needs (assumes) a probability
distribution

• What’s the probability that Q takes a particular truth value
when an intervention is performed on D?

• Interventions of the form do(X = x)

In the structural equations make X take value x

• For y , x ∈ {0, 1}: P(Q = y | do(Xτ = x))?

Corresponds to making Xτ false or true

• E.g. do(XS(b) = 0) leaves lineage (*) in the form:

ΦQ(D)
XS(b)

0 := (XR(a,c) ∧ XS(c)) (**)

• The causal effect of τ : (an expected difference)

CED,Q(τ) := E(Q | do(Xτ = 1))− E(Q | do(Xτ = 0))

22 / 67

Example: (cont. page 21) CED,Q(S(b)) = ?

• For do(XS(b) = 0): (tuple deletion)

Probability that instantiated lineage (**) is true (in Dp):

P(Q = 1 | do(XS(b) = 0)) = P(XR(a,c) = 1)× P(XS(c) = 1) = 1
4

• For do(XS(b) = 1), instantiated lineage:

ΦQ(D)
XS(b)

1 := XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b)

Probability of it being true in Dp:

P(Q = 1 | do(XS(b) = 1)) = P(XR(a,b) ∨ (XR(a,c) ∧ XS(c)) ∨ XR(c,b) = 1)

= · · · = 13
16

• E(Q | do(XS(b) = 0)) = P(Q = 1 | do(XS(b) = 0)) = 1
4

E(Q | do(XS(b) = 1)) = 13
16

• CED,Q(S(b)) = 13
16 − 1

4 = 9
16 > 0

An actual cause with this causal effect!

23 / 67

Example: (cont. page 19)

• Lineage of the query as a Boolean UCQs:

ΦQ(D) = Xt1 ∨ (Xt2 ∧ Xt3) ∨ (Xt4 ∧ Xt5 ∧ Xt6)

• CED,Q(t1) = 0.65625

CED,Q(t2) = CED,Q(t3) = 0.21875

CED,Q(t4) = CED,Q(t5) = CED,Q(t6) = 0.09375

• The causal effects are different for different tuples!

• More intuitive result than responsibility!

• It has been applied to aggregate queries [17]

• Causal Effect can be alternatively obtained via coalition game
theory (coming)

24 / 67

Coalition Games and the Shapley Value

• Our initial motivation: How much does a database tuple
contribute to the inconsistency of a DB?

To the violation of ICs

• Similar ideas applicable to contribution to query result [14, 15]

• Usually several tuples together violate an IC or produce a
query result

• Like players in a coalition game contributing, possibly
differently, to a shared wealth-distribution function

• Apply standard measures used in game theory: the Shapley
value of a player (as a measure of its contribution)

• Here database tuples become the players

• We need a game (function) ...
25 / 67

• Set of players D, and game function G : P(D) −→ R
(P(D) the power set of D)

• The Shapley value of player p among a set of players D:

Shapley(D,G, p) :=
∑

S⊆D\{p}

|S |!(|D| − |S | − 1)!

|D|! (G(S ∪ {p})− G(S))

• |S |!(|D| − |S | − 1)! is number of permutations of D with all
players in S coming first, then p, and then all the others

• Expected contribution of player p under all possible additions
of p to a partial random sequence of players followed by a
random sequence of the rest of the players

Shapley Value

Livshits et al. ICDT 2020 8

஻⊆஺∖{௔}

72
21 25

+4

The Shapley value is the expected delta
due to the addition in a random permutation

• Database tuples (and later feature values
for an entity) will be players in a game

26 / 67

• The Shapley value is a established measure of contribution by
players to a wealth function

• It emerges as the only measure enjoying certain properties

• For each application one defines an appropriate game function

• Shapley is difficult to compute

Naive approach: exponentially many counterfactual
combinations

• Actually, Shapley computation is #P-hard in general

• A complexity class of (possibly implicitly) computational
counting problems

• Being #P-hard is evidence of difficulty: #SAT is #P-hard

Counting satisfying assignments for a propositional formula

At least as difficult as SAT
27 / 67

Shapley Values as Scores in DBs

• Database tuples can be seen as players in a coalition game

• Query Q : ∃x∃y(Store(x) ∧ Receives(x , y) ∧ Store(y))

It takes values 0 or 1 in a database

• Game function becomes the Boolean value of the query

The numerical value if Q is aggregate query

• Contribution of tuple τ to query result:

Shapley(D,Q, τ) := ∑
S⊆D\{τ}

|S|!(|D|−|S|−1)!
|D|! (Q(S ∪ {τ})−Q(S))

• All possible permutations of subinstances of D

• Average of differences between having τ or not

• We investigated algorithmic, complexity and approximation
problems [14, 15]

28 / 67

• Players (tuples) can be split into endogenous and exogenous

One wants to measure the contribution of endogenous tuples

Exogenous are not subject to counterfactual interventions
(they stay in all subinstances)

They could be those in a particular table or particular source

• Consider BCQs without self-joins
E.g. Q : ∃x∃y(R(x) ∧ S(x , y) ∧ R(y)) has self-join

• Dichotomy Theorem: For every fixed query Q:
(a) If Q hierarchical, then, for every D:

{Shapley(D,Q, τ) | τ ∈ D} can be computed in PTIME

(b) If Q is non-hierarchical, the problem is FP#P -complete

Among the hardest problems in the class of computational
problems that run in PTIME calling an oracle from #P, say
#SAT

• Bottom line: dichotomy easy vs. hard, and every query falls
in one of the two cases

29 / 67

• The second case: Q fixed, non-hierarchical

general algorithm
(all D’s)?

fixed Q

D Shapley values
for tuples in D

Under usual complexity
assumptions/conjectures,
no PTIME algorithm
(in the size of input D)

Every algorithm is bound to encounter hard input DBs D!

• Q is hierarchical if for every two existential variables x and y :

Atoms(x) ⊆ Atoms(y), or Atoms(y) ⊆ Atoms(x), or

Atoms(x) ∩ Atoms(y) = ∅

• Example: Q : ∃x∃y∃z(R(x , y) ∧ S(x , z))

Atoms(x) = {R(x , y), S(x , z)}, Atoms(y) = {R(x , y)},
Atoms(z) = {S(x , z)} Hierarchical!

• Example: Qnh : ∃x∃y(R(x) ∧ S(x , y) ∧ T (y))

Atoms(x) = {R(x), S(x , y)}, Atoms(y) = {S(x , y),T (y)}
Not hierarchical!

• Easily syntactically testable!

30 / 67

• Same criteria as for QA over prob DBs (Dalvi & Suciu; 2004)

But new proof techniques were required

However, there are newer unifying results
(Deutch et al., Sigmod’22; c.f. also [13])

• Dichotomy extends to summation over CQs
(Shapley as an expectation, is linear)

• Hardness extends to aggregate non-hierarchical queries: max,
min, avg

• What to do in hard cases?

• Approximation: For every fixed BCQ Q, there is a
multiplicative fully-polynomial randomized approximation
scheme (FPRAS)
An algorithm A(·, ϵ, δ) depending on given ϵ, δ, with:

P(τ ∈ D | Sh(D,Q, τ)
1 + ϵ

≤ A(τ, ϵ, δ) ≤ (1 + ϵ)Sh(D,Q, τ)}) ≥ 1− δ

(also applies to summations)

31 / 67

• The Shapley value has been applied to measure contribution
of tuples to inconsistency of a database

For more on Shapley in data management, see [13]

• A related and popular score in game theory is the Banzhaf
Power Index (order ignored)

Banzhaf (D,Q, τ) := 1

2|D|−1 ·
∑

S⊆(D\{τ})(Q(S ∪ {τ})−Q(S))

Banzhaf also difficult to compute; provably #P-hard in general

• Similar results obtained as for Shapley [14]

• Also proved: Causal-Effect score coincides with the Banzhaf
Index!

32 / 67

Causality and XAI

• We have applied responsibility scores based on actual causality
to explanations for outcomes from ML classification systems

• These methods can be applied without necessarily knowing
“the internals” of the classifier

The latter treated as a “black box” system, or being a
black-box (e.g. a very complex NN)

Only input/output relation is needed

• We have experimentally compared responsibility scores with
other local attribution scores [4]

- Shap (an incarnation in XAI of the Shapley value)

- An ad hoc score for FICO data based on an “open-box”
model (connected logistic regressions)

33 / 67

Resp and Explanations (gist and simple case)

classifier

e
loan?

No!

e = ⟨john, 18, plumber, 70K, harlem, . . .⟩ No

• Counterfactual versions:

e′ = ⟨john, 25, plumber, 70K, harlem, . . .⟩ Yes

e′′ = ⟨john, 18, plumber, 80K, brooklyn, . . .⟩ Yes

• For the gist:

1. Value for feature Age is counterfactual cause with explanatory
responsibility Resp(e,Age) = 1

2. Value for Income is actual cause with Resp(e, Income) = 1
2

This one needs additional (contingent) changes ...

34 / 67

The Resp Score: Towards a General Definition

• For binary (two-valued) features the previous “definition”
works fine (not in the previous example)

• Otherwise, there may be many values for a feature that do
not change the label: original value not great explanation

Similarly for features in a potential contingency set

• Better consider average labels obtained via counterfactual
interventions

Resp, our extended version of responsibility, will be expressed
in terms of an expected value [4, 9]

• Below, F is the set of features, the classifier is binary, not
necessarily the features

For F ∈ F , and entity e, F (e) is value for F in e

Label L(e) = 1 is the one we want to explain
35 / 67

The Generalized Resp Score

• Assume L(e) = 1, feature F ⋆: want Resp(e,F ⋆)
In the example, F⋆ = Salary, F⋆(e) = 70K, and L(e) = 1

• With F ⋆(e) fixed, want to define “local” score for fixed
contingent assignment Γ := w̄ F ⋆ /∈ Γ ⊆ F
eΓ,w̄ := e[Γ := w̄] (entity obtained changing feature values in e

according to Γ, w̄)

Γ = {Location}, and w̄ := ⟨brooklin⟩, a contingent (new) value for Location

e{Location},⟨brooklin⟩ = e[Location := brooklin]

= ⟨john, 25, plumber, 70K, brooklin, 10K, basic⟩

• Assume L(eΓ,w̄) = L(e) = 1
Contingent changes do not switch label alone, but after a counterfactual change

for F⋆

Assume L(e[Location := brooklin]) = 1

Maybe eΓ
′,w̄′

, with Γ′ = {Activity,Education}, w̄ ′ = ⟨accountant,medium⟩,
L(eΓ

′,w̄′
) = 1

36 / 67

• For each eΓ,w̄ , consider all possible values v for F ⋆
(fixed values for all other features)

For e[Location := brooklin], consider e′1 :=

e[Location := brooklin; Salary := 60K] = eLocation,⟨brooklin⟩[Salary := 60K]),

with L(e′1) = 1

Or e′2 := e[Location := brooklin; Salary :=80], with L(e′2) = 0

• Fixed contingency (Γ, w̄) on e as above, define its local
responsibility score

Difference between original label and the expected label due
to further modifying value of F ⋆ in all possible ways

Resp(e,F⋆, Γ, w̄) :=
L(e)− E(L(e′) | F (e′) = F (eΓ,w̄), ∀F ∈ (F ∖ {F⋆})

1 + |Γ|

=
1− E(L(eΓ,w̄ [F⋆ := v]) | v ∈ Dom(F⋆))

1 + |Γ|
(*)

Takes into account the size of contingency Γ

We assume a probability distribution over entity population,
whose availability or choice is quite relevant [4]

37 / 67

• F ⋆(e) is actual cause for label 1 if, for some (Γ, w̄), (*) is
positive

• F ⋆(e) is a counterfactual cause if Γ = ∅ (w̄ is empty) and (*)
is positive

• Not necessarily all counterfactual causes (as original values in e) have the
same causal strength

Fi (e),Fj(e) could be both counterfactual causes, but with different values
for (*)

E.g. if changes on the former switch label “fewer times” than for the
latter

• Now the global score, with “best” contingencies (Γ, w̄)

In particular with Γ of minimum size

we can say that F ⋆(e) is a counterfactual cause. However, as desired and expected,
it is not necessarily the case anymore that counterfactual causes (as original values
in e) have all the same causal strength: Fi(e), Fj(e) could be both counterfactual
causes, but with different values for (3), for example if changes on the first switch
the label “fewer times” than those on the second.

5. Now, we can define the global score, by considering the “best” contingencies (Γ, w̄),
which involves requesting from Γ to be of minimum size:

Resp(e, F ⋆) := max Resp(e, F ⋆, Γ, w̄) (4)

This
Γ,w̄: |Γ | is min. & (*) > 0

means that we first find the minimum-size contingency sets Γ ’s for which, for
an associated set of value updates w̄, (3) becomes greater that 0. After that, we find
the maximum value for (3) over all such pairs (Γ, w̄). This can be done by starting
with Γ = ∅, and iteratively increasing the cardinality of Γ by one, until a (Γ, w̄)
is found that makes (3) non-zero. We stop increasing the cardinality, and we just
check if there is another (Γ ′, w̄′) that gives a greater value for (3), with |Γ ′| = |Γ |.
By taking the maximum of the local scores, we have an existential quantification
in mind: there must be a good contingency (Γ, w̄), as long as Γ has a minimum
cardinality.

With the generalized score, the difference between counterfactual and actual causes
is not as relevant as before. In the end, and as discussed under Item 4. above, what
matters is the size of the score. Accordingly, we can talk only about “counterfactual
explanations with responsibility score r”. In Example 8, we could say “e2 is a (minimal)
counterfactual for e (implicitly saying that it switches the label), and the value 60K for
Salary is a counterfactual explanation with responsibility Resp(e,Salary)”. Here, e2 is
possibly only one of those counterfactual entities that contribute to making the value
for Salary a counterfactual explanation, and to its (generalized) Resp score.

The generalized Resp score was applied for different financial data [9], and exper-
imentally compared with the Shap score [33, 34], which can also be applied with a
black-box classifier, using only the input/output relation. Both were also experimen-
tally compared, with the same data, with a the FICO-score [17] that is defined for and
applied to an open-box model, and computes scores by taking into account components
of the model, in this case coefficients of nested logistic regressions.

The computation cost of the Resp score is bound to be high in general since, in
essence, it explicitly involves in (3) all possible subsets of the set of features; and in (4),
also the minimality condition which compares different subsets. Actually, for binary
classifiers and in its simple, binary formulation, Resp is already intractable [10]. In [9],
in addition to experimental results, there is a technical discussion on the importance
of the underlying distribution on the population, and on the need to perform optimized
computations and approximations.

4.2 The Shap Score and its Tractable Computation
The Shap score was introduced in explainable ML in [33], as an application of the
general Shapley value of coalition game theory [43], which we briefly describe next.

Consider a set of players S, and a wealth-distribution function (or game function),
G : P(S) → R, that maps subsets of S to real numbers. The Shapley value of player

11

38 / 67

we can say that F ⋆(e) is a counterfactual cause. However, as desired and expected,
it is not necessarily the case anymore that counterfactual causes (as original values
in e) have all the same causal strength: Fi(e), Fj(e) could be both counterfactual
causes, but with different values for (3), for example if changes on the first switch
the label “fewer times” than those on the second.

5. Now, we can define the global score, by considering the “best” contingencies (Γ, w̄),
which involves requesting from Γ to be of minimum size:

Resp(e, F ⋆) := max Resp(e, F ⋆, Γ, w̄) (4)

This
Γ,w̄: |Γ | is min. & (*) > 0

means that we first find the minimum-size contingency sets Γ ’s for which, for
an associated set of value updates w̄, (3) becomes greater that 0. After that, we find
the maximum value for (3) over all such pairs (Γ, w̄). This can be done by starting
with Γ = ∅, and iteratively increasing the cardinality of Γ by one, until a (Γ, w̄)
is found that makes (3) non-zero. We stop increasing the cardinality, and we just
check if there is another (Γ ′, w̄′) that gives a greater value for (3), with |Γ ′| = |Γ |.
By taking the maximum of the local scores, we have an existential quantification
in mind: there must be a good contingency (Γ, w̄), as long as Γ has a minimum
cardinality.

With the generalized score, the difference between counterfactual and actual causes
is not as relevant as before. In the end, and as discussed under Item 4. above, what
matters is the size of the score. Accordingly, we can talk only about “counterfactual
explanations with responsibility score r”. In Example 8, we could say “e2 is a (minimal)
counterfactual for e (implicitly saying that it switches the label), and the value 60K for
Salary is a counterfactual explanation with responsibility Resp(e,Salary)”. Here, e2 is
possibly only one of those counterfactual entities that contribute to making the value
for Salary a counterfactual explanation, and to its (generalized) Resp score.

The generalized Resp score was applied for different financial data [9], and exper-
imentally compared with the Shap score [33, 34], which can also be applied with a
black-box classifier, using only the input/output relation. Both were also experimen-
tally compared, with the same data, with a the FICO-score [17] that is defined for and
applied to an open-box model, and computes scores by taking into account components
of the model, in this case coefficients of nested logistic regressions.

The computation cost of the Resp score is bound to be high in general since, in
essence, it explicitly involves in (3) all possible subsets of the set of features; and in (4),
also the minimality condition which compares different subsets. Actually, for binary
classifiers and in its simple, binary formulation, Resp is already intractable [10]. In [9],
in addition to experimental results, there is a technical discussion on the importance
of the underlying distribution on the population, and on the need to perform optimized
computations and approximations.

4.2 The Shap Score and its Tractable Computation
The Shap score was introduced in explainable ML in [33], as an application of the
general Shapley value of coalition game theory [43], which we briefly describe next.

Consider a set of players S, and a wealth-distribution function (or game function),
G : P(S) → R, that maps subsets of S to real numbers. The Shapley value of player

11

• Computation:

1. First find minimum-size contingency sets Γ’s with associated
updates w̄ with (*) greater that 0

2. Next, find the maximum value for (*) over those pairs (Γ, w̄)

3. Starting with Γ = ∅, and iteratively increasing the cardinality
of Γ find a (Γ, w̄)

4. Stop increasing the cardinality, and just check if there is
(Γ′, w̄ ′) with a greater value for (*) and same cardinality

39 / 67

Remarks on Resp (and other scores)

• We are usually interested in feature values with maximum
scores

Associated to minimum (cardinality) contingency sets

• Already with binary domains, Resp is intractable [6]

• Resp does not require the internals of a classifier

• It has been positively compared to other scores [4]

Also shows optimizations of its computation

• Can we compute it faster when we have access to the
internals?

This kind of research was done for Shap (coming)

40 / 67

Shap Scores

• Based on the general Shapley value

• Set of players F contain features, relative to classified entity e

• We need an appropriate e-dependent game function that
maps (sub)sets of players to real numbers

• For S ⊆ F , and eS the projection of e on S :

Ge(S) := E(L(e′) | e′ ∈ E & e′S = eS)

• For a feature F ⋆ ∈ F , compute: Shap(F ,Ge,F ⋆)∑
S⊆F\{F⋆}

|S|!(|F|−|S|−1)!
|F|! [E(L(e′|e′S∪{F⋆} = eS∪{F⋆})︸ ︷︷ ︸

Ge(S∪{F⋆})

−E(L(e′)|e′S = eS)︸ ︷︷ ︸
Ge(S)

]

• Shap score has become popular (Lee & Lundberg, 2017)

• Assumes a probability distribution on entity population

41 / 67

Shap Tractability?

• Shap may end up considering exponentially many
combinations

And multiple passes through the black-box classifier

• Can we do better with an open-box classifier?

classifier

e
loan?

No!

X1

X2

Xn

.

.

.

L

O
CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

;

Exploiting its elements and internal structure?

• What if we have a decision tree, or a random forest, or a
Boolean circuit?

• Can we compute Shap in polynomial time?

42 / 67

Tractability for BC-Classifiers: Big Picture

• We investigated this problem in detail [1]

• Tractable and intractable cases, with algorithms for the
former

Investigated good approximation algorithms

• Choosing the right abstraction (model) is crucial

• We considered Boolean-Circuit Classifiers (BCCs), i.e.
propositional formulas with (binary) output gate

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

• It was known already that Shap is
intractable for “Monotone 2CNF”-classifiers
under the product distribution [4]

• So, it had to be a broad and interesting
class of BCs

43 / 67

Shap for Boolean-Circuit Classifiers

• Features Fi ∈ F , i = 1, . . . , n, Dom(Fi) = {0, 1},
e ∈ E := {0, 1}n, L(e) ∈ {0, 1}
• There is also a probability distribution P on E

• For BC-classifier L: Shap(F ,Ge,F
⋆) =∑

S⊆F\{F⋆}
|S|!(|F|−|S|−1)!

|F|! [E(L(e′|e′S∪{F⋆} = eS∪{F⋆})− E(L(e′)|e′S = eS)]

Depends on e and L

• SAT (L) := {e′ | L(e′) = 1} #SAT (L) := |SAT (L)|
Counting the number of inputs that get label 1

• We established that Shap is at least as hard as model
counting for the BC:

Proposition: For the uniform distribution Pu, and e ∈ E
#SAT (L) = 2|F| × (L(e)−∑n

i=1 Shap(F ,Ge,Fi))

44 / 67

• Then: #SAT ≤Turing
PTIME Shap

When #SAT (L) is hard for a Boolean classifier L, Shap is
also hard

• Negative Corollary: Computing Shap is #P-hard for

• Linear perceptron classifier
By reduction from #Knapsack (with weights in binary)

• Boolean classifiers defined by Monotone 2DNF or Monotone
2CNF (Provan & Ball, 1983)

• Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?

45 / 67

Deterministic and Decomposable BCs

• A Boolean circuit over set of variables X is a DAG C with:

• Each node without incoming edges (input) is labeled with
either a variable x ∈ X or a constant in {0, 1}

• Each other node is labeled with a gate in {¬,∧,∨}
• There is a single sink node, O, called the output

• e : X → {0, 1} (equivalently e ∈ {0, 1}|X |) is accepted by C,
written C(e) = 1, iff O takes value 1

• For a gate g of C, C(g) is the induced subgraph containing
gates on a path in C to g

Var(g) is the set of variables of C(g)
Var(g) = {x2, x3, x4}

More specifically, we investigate Boolean classifiers de-
fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

g

• C is deterministic if every ∨-gate g with input
gates g1, g2: C(g1)(e) ̸= C(g2)(e), for every e

46 / 67

• C is decomposable if every ∧-gate g with
input gates g1, g2: Var(g1) ∩ Var(g2) = ∅More specifically, we investigate Boolean classifiers de-

fined as deterministic and decomposable Boolean circuits, a
widely studied model in knowledge compilation (Darwiche
2001; Darwiche and Marquis 2002). Such circuits encom-
pass a wide range of Boolean models and binary deci-
sion diagrams classes that are considered in knowledge
compilation, and in AI more generally. For instance, they
generalize binary decision trees, ordered binary decision
diagrams (OBDDs), free binary decision diagrams (FB-
DDs), and deterministic and decomposable negation normal
norms (d-DNNFs) (Darwiche 2001; Amarilli et al. 2020;
Darwiche and Hirth 2020). These circuits are also known
under the name of tractable Boolean circuits, that is used in
recent literature (Shih, Darwiche, and Choi 2019; Shi et al.
2020; Shih, Choi, and Darwiche 2018b,a; Shih et al. 2019;
Peharz et al. 2020). We provide an example of a determin-
istic and decomposable Boolean circuit next (and give the
formal definition in Section 2).

Example 1.1. We want to classify papers submitted to
a conference as rejected (Boolean value 0) or accepted
(Boolean value 1). Papers are described by features fg, dtr,
nf and na, which stand for “follows guidelines”, “deep the-
oretical result”, “new framework” and “nice applications”,
respectively. The Boolean classifier for the papers is given
by the Boolean circuit in Figure 1. The input of this cir-
cuit are the features fg, dtr, nf and na, each of which can
take value either 0 or 1, depending on whether the feature is
present (1) or absent (0). The nodes with labels ¬, ∨ or ∧ are
logic gates, and the associated Boolean value of each one of
them depends on the logical connective represented by its
label and the Boolean values of its inputs. The output value
of the circuit is given by the top node in the figure.

The Boolean circuit in Figure 1 is said to be decompos-
able, because for each ∧-gate, the sets of features of its in-
puts are pairwise disjoint. For instance, in the case of the top
node in Figure 1, the left-hand side input has {fg} as its set
of features, while its right-hand side input has {dtr, nf, na}
as its set of features, which are disjoint. Also, this circuit is
said to be deterministic, which means that for every ∨-gate,
two (or more) of its inputs cannot be given value 1 by the
same Boolean assignment for the features. For instance, in
the case of the only ∨-gate in Figure 1, if a Boolean assign-
ment for the features gives value 1 to its left-hand side input,
then feature dtr has to be given value 1 and, thus, such an as-
signment gives value 0 to the right-hand side input of the ∨-
gate. In the same way, it can be shown that if a Boolean
assignment for the features gives value 1 to the right-hand
side input of this ∨-gate, then it gives value 0 to its left-hand
side input.

Readers who are not familiar with knowledge compila-
tion can simply think about deterministic and decomposable
circuits as a tool for establishing in a uniform manner the
tractability of computing SHAP-scores on several Boolean
classifier classes. Our main contributions are the following:

1. We provide a polynomial time algorithm that com-
putes the SHAP-score for deterministic and decompos-
able Boolean circuits, in the special case of uniform prob-

¬

∧

∨

∧

Figure 1: A deterministic and decomposable Boolean Circuit
as a classifier.

ability distributions (that is, when each p(x) is 1
2). In par-

ticular, this provides a precise proof of the claim made in
(Lundberg et al. 2020) that the SHAP-score for Boolean
classifiers given as decision trees can be computed in
polynomial time. Moreover, we also obtain as a corollary
that the SHAP-score for Boolean classifiers given as OB-
DDs, FBDDs and d-DNNFs can be computed in polyno-
mial time.

2. We observe that computing the SHAP-score on Boolean
circuits in a class is always polynomially as hard as the
model counting problem for that class (under a mild con-
dition). By using this observation, we obtain that each one
of the determinism assumption and the decomposability
assumption is necessary for tractability.

3. Last, we show that the results above (and most interest-
ingly, the polynomial-time algorithm) can be extended to
the SHAP-score defined on product distributions for the
entity population.

Our contributions should be compared to the results ob-
tained in the contemporaneous paper (Van den Broeck et al.
2020). There, the authors establish the following theorem:
for every class C of classifiers and under product distribu-
tions, the problem of computing the SHAP-score for C is
polynomial-time equivalent to the problem of computing the
expected value for the models in C. Since computing expec-
tations is in polynomial time for tractable Boolean circuits,
this in particular implies that computing the SHAP-score is
in polynomial time for the circuits that we consider; in other
words, their results capture ours. However, there is a funda-
mental difference in the approach taken to show tractability:
their reduction uses multiple oracle calls to the problem of
computing expectations, whereas we provide a more direct
algorithm to compute the SHAP-score on these circuits.

Our algorithm for computing the SHAP-score could be
used in practical scenarios. Indeed, recently, some classes
of classifiers have been compiled into tractable Boolean cir-
cuits. This is the case, for instance, of Bayesian Classi-
fiers (Shih, Choi, and Darwiche 2018a), Binary Neural Net-
works (Shi et al. 2020), and Random Forests (Choi et al.
2020). The idea is to start with a Boolean classifier M given
in a formalism that is hard to interpret – for instance a Bi-
nary neural network – and to compute a tractable Boolean
circuit M ′ that is equivalent to M (this computation can be

2

x1

x2 x3 x4

g

• We concentrated on the class of deterministic
and decomposable Boolean circuits (dDBCs)

• Shap computation in polynomial time not initially precluded

• A class of BCCs that includes -via efficient (knowledge)
compilation- many interesting ones, syntactic and not ...

• Decision trees (and random forests)

• Ordered binary decision diagrams (OBDDs)

• Sentential decision diagrams (SDDs)

• Deterministic-decomposable negation normal-form (dDNNFs)

47 / 67

Shap for dDBCs

• Proposition: For dDBCs C, #SAT (C) can be computed in
polynomial time (̸=⇒ the same for Shap)

Idea: Bottom-up procedure that inductively computes
#SAT (C(g)), for each gate g of C

• To show that Shap can be computed efficiently for dDBCs, we
need a detailed analysis

• We assume the uniform distribution for the moment

• A related problem: “satisfiable circle of an entity”

SAT (C, e, ℓ) := SAT (C) ∩ { e ′ | ||e− e′||1 = ℓ︸ ︷︷ ︸
ℓ value discrepancies

}

#SAT (C, e, ℓ) := |SAT (C, e, ℓ)|
• Proposition: If computing #SAT (C, e, ℓ) is tractable, so is

Shap(X ,Ge, x)
48 / 67

• Main Lemma: #SAT (C, e, ℓ) can be solved in polynomial
time for dDBCs C, entities e, and 1 ≤ ℓ ≤ |X |
Idea: Inductively compute #SAT (C(g), e

Var(g)
, ℓ) for each

gate g ∈ C and integer ℓ ≤ |Var(g)|
• Input gate: immediate

• ¬-gate:
#SAT (C(¬g), e

Var(g)
, ℓ) =

(
Var(g)

ℓ

)
−#SAT (C(g), e

Var(g)
, ℓ)

• ∨-gate: (uses determinism)

#SAT (C(g1 ∨ g2), eVar(g1)∪Var(g2)
, ℓ) =

#SAT (C(g1), eVar(g1)
, ℓ) + #SAT (C(g2), eVar(g2)

, ℓ)

• ∧-gate: (uses decomposition)

#SAT (C(g1 ∧ g2), eVar(g1)∪Var(g2)
, ℓ) =∑

j+k=ℓ #SAT (C(g1), eVar(g1)
, j)×#SAT (C(g2), eVar(g2)

, k)

• Theorem: Shap can be computed in polynomial time for
dDBCs under the uniform distribution

• It can be extended to any product distribution on {0, 1}|X |

49 / 67

• Corollary: Via polynomial time transformations, under the
uniform and product distributions, Shap can be computed in
polynomial time for

• Decision trees (and random forests)

• Ordered binary decision diagrams (OBDDs)

• Sentential decision diagrams (SDDs)

• Deterministic-decomposable negation normal-form (dDNNFs)

• An optimized efficient algorithm for Shap computation can be
applied to any of these [1]

50 / 67

Shap for Decision Trees and ...

• Compiling binary decision trees into dDBCs

• An inductive construction starting from the bottom of the DT

• Leaves of DT become constant binary gates in dDBC

• By induction one can prove the resulting circuit is dDBC

• Final dDBC is the compilation c(r) of root node r of DT

s

h w

1 0

0 1 0 1

1 0 1 0

n1 n2 n3 n4

n5 n6

n7

7→s

h w

1 0

0 1 0 1

1 0 1 0

n1 n2 n3 n4

n5 n6

n7

h

h

not

^ ^

v
c(n5)

c(n2) c(n1)
1 0

• Final equivalent dDBC: c(n7)

• Computable in linear time

51 / 67

• Beyond binary features?
CHAPTER 3 DECISION TREE LEARNING 53

Noma1 Strong Weak

No
\

Yes
/

No
\

Yes

FIGURE 3.1
A decision tree for the concept PlayTennis. An example is classified by sorting it through the tree
to the appropriate leaf node, then returning the classification associated with this leaf (in this case,
Yes or No). This tree classifies Saturday mornings according to whether or not they are suitable for
playing tennis.

from that node corresponds to one of the possible values for this attribute. An
instance is classified by starting at the root node of the tree, testing the attribute
specified by this node, then moving down the tree branch corresponding to the
value of the attribute in the given example. This process is then repeated for the
subtree rooted at the new node.

Figure 3.1 illustrates a typical learned decision tree. This decision tree clas-
sifies Saturday mornings according to whether they are suitable for playing tennis.
For example, the instance

(Outlook = Sunny, Temperature = Hot, Humidity = High, Wind = Strong)

would be sorted down the leftmost branch of this decision tree and would therefore
be classified as a negative instance (i.e., the tree predicts that PlayTennis = no).
This tree and the example used in Table 3.2 to illustrate the ID3 learning algorithm
are adapted from (Quinlan 1986).

In general, decision trees represent a disjunction of conjunctions of con-
straints on the attribute values of instances. Each path from the tree root to a leaf
corresponds to a conjunction of attribute tests, and the tree itself to a disjunc-
tion of these conjunctions. For example, the decision tree shown in Figure 3.1
corresponds to the expression

(Outlook = Sunny A Humidity = Normal)

V (Outlook = Overcast)

v (Outlook = Rain A Wind = Weak)

• “Binarize” features

• OutlookSunny (OS)
OutlookOvercast, OutlookRain, etc.
become propositional features

OS

HH

0 HN

1 0

1 0

1

1 0

OO

1

1 OR

ETC.

0

Certain entities become
impossible (probability 0)

e = ⟨ 0, 1, 1︸ ︷︷ ︸
for OS, OO, OR

, . . .⟩ ×

e = ⟨ 0, 1, 0︸ ︷︷ ︸
for OS, OO, OR

, . . .⟩ ok

52 / 67

• Our polynomial time algorithm for Shap can be applied to
Ordered Binary Decision Diagrams (OBDDs)

• Relevant for several reasons in Knowledge Compilation

• In particular, to represent “opaque” classifiers as OBDDs, e.g.
binary neural networks [Shi, Shih, Darwiche, Choi; KR20]

• Opening the ground for efficiently applying Shap to them
f (x1, x2, x3) = (¬x1 ∧ ¬x2 ∧ ¬x3) ∨ (x1,∧x2) ∨ (x2 ∧ x3)

 Binary Decision Tree
BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not. If an edge is complemented, then it refers to the negation of the Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representin BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the
reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

Binary decision tree and truth table for the function

, described in notation for

Boolean operators.

BDD for the function f

Diagram of a binary decision

diagram represented using

complemented edges.

to a low child, while solid lines represent edges to a high child. Therefore, to find , begin at x1, traverse down
the dotted line to x2 (since x1 has an assignment to 0), then down two solid lines (since x2 and x3 each have an
assignment to one). This leads to the terminal 1, which is the value of .

The binary decision tree of the left figure can be transformed into a binary decision diagram by maximally reducing it
according to the two reduction rules. The resulting BDD is shown in the right figure.

Another notation for writing this Boolean function is .

An ROBDD can be represented even more compactly, using complemented edges.
[2][3] Complemented edges are formed by annotating low edges as complemented or
not. If an edge is complemented, then it refers to the negation of the Boolean
function that corresponds to the node that the edge points to (the Boolean function
represented by the BDD with root that node). High edges are not complemented, in
order to ensure that the resulting BDD representation is a canonical form. In this
representation, BDDs have a single leaf node, for reasons explained below.

Two advantages of using complemented edges when representing BDDs are:

computing the negation of a BDD takes constant time

space usage (i.e., required memory) is reduced

A reference to a BDD in this representation is a (possibly complemented) "edge"
that points to the root of the BDD. This is in contrast to a reference to a BDD in the
representation without use of complemented edges, which is the root node of the
BDD. The reason why a reference in this representation needs to be an edge is that
for each Boolean function, the function and its negation are represented by an edge
to the root of a BDD, and a complemented edge to the root of the same BDD. This is
why negation takes constant time. It also explains why a single leaf node suffices:
FALSE is represented by a complemented edge that points to the leaf node, and
TRUE is represented by an ordinary edge (i.e., not complemented) that points to
the leaf node.

For example, assume that a Boolean function is represented with a BDD represented using complemented edges. To
find the value of the Boolean function for a given assignment of (Boolean) values to the variables, we start at the
reference edge, which points to the BDD's root, and follow the path that is defined by the given variable values
(following a low edge if the variable that labels a node equals FALSE, and following the high edge if the variable that

Complemented edges

OBDD

(same variable order along full paths)

53 / 67

Shap on Neural Networks

• Binary Neural Networks (BNNs) are commonly considered
black-box models

• Naively computing Shap on a BNN is bound to be complex

• Better try to compile the BNN into an open-box BC where
Shap can be computed efficiently

• We have experimented with Shap computation with a
black-box BNN and with its compilation into a dDBC [10]

• Even if the compilation is not entirely of polynomial time, it
may be worth performing this one-time computation

• Particularly if the target dDBC will be used multiple times, as
is the case for explanations

• We illustrate the approach by means of an example

54 / 67

ϕg (ī) = sp(w̄g • ī + bg)

:=

{
1 if w̄g • ī + bg ≥ 0,
−1 otherwise,

• The BNN is described by means of a propositional formula,
which is further transformed and optimized into CNF

is used as one of the inputs to gates next to the right. In this
way, we eventually obtain a defining formula for the output
gate. The formula is converted into CNF. The participating
propositional variables are logically treated as true or false,
even if they take numerical values 1 or −1, resp.

Example 2. (example 1 cont.) Consider gate h1, with pa-
rameters w̄ = ⟨−1,−1, 1⟩ and b = 0.16, and input ī =
⟨x1, x2, x3⟩. An input xj is said to be conveniently instanti-
ated if it has the same sign as wj , and then, contributing to
having a larger number on the LHS of the comparison in (4).
E.g., this is the case of x1 = −1. In order to represent as a
propositional formula its output variable, also denoted with
h1, we first compute the number, d, of conveniently instanti-
ated inputs that are necessary and sufficient to make the LHS
of the comparison in (4) greater than or equal to 0. This is
the (only) case when h1 becomes true; otherwise, it is false.
This number can be computed in general by: (Narodytska
et al. 2018)

d =



(−b+

|̄i|∑

j=1

wj)/2



+# of negative weights in w̄. (5)

In the case of h1, with 2 negative weights: d =
⌈(−0.16 + (−1− 1 + 1))/2⌉ + 2 = 2. With this, we can
impose conditions on two input variables with the right sign
at a time, considering all possible convenient pairs. For h1
we obtain its condition to be true:

h1 ←→ (−x1 ∧ −x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (6)

This is DNF formula, directly obtained from considering all
possible convenient pairs (which is already better that trying
all cases of three variables at a time). However, there is a
more expedite, iterative method that still uses the number
of convenient inputs. In order to convey the bigger picture,
we postpone the detailed description of this method (that is
also used in our experiments) until Appendix A. Using this
algorithm, we obtain an equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1). (7)

Similarly, we obtain defining formulas for gates h2 and
h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (8)

Replacing the definitions of h1, h2, h3 into (8), we finally
obtain:

o←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∨
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)])) ∨
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∧
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]). (9)

The final part of step (a) in path (3), requires transform-
ing this formula into CNF. In this example, it can be taken

Figure 3: An SDD (a) and a vtree (b).

straightforwardly into CNF.4 The resulting CNF formula
is, in its turn, simplified into a shorter and simpler new CNF
formula by means of the Confer SAT solver (Manthey 2017).
For this example, the simplified CNF formula is as follows:

o ←→ (−x1∨−x2)∧ (−x1∨−x3)∧ (−x2∨−x3). (10)

Having a CNF formula will be convenient for the next
conversion steps along path (3). 2

Following with step (b) along path (3), the resulting CNF
formula is transformed into a Sentential Decision Diagram
(SDD) (Darwiche 2011b; Van den Broeck and Darwiche
2015), which, as a particular kind of decision diagram (Bol-
lig and Buttkus 2019), is a directed acyclic graph. So as the
popular OBDDs (Bryant 1986), that SDDs generalize, they
can be used to represent general Boolean formulas, in partic-
ular, propositional formulas (but without necessarily being
per se propositional formulas).
Example 3. (example 2 cont.) Figure 3(a) shows an
SDD, S, to be used for illustration. (C.f. (Bova 2016;
Nakamura, Denzumi, and Nishino 2020) for precise defi-
nitions.) An SDD has different kinds of nodes. Those repre-
sented with encircled numbers are decision nodes (Van den
Broeck and Darwiche 2015), e.g. 1⃝ and 3⃝, that consider
alternatives for the inputs (in essence, disjunctions). There
are also nodes called elements. They are labeled with con-
structs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, includ-
ing ⊤ and ⊥, for 1 or 0, resp. E.g. [¬x2|⊤] is one of them.
The sub can also be a pointer, •, with an edge to a decision
node. [ℓ1|ℓ2] represents two conditions that have to be satis-
fied simultaneously (in essence, a conjunction). An element
without • is a terminal.
An SDD represents (or defines) a total Boolean function
FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→ {0, 1}. For example,
FS(0, 1, 1) is evaluated by following the graph downwards.
Since x1 = 0, we descent to the right; next via node 3⃝
underneath, with x2 = 1, we reach the instantiated leaf
node labeled with [1|0], a “conjunction”, with the second

4For our experiments, we programmed a simple algorithm that
does this job, while making sure the generated CNF does not grow
too much (c.f. Appendix A).

4

In CNF:

o ←→ (−x1 ∨ −x2) ∧ (−x1 ∨ −x3) ∧ (−x2 ∨ −x3)

55 / 67

• The CNF is transformed into an SDD

It succinctly represents the CNF

is used as one of the inputs to gates next to the right. In this
way, we eventually obtain a defining formula for the output
gate. The formula is converted into CNF. The participating
propositional variables are logically treated as true or false,
even if they take numerical values 1 or −1, resp.

Example 2. (example 1 cont.) Consider gate h1, with pa-
rameters w̄ = ⟨−1,−1, 1⟩ and b = 0.16, and input ī =
⟨x1, x2, x3⟩. An input xj is said to be conveniently instanti-
ated if it has the same sign as wj , and then, contributing to
having a larger number on the LHS of the comparison in (4).
E.g., this is the case of x1 = −1. In order to represent as a
propositional formula its output variable, also denoted with
h1, we first compute the number, d, of conveniently instanti-
ated inputs that are necessary and sufficient to make the LHS
of the comparison in (4) greater than or equal to 0. This is
the (only) case when h1 becomes true; otherwise, it is false.
This number can be computed in general by: (Narodytska
et al. 2018)

d =



(−b+

|̄i|∑

j=1

wj)/2



+# of negative weights in w̄. (5)

In the case of h1, with 2 negative weights: d =
⌈(−0.16 + (−1− 1 + 1))/2⌉ + 2 = 2. With this, we can
impose conditions on two input variables with the right sign
at a time, considering all possible convenient pairs. For h1
we obtain its condition to be true:

h1 ←→ (−x1 ∧ −x2) ∨ (−x1 ∧ x3) ∨ (−x2 ∧ x3). (6)

This is DNF formula, directly obtained from considering all
possible convenient pairs (which is already better that trying
all cases of three variables at a time). However, there is a
more expedite, iterative method that still uses the number
of convenient inputs. In order to convey the bigger picture,
we postpone the detailed description of this method (that is
also used in our experiments) until Appendix A. Using this
algorithm, we obtain an equivalent formula defining h1:

h1 ←→ (x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1). (7)

Similarly, we obtain defining formulas for gates h2 and
h3, and o: (for all of them, d = 2)

h2 ←→ (−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1),
h3 ←→ (x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1),
o←→ (−h3 ∧ (h2 ∨ h1)) ∨ (h2 ∧ h1). (8)

Replacing the definitions of h1, h2, h3 into (8), we finally
obtain:

o←→ (−[(x3 ∧ (x2 ∨ x1)) ∨ (x2 ∧ x1)] ∧
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∨
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)])) ∨
([(−x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)] ∧
[(x3 ∧ (−x2 ∨ −x1)) ∨ (−x2 ∧ −x1)]). (9)

The final part of step (a) in path (3), requires transform-
ing this formula into CNF. In this example, it can be taken

Figure 3: An SDD (a) and a vtree (b).

straightforwardly into CNF.4 The resulting CNF formula
is, in its turn, simplified into a shorter and simpler new CNF
formula by means of the Confer SAT solver (Manthey 2017).
For this example, the simplified CNF formula is as follows:

o ←→ (−x1∨−x2)∧ (−x1∨−x3)∧ (−x2∨−x3). (10)

Having a CNF formula will be convenient for the next
conversion steps along path (3). 2

Following with step (b) along path (3), the resulting CNF
formula is transformed into a Sentential Decision Diagram
(SDD) (Darwiche 2011b; Van den Broeck and Darwiche
2015), which, as a particular kind of decision diagram (Bol-
lig and Buttkus 2019), is a directed acyclic graph. So as the
popular OBDDs (Bryant 1986), that SDDs generalize, they
can be used to represent general Boolean formulas, in partic-
ular, propositional formulas (but without necessarily being
per se propositional formulas).
Example 3. (example 2 cont.) Figure 3(a) shows an
SDD, S, to be used for illustration. (C.f. (Bova 2016;
Nakamura, Denzumi, and Nishino 2020) for precise defi-
nitions.) An SDD has different kinds of nodes. Those repre-
sented with encircled numbers are decision nodes (Van den
Broeck and Darwiche 2015), e.g. 1⃝ and 3⃝, that consider
alternatives for the inputs (in essence, disjunctions). There
are also nodes called elements. They are labeled with con-
structs of the form [ℓ1|ℓ2], where ℓ1, ℓ2, called the prime and
the sub, resp., are Boolean literals, e.g. x1 and ¬x2, includ-
ing ⊤ and ⊥, for 1 or 0, resp. E.g. [¬x2|⊤] is one of them.
The sub can also be a pointer, •, with an edge to a decision
node. [ℓ1|ℓ2] represents two conditions that have to be satis-
fied simultaneously (in essence, a conjunction). An element
without • is a terminal.
An SDD represents (or defines) a total Boolean function
FS : ⟨x1, x2, x3⟩ ∈ {0, 1}3 7→ {0, 1}. For example,
FS(0, 1, 1) is evaluated by following the graph downwards.
Since x1 = 0, we descent to the right; next via node 3⃝
underneath, with x2 = 1, we reach the instantiated leaf
node labeled with [1|0], a “conjunction”, with the second

4For our experiments, we programmed a simple algorithm that
does this job, while making sure the generated CNF does not grow
too much (c.f. Appendix A).

4

conjunction

disjunction

• The expensive compilation step

But upper-bounded by an
exponential only in the tree-width
of the CNF

A measure of how close to a tree is the undirected graph
associated to the CNF

An edge between variables if together in
a clause

• Finally, the SDD is easily transformed
into a dDBC

• On it Shap is computed, possibly
multiple times

• With considerable efficiency gain
56 / 67

• In our experiments, we used a BNN with 14 gates

• It was compiled into a dDBC with 18,670 nodes

• A one-time computation that fully replaces the BNN

• We compared Shap computation time for black-box BNN,
open-box dDBC, and black-box dDBC

Total time for computing all Shap scores with increasing
number of classification inputs

(logarithmic scale)

• The uniform distribution was used

57 / 67

Look Ahead

• The above results on Shap computation hold under the
uniform and product distributions

The latter imposes independence among features

• Other distributions have been considered for Shap and other
scores

The empirical and product-empirical distributions [4]

They naturally arise when no more information available
about the distribution

• Imposing domain semantics (domain knowledge) is relevant to
explore

• Can we modify Shap definition and computation accordingly?

Or the distribution? [7]

58 / 67

• Do we still have an efficient algorithm?

• In the case of databases, do complexity results change under
integrity constraints (ICs)?

That is, the implicit counterfactuals must respect the ICs

• For causal responsibility there is a change under ICs [3]

59 / 67

Self-References I

[1] M. Arenas, P. Barcelo, L. Bertossi, M. Monet. “The Tractability of SHAP-scores over Deterministic and
Decomposable Boolean Circuits”. Journal of Machine Learning Research, 2023, 24(63):1-58. (extended
version of AAAI 2021 paper).

[2] L. Bertossi, L. and B. Salimi. “From Causes for Database Queries to Repairs and Model-Based Diagnosis
and Back”. Theory of Computing Systems, 2017, 61(1):191-232.

[3] L. Bertossi and B. Salimi. “Causes for Query Answers from Databases: Datalog Abduction, View-Updates,
and Integrity Constraints”. International Journal of Approximate Reasoning, 2017, 90:226-252.

[4] L. Bertossi, J. Li, M. Schleich, D. Suciu and Z. Vagena. “Causality-based Explanation of Classification
Outcomes”. Proc. 4th International Workshop on ”Data Management for End-to-End Machine Learning”
(DEEM) at ACM SIGMOD/PODS, 2020, pp. 6.1-6.10.

[5] L. Bertossi. “Specifying and Computing Causes for Query Answers in Databases via Database Repairs and
Repair Programs”. Knowledge and Information Systems, 2021, 63(1):199-231.

[6] L. Bertossi. “Declarative Approaches to Counterfactual Explanations for Classification”. Theory and
Practice of Logic Programming, 2021, 23 (3): 559–593, 2023. arXiv 2011.07423.

[7] L. Bertossi. “Score-Based Explanations in Data Management and Machine Learning: An Answer-Set
Programming Approach to Counterfactual Analysis”. In Reasoning Web. Declarative Artificial Intelligence.
Reasoning Web 2021. Springer LNCS 13100, 2022, pp. 145-184.

[8] L. Bertossi and G. Reyes. “Answer-Set Programs for Reasoning about Counterfactual Interventions and
Responsibility Scores for Classification”. In Proc. 1st International Joint Conference on Learning and
Reasoning (IJCLR’21), Springer LNAI 13191, 2022, pp. 41-56. Extended version: arXiv 2107.10159.

60 / 67

Self-References II

[9] L. Bertossi. “Attribution-Scores and Causal Counterfactuals as Explanations in Artificial Intelligence”. In
‘Reasoning Web: Causality, Explanations and Declarative Knowledge’. Springer LNCS 13759, 2023. arXiv
2303.02829.

[10] L. Bertossi and J. E. Leon. “Efficient Computation of Shap Explanation Scores for Neural Network
Classifiers via Knowledge Compilation”. Proc. JELIA, 2023. To appear. arXiv 2303.06516.

[11] L. Bertossi. “From Database Repairs to Causality in Databases and Beyond”. To appear in special issue of
Springer TLDKS dedicated to ‘Bases des Donnees Avances’ (BDA’22). arXiv 2306.09374

[12] L. Bertossi. “Attribution-Scores in Data Management and Explainable Machine Learning”. To appear
Proc. ADBIS’23. arXiv 2308.00184.

[13] L. Bertossi, B. Kimelfeld, E. Livshits and M. Monet. “The Shapley Value in Database Management”. ACM
Sigmod Record, 2023, 52(2):6-17.

[14] E. Livshits, L. Bertossi, B. Kimelfeld and M. Sebag. “The Shapley Value of Tuples in Query Answering”.
Logical Methods in Computer Science, 2022, 17(3):22.1-22.33.

[15] E. Livshits, L. Bertossi, B. Kimelfeld and M. Sebag. “Query Games in Databases”. ACM Sigmod Record,
2021, 50(1):78-85.

[16] A. Lopatenko and L. Bertossi. “Complexity of Consistent Query Answering in Databases under
Cardinality-Based and Incremental Repair Semantics”. Proc. ICDT’07, 2007, Springer LNCS 4353, pp.
179-193. Extended version: arXiv 1605.07159.

61 / 67

Self-References III

[17] B. Salimi, L. Bertossi, D. Suciu and G. Van den Broeck. “Quantifying Causal Effects on Query Answering
in Databases”. Proc. 8th USENIX Workshop on the Theory and Practice of Provenance (TaPP), 2016.
arXiv 1603.02705.

62 / 67

EXTRA SLIDES

63 / 67

The Shapley Value

Consider a set X = {X1, . . . ,Xn} of n agents or variables or
features, and a utility function g : 2X → R, and define the Shapley
and Banzhaf values as:

ϕX,g (Xj) =
1

n!

∑

π∈Πn

(
g(π<Xj ∪ {Xj})− g(π<Xj)

)
(1)

βX,g (Xj) =
1

2n

∑

S⊆X

(g(S ∪ {Xj})− g(S)) (2)

where Πn is the set of permutations of X, and π<Xj is the set of
agents that come before Xj in the permutation π

64 / 67

More generally, given n + 1 numbers a0, . . . , an ∈ R, we define the
generalized value as

γX,g (Xj) =
∑

S⊆X

a|S| (g(S ∪ {Xj})− g(S)) (3)

The Shapley and Banzhaf values are the special cases
ak := k!(n − k − 1)! and ak := 1 respectively

65 / 67

The Shapley value is the unique value satisfying:

Efficiency
∑

j=1,m ϕX,g (Xj) = g(X)

Symmetry ϕX,g (Xi) = ϕX,g (Xj) whenever Xi ,Xj are
interchangeable, meaning that
g(S ∪ {Xi}) = g(S ∪ {Xj}) for all sets S not
containing Xi ,Xj

Dummy ϕX,g (Xi) = 0 if i does not contribute to the utility
function, i.e. g(S ∪ {Xi}) = g(S) forall S

Additivity ϕX,g1+g2 = ϕX,g1 + ϕX,g2

The Banzhaf value satisfies all properties above except for
efficiency

The utility function g : 2X → R is exponentially large

Various applications restrict the way the function is specified

66 / 67

• We can compute the expectation of the label: ϕ0(L) = E(L),
which will give a value in [0, 1], say 0.4

• Now fix e⋆, for which we have the label L(e⋆), e.g. 1

We want to account for the difference between this label and
ϕ0(L): L(e⋆)− ϕ0(L) = 1− 0.4 = 0.6

• The question is which feature value contributes the most to
the difference L(e⋆)− ϕ0(L)
In our experiments we usually concentrate on entities e⋆ with
L(e⋆) = 1, that means “rejection”, which has to be explained

• The difference is expressed as a sum of individual
contributions, ϕi (L, e

⋆), from the different features Fi ∈ F :
∑

i

ϕi (L, e
⋆) = L(e⋆)− ϕ0(L)

67 / 67

