SSSSSSSSSSSSSSSSSSSS

Attribution-Scores in Data
Management and Explainable
Machine Learning

Leopoldo Bertossi

Tutorial at ADBIS 2023 www.scs.carleton.ca/~bertossi

https://people.scs.carleton.ca/~bertossi/

Explanations in Databases

Receives | R.1 | R.2 Store | S.1
So 51 So
S3 S3 S3
S4 S3 S

Query: Are there pairs of official stores in a receiving
relationship?
e Q: IxJy(Store(x) A Receives(x,y) A Store(y))

The query is truein D: D = Q

e What tuples “cause” the query to be true?
e How strong are they as causes?

e We expect tuples Receives(ss, s3) and Receives(ss,s3) to be
“causes”

e Explanations for a query result ...
2/67

Explanations for violation of semantic conditions, integrity
constraints, etc.

A DB system could provide explanations
Explanations come in different forms

Some of them are causal explanations
Want to model, specify and compute causes

Large part of our recent research is about the use of causality
In different ways

In data management and machine learning

3/67

Explanations in Machine Learning

e Bank client e = (john, 18, plumber, 70K, harlem, .. .)

As an entity represented as a record of values for features
Name, Age, Activity, Income, ...

e e requests a loan from a bank that uses a classifier

e The client asks Why? m

e What kind of explanation?
H OW? classifier

From what?

4/67

A Score-Based Approach: Responsibility

e Causality has been developed in Al for three decades or so
e In particular: Actual Causality

e Also the quantitative notion of Responsibility: a measure of
causal contribution

e Both based on Counterfactual Interventions

e Hypothetical changes of values in a causal model to detect

other changes
“What would happen if we change ...”?

By so doing identify actual causes
e Does the deletion of the DB tuple invalidates the query?
e Does a change of this feature value leads to label “Yes"?

5/67

We have investigated actual causality and responsibility in
data management and ML-based classification

Semantics, computational mechanisms, intrinsic complexity,
logic-based specifications, reasoning, etc.

Also other explanation scores; a.k.a. “attribution scores”

Assign numbers to, e.g., database tuples or features values to
capture their causal, or, more generally, explanatory strength

Some of them (in data management or ML)

e Responsibility (in its original and generalized versions)
e The Causal Effect score

e The Shapley value (as Shap in ML)

6/67

This Tutorial

1. Causality in DBs

2. The DB repair connection

3. Responsibility

4. Causality under integrity constraints
5. Causal responsibility vs. causal effect
6. Shapley value in DBs

7. Responsibility of explanations for classification

8. Shapley value of explanations for classification

Companion papers: [11], [12]

7/67

Causality in DBs

e Causal explanations for a query result: (Meliou et al., 2010)
e Relational instance D and boolean conjunctive query (BCQ) Q

e A tuple 7 € D is a counterfactual cause for Q if D= Q and
D~ {7} ¥ Q

e A tuple 7 € D is an actual cause for Q if there is a
contingency set ' C D, such that 7 is a counterfactual cause
for Qin DT (Halpern and Pearl, 2001)

e The responsibility of an actual cause 7 for Q:

pD(T) = —L ||_‘ = size of smallest contingency set for T

rr+ 1
(0 otherwise)

e High responsibility tuples provide more interesting
explanations (Chockler and Halpern, 2004)

8/67

Example

e Database D with relations R and S below

Q: IxIy(S(x) A R(x,y) A S(y)) Here: D = Q
_ R A]B STA
e Causes for Q to be true in D7 2 | 2 2
e S(a3) is counterfactual cause for Q: zj Z; Zz

If S(a3) is removed from D, Q is no longer an answer
e |ts responsibility is 1= %\W
e R(as, a3) is actual cause with contingency set {R(as3,a3)}

If R(as,a3) is removed from D, Q is still true, but further

removing R(as, a3) makes Q false

1
I+1

Its smallest contingency sets have size 1

e Responsibility of R(as,a3) is 5 =

e R(as,a3) and S(as) are actual causes, with responsibility 3

9/67

Computational Problems

e Among many of them:
e Computing causes
e Deciding if a tuple is a cause
e Computing responsibilities
e Computing most responsible causes (MRC)

e Deciding if a tuple has responsibility above a threshold

e Rather complete complexity picture for CQs and UCQs

e Obtained mostly via connection between:

e causality and database repairs, and

e causality and consistency-based diagnosis

[2]

10/67

Database Repairs

‘.

repairs of D

1dfferenl (Arenas et al., PODS 99)

repair semantics)

™

ICs
ICs

Example: Denial constraints (DCs) (in particular, FDs)

—3Ax3Jy(P(x) A Q(x,y)) P|A

QRQI|A|B|] R|A|C

—3IxJy(P(x) A R(x,y)) a

al|lb alc

e Subset-repairs (S-repairs): (maximal consistent subinstances)

Dy, = {P(e)a Q(aa b)7 R(av C)} D, = {'D(e)a P(a)}
e Cardinality-repairs (C-repairs): (max-cardinality
D consistent subinstances)

11/67

The Repair/Causality Connection

e BCQ: Q: Ix(Pi(x1) A+ A Pm(Xm))
e -Q becomesa DC

k(Q): —3x(Pi(x1) A+ A Pm(Xm))
e Qholdsin D iff D inconsistent wrt. x(Q)

e S-repairs associated to causes and minimal contingency sets

Database tuple 7 is actual cause with subset-minimal
contingency set I <= D~ (TU{7})is S-repair
1

And its responsibility is e

e C-repairs associated to causes, minimum contingency sets,
and maximum responsibilities

T is actual cause with min-cardinality contingency set I'
< D~ (Tu{r})is C-repair And 7 is MRAC

12/67

Exploiting the Connection

e Algorithmic and complexity results for repairs can be used

e Causality problem (CP): Computing/deciding actual causes

can be done in polynomial time in data for CQs and UCQs
(Meliou et al., 2010; [2])

e Most computational problems related to repairs, in particular,

C-repairs, are provably hard (data complexity) [16]

e Responsibility problem: Deciding if a tuple has responsibility
above a certain threshold is NP-complete for UCQs [2]

But fixed-parameter tractable (parameter inverse of threshold)

e Computing p,(7) is FPNPUeg(m)_complete for BCQs
The functional version of the responsibility problem
e Deciding if 7 is a most responsible cause is

pNPog(m)_complete for BCQs [2]

13/67

e Why repairs? Nothing special, but

e Results for them were available

e And obtained via more fundamental algorithmic/complexity
results for graphs and hypergraphs (much more investigated)

e Repairs can be formulated in (hyper)graph-theoretic terms [16]
Example: Inconsistent DB D = {A(a), B(a), C(a), D(a), E(a)}
Y = {=3x(B(x) A E(x)), =3x(B(x) A C(x) A D(x)), =3x(A(x) A C(x))}
Conflict hypergraph (CHG): tuples are the
nodes; hyperedges connect tuples that
together violate a DC (bounded-size hyperedges) @

S-repairs are maximal independent sets:
Dy ={B(a),C(a)}, D> ={C(a),D(a),E(a)}, Ds={A(a),B(a),D(a)}
C-repairs: Dz, D3 (correspond to minimum hitting sets for hyperedges)
e A tuple’s responsibility is the size of a minimum vertex cover
that contains it

14 /67

Causality under Integrity Constraints

ICs reflect some sort of (in)dependence among DB tuples
_ _ (when satisfied)
They should have an impact on causality

Need a definition that involves them

Counterfactual subinstances obtained by tuple deletions
should satisfy them [3]

Start assuming that D =X (the ICs)

For 7 € D to be actual cause for Q(3), the contingency set I
must satisfy:

D\T E X D~T = 9Q(a)
D~(Tu{r}) E £ D~ (Tu{r}) ¥ 9(3)

Responsibility pQD(;)Z(T) defined as before

15 /67

Example:

Course | CName TStaff DName
Dep DName TStaff ta COMO08 John Computing
t1 Computing John ts Math01 Kevin Math
tr Philosophy | Patrick te HISTO02 | Patrick | Philosophy
t3 Math Kevin t7 Math08 Eli Math
tg COMO1 John Computing

A) Q(x): Jy3z(Dep(y, x) A Course(z,x,y)) (John) € Q(D)

a) t; is counterfactual

(
(a)
(b) ts4 with single minimal contingency set '; = {tg}
()

c) tg with single minimal contingency set > = {ts}

IC v¢: VxVy (Dep(x,y) — Ju Course(u,y, x)) (satisfied)

ta, tg not actual causes anymore: D\ T |= 1, but

DN (Tiu{ta}) o

t; still is counterfactual cause
(B) Q1(x): Jy Dep(y, x) (John) € O1(D)

Under IC: same causes as Q: Q9 =, O3

16 /67

(C) Qa(x): JydzCourse(z,x,y) (John) € Q2(D)
W/O 1. t4 and tg only actual causes, with I'; = {tg} and
Mo ={ts4}, resp.

With IC: t; and tg still actual causes

Contingency sets?
We lose '1 and I5:

D~ (Miu{ta}) Fo, DN (M2U{ts}) ¢

Smallest contingency set for ta: '3 = {tg, t1}
Smallest contingency set for tg: Iy = {ta, 11}

Responsibilities of t4, tg decrease:

D 1 D _ 1
/)92(John)(t4) o E' bUt pQél(john)(t4) o 3

t; is still not an actual cause, but affects the responsibility of
actual causes

17/67

Additional Results

e Causality and ICs:

e Causes preserved under logical equivalence of queries under ICs

e Without ICs, deciding causality for CQs is tractable, but their
presence may make complexity grow

e There are a CQ Q@ and an inclusion dependency 1), for which
deciding causality is NP-complete (in data) [3]

e Causality beyond UCQs:

e What about causality for Datalog queries?

e For Datalog queries, cause computation can be NP-complete
(vs. PTIME for UCQs)

e Through a connection to Datalog abduction [3]

18/67

Causal Responsibility and Causal Effect

e Causal responsibility can be seen as an explanation score for
database tuples in relation to query results

e |t is not the only possible score
e Example: BQ I is true if there is a path between a and b
a @ b yes <« P(a,b) E1X]Y
@ >® t al| b
N P(x,y) « E(x,y) t; a | e
\ "' ' / P(X7Y) — P(X7 Z): t3 c b
t | [te ts a | d
\\“ “‘ E(z,y) 5| d| e
e t b
d. ts .: ° z
e FUITI ': yes (query in Datalog, also union of CQs)
e All tuples are actual causes: every tuple in a path from a to b
e All tuples have the same responsibility: %
e Maybe counterintuitive: t; provides a direct path from a to b

19/67

We proposed using an alternative to causal responsibility [17]

A causal effect score
With origin in causality for observational studies

Retake question about how answer to query Q changes if 7 is
deleted /inserted from /into D

Formulated as an intervention on a structural causal model
What model?

In this case provided by the the lineage of the query

20/67

Example: D = {R(a, b), R(a, c), R(c, b),S5(b),S(c)}
BCQ Q: 3x(R(x,y) AS(¥))

e True in D, with lineage instantiated on D given by
propositional formula:

©o(D) = (Xr(a,b) A Xs(b)) V (Xr(a,e) A Xs(e)) V (Xr(e,p) A Xsn) (%)
e X.: propositional variable that is true iff tuple 7 € D

e Want to quantify contribution of a tuple to a query answer

e Assign uniform and independent probabilities to tuples in D

RP

prob SP [B | prob | Probabilistic database DP
b 1

(tuples outside D get probability 0)

N0

C

0o o>
o 0 o|m

N 100 [0|

e X.'s independent, identically distributed Bernouilli random
variables

Q is Bernouilli random variable

21/67

This is because causal effect needs (assumes) a probability
distribution

What's the probability that Q takes a particular truth value
when an intervention is performed on D?

Interventions of the form do(X = x)

In the structural equations make X take value x

For y,x € {0,1}: P(Q =y | do(X; = x))?
Corresponds to making X false or true

E.g. do(Xs(p) = 0) leaves lineage (*) in the form:

X
(I)Q(D) So(b) = (XR(a,c) A XS(c)) (**)
The causal effect of T: (an expected difference)

CEPC(r) = E(Q | do(X; = 1)) —E(Q | do(X, = 0))

22/67

Example: (cont. page 21) CEP2(S(b)) =7
e For dO(Xs(b) = 0): (tuple deletion)
Probability that instantiated lineage (**) is true (in DP):
P(Q =1 do(Xs() = 0)) = P(Xr(a,c) = 1) X P(Xs(e) = 1) = §
e For do(Xs(p) = 1), instantiated lineage:
X
Do(D)=F2 = Xg(ap) V (Xr(a,e) A Xs(e)) V XR(c,b)
Probability of it being true in DP:
P(Q =1 ‘ dO(Xs(b) = 1)) = P(XR(a,b) \1/3(XR(a,c) A XS(c)) V XR(c,b) = 1)

~ 16

e E(Q | do(Xsp) =0)) = P(Q =1 do(Xs) =0)) =
E(Q | do(Xs(p) = 1)) = 12

o CEPOS(L))=R-3=% >0
An actual cause with this causal effect!

Bl

23/67

Example: (cont. page 19)

e Lineage of the query as a Boolean UCQs: " W

®o(D) =
o CEPC(t) = 0.65625 oo
CEPC(ty) = CEP2(13) = 0.21875
CEPC(ty) = CEPC(ts) = CEP2(tg) = 0.09375

X V (X, A Xeg) V (Xey A Xy A Xig)

e The causal effects are different for different tuples!

e More intuitive result than responsibility!

e It has been applied to aggregate queries [17]

e Causal Effect can be alternatively obtained via coalition game
theory (coming)

24 /67

Coalition Games and the Shapley Value

e Our initial motivation: How much does a database tuple
contribute to the inconsistency of a DB?

To the violation of ICs

e Similar ideas applicable to contribution to query result [14, 15]

e Usually several tuples together violate an IC or produce a
query result

e Like players in a coalition game contributing, possibly
differently, to a shared wealth-distribution function

e Apply standard measures used in game theory: the Shapley
value of a player (as a measure of its contribution)

e Here database tuples become the players

e We need a game (function) ...

25 /67

Set of players D, and game function G: P(D) — R
(P(D) the power set of D)

The Shapley value of player p among a set of players D:

Shapley(D, G, p) Z ISIK |D||D| I~ (G(Su{p}) —46(5))

SCD\{p}

ISI'(|D] —|S| —1)! is number of permutations of D with all
players in S coming first, then p, and then all the others

Expected contribution of player p under all possible additions
of p to a partial random sequence of players followed by a
random sequence of the rest of the players
F e s e
7

ope

Database tuples (and later feature values
for an entity) will be players in a game

26 /67

The Shapley value is a established measure of contribution by
players to a wealth function

It emerges as the only measure enjoying certain properties
For each application one defines an appropriate game function

Shapley is difficult to compute
Naive approach: exponentially many counterfactual

combinations

Actually, Shapley computation is #P-hard in general

A complexity class of (possibly implicitly) computational
counting problems

Being #P-hard is evidence of difficulty: #SAT is #P-hard

Counting satisfying assignments for a propositional formula
At least as difficult as SAT

27 /67

Shapley Values as Scores in DBs

e Database tuples can be seen as players in a coalition game

e Query Q: 3xJy(Store(x) A Receives(x, y) A Store(y))

It takes values 0 or 1 in a database

Game function becomes the Boolean value of the query

The numerical value if Q is aggregate query

Contribution of tuple 7 to query result:
Shapley(D, Q.7) == Sscpy(ry 050 (S U{T)) ~ AS))
e All possible permutations of subinstances of D
e Average of differences between having 7 or not

e We investigated algorithmic, complexity and approximation
problems [14, 15]

28/67

e Players (tuples) can be split into endogenous and exogenous
One wants to measure the contribution of endogenous tuples

Exogenous are not subject to counterfactual interventions
(they stay in all subinstances)

They could be those in a particular table or particular source

e Consider BCQs without self-joins
E.g. Q: IxIy(R(x) A S(x,y) A R(y)) has self-join
e Dichotomy Theorem: For every fixed query Q:

(a) If Q hierarchical, then, for every D:
{Shapley(D, Q,7) | T € D} can be computed in PTIME

(b) If Q is non-hierarchical, the problem is FP#P—compIete

Among the hardest problems in the class of computational
problems that run in PTIME calling an oracle from #P, say
#SAT

e Bottom line: dichotomy easy vs. hard, and every query falls

in one Of the two cases
29/67

The second case: QO fixed, non-hierarchical

fixed @ Under usual complexity
D general algorithm Shapley values assumptions/conjectures,
(all Ds)? for tuples in D no PTIME algorithm

(in the size of input D)

Every algorithm is bound to encounter hard input DBs D!

Q is hierarchical if for every two existential variables x and y:
Atoms(x) C Atoms(y), or Atoms(y) C Atoms(x), or
Atoms(x) N Atoms(y) = 0

Example: Q: 3Ix3dy3dz(R(x,y) A S(x, z))

Atoms(x) = {R(x,y), S(x,z)}, Atoms(y)={R(x,y)},
Atoms(z) = {S(x, z)} Hierarchical!
Example: Q" 3x3y(R(x) A S(x,y) A T(y))

Atoms(x) = {R(x), S(x,y)}, Atoms(y) = {S(x,y), T(y)}

Not hierarchical!
Easily syntactically testable!

30/67

Same criteria as for QA over prob DBs (Dalvi & Suciu; 2004)
But new proof techniques were required

However, there are newer unifying results
(Deutch et al., Sigmod'22; c.f. also [13])

Dichotomy extends to summation over CQs

(Shapley as an expectation, is linear)
Hardness extends to aggregate non-hierarchical queries: max,
min, avg

What to do in hard cases?

Approximation: For every fixed BCQ O, there is a
multiplicative fully-polynomial randomized approximation
scheme (FPRAS)

An algorithm A(-, €,) depending on given ¢, §, with:

Sh(D, Q, 1)

P(re D | Tre

< A(1,6,0) < (14+€)Sh(D,Q,7)})>1-6

(also applies to summations)

31/67

The Shapley value has been applied to measure contribution
of tuples to inconsistency of a database

For more on Shapley in data management, see [13]

A related and popular score in game theory is the Banzhaf
Power Index (order ignored)

Banzhaf (D, Q, 1) := 2\5’% “2sciovp(QSU{r}) —Q(S))
Banzhaf also difficult to compute; provably #P-hard in general

Similar results obtained as for Shapley [14]

Also proved: Causal-Effect score coincides with the Banzhaf
Index!

32/67

Causality and XAl

e We have applied responsibility scores based on actual causality
to explanations for outcomes from ML classification systems

e These methods can be applied without necessarily knowing
“the internals” of the classifier

The latter treated as a “black box" system, or being a
black-box (e.g. a very complex NN)

Only input/output relation is needed

e We have experimentally compared responsibility scores with
other local attribution scores [4]

- Shap (an incarnation in XAl of the Shapley value)

- An ad hoc score for FICO data based on an “open-box”
model (connected logistic regressions)

33/67

Resp and Explanations (gist and simple case)

loan?
e ——— — No!

classifier
e = (john, 18, plumber, 70K, harlem,...) No
e Counterfactual versions:

e = (john, 25, plumber, 70K, harlem,...) Yes
e’ = (john, 18, plumber, 80K, brooklyn,...) Yes
e For the gist:
1. Value for feature Age is counterfactual cause with explanatory
responsibility Resp(e, Age) = 1

2. Value for Income is actual cause with Resp(e, Income) = %

This one needs additional (contingent) changes ...

34 /67

The Resp Score: Towards a General Definition

e For binary (two-valued) features the previous “definition”
works fine (not in the previous example)

e Otherwise, there may be many values for a feature that do
not change the label: original value not great explanation

Similarly for features in a potential contingency set

e Better consider average labels obtained via counterfactual
interventions

Resp, our extended version of responsibility, will be expressed
in terms of an expected value [4, 9]

e Below, F is the set of features, the classifier is binary, not
necessarily the features

For F € F, and entity e, F(e) is value for F in e

Label L(e) =1 is the one we want to explain

35/67

The Generalized Resp Score

e Assume L(e) =1, feature F*: want Resp(e, F*)
In the example, F* = Salary, F*(e) = 70K, and L(e) =1

e With F*(e) fixed, want to define “local” score for fixed
contingent assignment [:= w F*¢Tr CF
ervv_" = e[F = VT/] (entity obtained changing feature values in e

according to ', w)
I = {Location}, and w := (brooklin), a contingent (new) value for Location
efLocation}, (brooklin) _ e[Location := brooklin]
= (john, 25, plumber, 70K, brooklin, 10K, basic)

e Assume L(e"") = L(e) =1

Contingent changes do not switch label alone, but after a counterfactual change

for F*
Assume L(e[Location := brooklin]) =1

Maybe ™% with I" = {Activity, Education}, W’ = (accountant, medium),
Le" ") =1

36/67

e For each €', consider all possible values v for F*
(fixed values for all other features)

For e[Location := brooklin], consider €] :=
e[Location := brooklin; Salary := 60K] = el-ocation, (brooklin) [g,y = 60K]),
with L(ef) =1
Or e/, := e[Location := brooklin; Salary : =80/, with L(e) =0
2 2

e Fixed contingency (', w) on e as above, define its /ocal
responsibility score

Difference between original label and the expected label due
to further modifying value of F* in all possible ways

L(e) —E(L(e) | F(e') = F(e™™), YF € (F~{F*})
1+|M
1—E(L(e"™[F* :=V]) | v € Dom(F*))

- 1+)

Resp(e, F*,T, w)

Takes into account the size of contingency '

We assume a probability distribution over entity population,
whose availability or choice is quite relevant [4]

37/67

F*(e) is actual cause for label 1 if, for some (I', w), (*) is
positive

F*(e) is a counterfactual cause if [= () (w is empty) and (¥*)
is positive

Not necessarily all counterfactual causes (as original values in e) have the
same causal strength

Fi(e), Fj(e) could be both counterfactual causes, but with different values
for (¥)

E.g. if changes on the former switch label “fewer times” than for the
latter

Now the global score, with “best” contingencies (I', w)

In particular with I of minimum size

Resp(e, F*) :=

max Resp(e, F'*, I, w
Tyw: || is min. & (*) > 0 p(, 7)

38/67

Resp(e, F*) :=

max Resp(e, F*, I',w
[y: || is min. & (*) > 0 p(, 7)

e Computation:

1.

First find minimum-size contingency sets ["'s with associated
updates w with (*) greater that 0

. Next, find the maximum value for (*) over those pairs (I, w)

Starting with I = (J, and iteratively increasing the cardinality
of I' find a (I', w)

. Stop increasing the cardinality, and just check if there is

(I, w") with a greater value for (*) and same cardinality

39/67

Remarks on Resp (and other scores)

e We are usually interested in feature values with maximum
scores

Associated to minimum (cardinality) contingency sets
e Already with binary domains, Resp is intractable [6]
e Resp does not require the internals of a classifier

e |t has been positively compared to other scores [4]

Also shows optimizations of its computation

e Can we compute it faster when we have access to the
internals?

This kind of research was done for Shap ~ (coming)

40/67

Shap Scores

e Based on the general Shapley value
e Set of players F contain features, relative to classified entity e

e We need an appropriate e-dependent game function that
maps (sub)sets of players to real numbers

e For S C F, and egs the projection of e on S:
Ge(S) = E(L(e') | €& & €s=es)
e For a feature F* € F, compute: Shap(F, Ge, F*)

Sscrvrry ST E(LE | esu e = esugrn) —E(L(e)|es = es)]

Ge(SU{F*}) Ge(S)

e Shap score has become popular (Lee & Lundberg, 2017)
e Assumes a probability distribution on entity population

41/67

Shap Tractability?

e Shap may end up considering exponentially many
combinations

And multiple passes through the black-box classifier

e Can we do better with an open-box classifier?

uuuuuuuuuu

Exploiting its elements and internal structure?

e What if we have a decision tree, or a random forest, or a
Boolean circuit?

e Can we compute Shap in polynomial time?

42 /67

Tractability for BC-Classifiers: Big Picture

We investigated this problem in detail [1]

Tractable and intractable cases, with algorithms for the
former

Investigated good approximation algorithms
Choosing the right abstraction (model) is crucial

We considered Boolean-Circuit Classifiers (BCCs), i.e.
propositional formulas with (binary) output gate

®
It was known already that Shap is @/ \®
intractable for “Monotone 2CNF"-classifiers @/
under the product distribution [4] 5 &

So, it had to be a broad and interesting
class of BCs

43/67

Shap for Boolean-Circuit Classifiers

e Features Fie F, i=1,...,n, Dom(F;)={0,1},
ec&:={0,1}", L(e) €{0,1}

e There is also a probability distribution P on £
e For BC-classifier L: Shap(F, Ge, F*) =

ngf\{F*} W[E(L(e’le%u{m = esu(ry) — E(L(e)[es = es)]
Depends on e and L

e SAT(L) :={€e | L(e/) =1} #SAT (L) := |SAT (L)
Counting the number of inputs that get label 1

e We established that Shap is at least as hard as model
counting for the BC:
Proposition: For the uniform distribution PY, and e € £

#SAT(L) = 21 % (L(e) — Y7, Shap(F, Ge, Fi))

44 /67

e Then: #SAT <[y% Shap

When #SAT (L) is hard for a Boolean classifier L, Shap is
also hard

e Negative Corollary: Computing Shap is #P-hard for

e Linear perceptron classifier
By reduction from #Knapsack (with weights in binary)

e Boolean classifiers defined by Monotone 2DNF or Monotone
2CNF (Provan & Ball, 1983)

e Can we do better for other classes of binary classifiers?

Other classes of Boolean-circuit classifiers?

45 /67

Deterministic and Decomposable BCs

e A Boolean circuit over set of variables X is a DAG C with:

e Each node without incoming edges (input) is labeled with
either a variable x € X or a constant in {0,1}
e Each other node is labeled with a gate in {—, A, V}

e There is a single sink node, O, called the output

e e: X —{0,1} (equivalently e c {0,1}/X) is accepted by C,
written C(e) = 1, iff O takes value 1

e For a gate g of C, C(g) is the induced subgraph containing

gates on a path in C to g ® q

Var(g) is the set of variables of C(g) o 0 0

Var(g) = {x2, x3, x4} O ‘
& ©

e C is deterministic if every V-gate g with input
gates g1.g2: C(g1)(e) # C(g2)(e), for every e

46 /67

C is decomposable if every A-gate g with

input gates g1, g»: Var(gy) N Var(g) =0

We concentrated on the class of deterministic

and decomposable Boolean circuits (dDBCs)

Shap computation in polynomial time not initially precluded

A class of BCCs that includes -via efficient (knowledge)
compilation- many interesting ones, syntactic and not ...

Decision trees (and random forests)

Ordered binary decision diagrams (OBDDs)

Sentential decision diagrams (SDDs)
Deterministic-decomposable negation normal-form (dDNNFs)

4767

Shap for dDBCs

e Proposition: For dDBCs C, #SAT(C) can be computed in
polynomial time (= the same for Shap)

Idea: Bottom-up procedure that inductively computes
#SAT(C(g)), for each gate g of C

e To show that Shap can be computed efficiently for dDBCs, we
need a detailed analysis

e We assume the uniform distribution for the moment
o A related problem: “satisfiable circle of an entity”
SAT(C,e,0):=SAT(C) N { & | Je—¢€|,=¢ }
S
#SAT(C, e, f) — |5AT(C, e, £)| ¢ value discrepancies

e Proposition: If computing #SAT(C,e, () is tractable, so is
Shap(X, Ge, x)

48 /67

e Main Lemma: #SAT(C,e,!) can be solved in polynomial
time for dDBCs C, entities e, and 1 < ¢ < |X]|
Idea: Inductively compute #SAT(C(g),e,,,,,.) for each
gate g € C and integer ¢ < |Var(g)|
e Input gate: immediate
e —-gate
#SAT(C(_‘g)7eVar(g)7£) - (Var(g) #SAT(()v €lae) é)
e V-gate: (uses determinism)
#SAT(C(gl\/g2) Va(gl)UVa(g2)7£) =
H#AT(C(81): €yayy 1) + #SAT(C(82); 81y £)
e A-gate: (uses decomposmon)
#SAT(C(gl A g2)7 € (1)U Var(g) ? E) =
D ikt #OAT(C(81), @,y J) X #OAT(C(&2): €0y K)

e Theorem: Shap can be computed in polynomial time for

dDBCs under the uniform distribution

e It can be extended to any product distribution on {0, 1}1X!

49 /67

e Corollary: Via polynomial time transformations, under the
uniform and product distributions, Shap can be computed in
polynomial time for

e Decision trees (and random forests)

e Ordered binary decision diagrams (OBDDs)

e Sentential decision diagrams (SDDs)

e Deterministic-decomposable negation normal-form (dDNNFs)

e An optimized efficient algorithm for Shap computation can be
applied to any of these [1]

50 /67

Shap for Decision Trees and ...

e Compiling binary decision trees into dDBCs

An inductive construction starting from the bottom of the DT

e Leaves of DT become constant binary gates in dDBC

By induction one can prove the resulting circuit is dDBC
Final dDBC is the compilation c(r) of root node r of DT

n7 @c(ns)
@ né H @ @
i egoeg
!)

na

=]

9,

l
Final equwalent dDBC: ¢(n7)

Computable in linear time

(o]~
Rl=)e

(]
=Y

51/67

e Beyond binary features?

Sunny Overcast Rain

e “Binarize” features e
e OutlookSunny (OS) i ot h
OutlookOvercast, OutlookRain, etc. ™ tes No ves

become propositional features

0S
1.0
,/ S . .

HH 00 Certain entities become
191 0 impossible (probability 0)
K/ \ OR e — < 0 1 1 > ><

0 HN 1 s 4y g e
1 N
N\ ETC. for 0S, 00, OR
> 0 e=(0,1,0 ,...) ok
——
for OS, OO, OR

52/67

Our polynomial time algorithm for Shap can be applied to
Ordered Binary Decision Diagrams (OBDDs)

Relevant for several reasons in Knowledge Compilation

In particular, to represent “opaque” classifiers as OBDDs, e.g.
binary neural networks [Shi, Shih, Darwiche, Choi; KR20]

Opening the ground for efficiently applying Shap to them

f(Xl,X27X3) = (ﬁX]_ A —x2 A ﬁX3) V (Xl, /\X2) \Y (X2 AN X3)

Binary Decision Tree

0BDD
(same variable order along full paths)

53 /67

Shap on Neural Networks

e Binary Neural Networks (BNNs) are commonly considered
black-box models

e Naively computing Shap on a BNN is bound to be complex

e Better try to compile the BNN into an open-box BC where
Shap can be computed efficiently

e We have experimented with Shap computation with a
black-box BNN and with its compilation into a dDBC ~ [10]

e Even if the compilation is not entirely of polynomial time, it
may be worth performing this one-time computation

e Particularly if the target dDBC will be used multiple times, as
is the case for explanations

e We illustrate the approach by means of an example

54 /67

¢g(i) = sp(Wg e i+ bg)
O]

(1 if Wyei+by>0,
T —1 otherwise,

oy 9

10 9

0 4

4

iEgé///////
a =070}

e The BNN is described by means of a propositional formula,
which is further transformed and optimized into CNF

0 (=[(x3 A (22 V1)) V(22 A21)] A
(
[
(

@08 on

[(—.’153 A (—1’2 \ —1‘1)) \Y (—1‘2 A —.’L’l)] \Y
(1’3 A\ (—1‘2 Vv —xl)) Vv (—l‘g A\ —11)])) Vv

[(—1'3 A (—1’2 \ —1‘1)) \Y% (—1‘2 N —.’L’l)] A
[(:v3 A (—IQ \Y —1‘1)) \ (—1‘2 A —181)}).

In CNF:

o < (—X1 V —Xg) VAN (—Xl V —X3) VAN (—X2 V —X3)

55 /67

e The CNF is transformed into an SDD 0
It succinctly represents the CNF
e The expensive compilation step

But upper-bounded by an
exponential only in the tree-width
of the CNF

A measure of how close to a tree is the undirected graph
associated to the CNF

An edge between variables if together in /./ \.\

a clause

disjunction,

[[x2 [4] [xd] [x]T]

e Finally, the SDD is easily transformed \.\
into a dDBC *s\
e On it Shap is computed, possibly @

multiple times

e With considerable efficiency gain
56 /67

In our experiments, we used a BNN with 14 gates

It was compiled into a dDBC with 18,670 nodes

A one-time computation that fully replaces the BNN
e We compared Shap computation time for black-box BNN,

open-box dDBC, and black-box dDBC

Total time for computing all Shap scores with increasing
number of classification inputs

W BNN black-box
EEm dDBC black-box

10¢ dDBC open-box
E
E
8108
$10
3

102

20 10
Eni

e The uniform distribution was used

60 80 100
Bios .
(logarithmic scale)

57 /67

Look Ahead

e The above results on Shap computation hold under the
uniform and product distributions

The latter imposes independence among features

e Other distributions have been considered for Shap and other
scores

The empirical and product-empirical distributions [4]

They naturally arise when no more information available
about the distribution

e Imposing domain semantics (domain knowledge) is relevant to
explore

e Can we modify Shap definition and computation accordingly?

Or the distribution? [7]

58 /67

e Do we still have an efficient algorithm?

e In the case of databases, do complexity results change under
integrity constraints (1Cs)?

That is, the implicit counterfactuals must respect the ICs

e For causal responsibility there is a change under I1Cs [3]

59 /67

Self-References |

(1]

2]

3]

[4]

5]

6]

[7]

(8]

M. Arenas, P. Barcelo, L. Bertossi, M. Monet. “The Tractability of SHAP-scores over Deterministic and
Decomposable Boolean Circuits”. Journal of Machine Learning Research, 2023, 24(63):1-58. (extended
version of AAAI 2021 paper).

L. Bertossi, L. and B. Salimi. “From Causes for Database Queries to Repairs and Model-Based Diagnosis
and Back”. Theory of Computing Systems, 2017, 61(1):191-232.

L. Bertossi and B. Salimi. “Causes for Query Answers from Databases: Datalog Abduction, View-Updates,
and Integrity Constraints”. International Journal of Approximate Reasoning, 2017, 90:226-252.

L. Bertossi, J. Li, M. Schleich, D. Suciu and Z. Vagena. “Causality-based Explanation of Classification
Outcomes”. Proc. 4th International Workshop on " Data Management for End-to-End Machine Learning”
(DEEM) at ACM SIGMOD/PODS, 2020, pp. 6.1-6.10.

L. Bertossi. “Specifying and Computing Causes for Query Answers in Databases via Database Repairs and
Repair Programs”. Knowledge and Information Systems, 2021, 63(1):199-231.

L. Bertossi. “Declarative Approaches to Counterfactual Explanations for Classification”. Theory and
Practice of Logic Programming, 2021, 23 (3): 559-593, 2023. arXiv 2011.07423.

L. Bertossi. “Score-Based Explanations in Data Management and Machine Learning: An Answer-Set
Programming Approach to Counterfactual Analysis”. In Reasoning Web. Declarative Artificial Intelligence.
Reasoning Web 2021. Springer LNCS 13100, 2022, pp. 145-184.

L. Bertossi and G. Reyes. “Answer-Set Programs for Reasoning about Counterfactual Interventions and
Responsibility Scores for Classification”. In Proc. 1st International Joint Conference on Learning and
Reasoning (IJCLR'21), Springer LNAI 13191, 2022, pp. 41-56. Extended version: arXiv 2107.10159.

60 /67

Self-References ||

9]

[10]

[11]

[12]

(13]

[14]

(15]

[16]

L. Bertossi. “Attribution-Scores and Causal Counterfactuals as Explanations in Artificial Intelligence”. In
‘Reasoning Web: Causality, Explanations and Declarative Knowledge'. Springer LNCS 13759, 2023. arXiv
2303.02829.

L. Bertossi and J. E. Leon. “Efficient Computation of Shap Explanation Scores for Neural Network
Classifiers via Knowledge Compilation”. Proc. JELIA, 2023. To appear. arXiv 2303.06516.

L. Bertossi. “From Database Repairs to Causality in Databases and Beyond”. To appear in special issue of
Springer TLDKS dedicated to ‘Bases des Donnees Avances’ (BDA'22). arXiv 2306.09374

L. Bertossi. “Attribution-Scores in Data Management and Explainable Machine Learning”. To appear
Proc. ADBIS'23. arXiv 2308.00184.

L. Bertossi, B. Kimelfeld, E. Livshits and M. Monet. “The Shapley Value in Database Management”. ACM
Sigmod Record, 2023, 52(2):6-17.

E. Livshits, L. Bertossi, B. Kimelfeld and M. Sebag. “The Shapley Value of Tuples in Query Answering”.
Logical Methods in Computer Science, 2022, 17(3):22.1-22.33.

E. Livshits, L. Bertossi, B. Kimelfeld and M. Sebag. “Query Games in Databases”. ACM Sigmod Record,
2021, 50(1):78-85.

A. Lopatenko and L. Bertossi. “Complexity of Consistent Query Answering in Databases under
Cardinality-Based and Incremental Repair Semantics”. Proc. ICDT'07, 2007, Springer LNCS 4353, pp.
179-193. Extended version: arXiv 1605.07159.

61/67

Self-References ||

[17] B. Salimi, L. Bertossi, D. Suciu and G. Van den Broeck. “Quantifying Causal Effects on Query Answering
in Databases”. Proc. 8th USENIX Workshop on the Theory and Practice of Provenance (TaPP), 2016.
arXiv 1603.02705.

62 /67

EXTRA SLIDES

The Shapley Value

Consider a set X = {Xi,...,X,} of n agents or variables or
features, and a utility function g : 2X — R, and define the Shapley
and Banzhaf values as:

oxs0) = 3 (6 U XN —gr) ()
' 7r€ﬂn

Sxe(6) =55 O (8(SULX)) ~ 8(5)))
SCX

where I, is the set of permutations of X, and 7<% is the set of

agents that come before X; in the permutation 7

64/67

More generally, given n+ 1 numbers ag, ..., a, € R, we define the
generalized value as

e(X)) =) a5 (8(SU{X;}) — £(5)) (3)

SCX

The Shapley and Banzhaf values are the special cases
ag := k!(n— k —1)! and ax := 1 respectively

65 /67

The Shapley value is the unique value satisfying:
Efficiency ijl’m ox.g(Xj) = g(X)

Symmetry ¢x g(Xi) = ¢x g(Xj) whenever X;, X; are
interchangeable, meaning that
g(SU{Xi}) = g(SU{X;}) for all sets S not
containing X;, X;

Dummy ¢x ¢(Xi) = 0 if i does not contribute to the utility
function, i.e. g(SU{Xi}) = g(§) forall S

Additivity ox g+g = PX,g + PX.e

The Banzhaf value satisfies all properties above except for
efficiency

The utility function g : 2X — R is exponentially large
Various applications restrict the way the function is specified

66 /67

e We can compute the expectation of the label: ¢o(L) = E(L),
which will give a value in [0, 1], say 0.4

e Now fix e*, for which we have the label L(e*), e.g. 1
We want to account for the difference between this label and
do(L): L(e*) — ¢o(L)=1—-0.4=0.6

e The question is which feature value contributes the most to
the difference L(e*) — ¢o(L)
In our experiments we usually concentrate on entities e* with
L(e*) = 1, that means “rejection”, which has to be explained

e The difference is expressed as a sum of individual
contributions, ¢;(L,e*), from the different features F; € F:

Z ¢i(L,e") = L(e") — ¢o(L)

67 /67

