Topics in part 1 — from pixels to features

* Introduction

« what is computer vision? It's applications.

« Linear Algebra
« vector, matrix, points, linear transformation, eigenvalue,

From Pixels to Features: eigenvector, least square methods, singular value decomposition.
Review of Part 1 * Image Formation

+ camera lens, pinhole camera, perspective projection.

» Camera Model

COMP 4900D + coordinate transformation, homogeneous coordinate,
intrinsic and extrinsic parameters, projection matrix.

Winter 2006 « Image Processing
* noise, convolution, filters (average, Gaussian, median).
» Image Features
« image derivatives, edge, corner, line (Hough transform), ellipse.
General Methods Vectors and Points
* Mathematical formulation We use vectors to represent points in 2 or 3 dimensions

« Camera model, noise model

» Treat images as functions

y
I=f(x,y) Qx2y2) .y
+ Model intensity changes as derivatives Vf =[1,.1,]" P(x1ys v=0-P { : ‘}
« Approximate derivative with finite difference. Y27 N

« First-order approximation

Ii+u, j+v) = 1G, )+ Tu+1y=1Gj)+[u vIVf
" . o The distance between the two points:
» Parameter fitting — solving an optimization

problem D:HQ—PH=\/(x2—x1)2+(J’z—yl)2




Homogeneous Coordinates

Go one dimensional higher:
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W is an arbitrary non-zero scalar, usually we choose 1.
From homogeneous coordinates to Cartesian coordinates:
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2D Transformation with Homogeneous Coordinates

2D coordinate transformation:
., | cosg sing | p, T,
p= . +
—sing cos¢| p, T,

2D coordinate transformation using homogeneous coordinates:

p.] [cosg sing T.7p,
p,"|=|—sing cos¢ T, | p,
1 0 0 1)1

Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if
Ax=Ax
A is called eigenvalue and X is called eigenvector.

The transformation defined by A changes only the
magnitude of the vector x
Example:

 THIA] =6 THE-G

1
5 and 2 are eigenvalues, and [J and [7 J are eigenvectors.

)

Symmetric Matrix

We say matrix A is symmetric if
A'=A
Example: B” B is symmetric for any B, because
(B"B)" =B"(B")' =B"B

A symmetric matrix has to be a square matrix

Properties of symmetric matrix:
*has real eignvalues;
seigenvectors can be chosen to be orthonormal.
*B'B has positive eigenvalues.




Orthogonal Matrix

A matrix A is orthogonal if

ATA=1 o A'=A"

The columns of A are orthogonal to each other.

Example:
i cos@
A= cosd siné Al:|: .
—sind cos@ sin &

—sin @

cosd

|

Least Square

When m>n for an m-by-n matrix A, Ax =b has no solution.

In this case, we look for an approximate solution.
We look for vector X such that

|Ax—b[*
is as small as possible.

This is the least square solution.

Least Square

Least square solution of linear system of equations

Ax=b
Normal equation: A" Ax = A”Th

AT A s square and symmetric

The Least square solution X = (A" A)7l A'b

makes HA)T—bHZ minimal.

SVD: Singular Value Decomposition

An mxn matrix A can be decomposed into:

A=UDV’
U is mxm, V is nxn, both of them have orthogonal columns:
U'u=1 Vv =1l

D is an mxn diagonal matrix.

Example:




Pinhole Camera

image
plane

pinhole -7 virtual
image

Why Lenses?

Gather more light from each scene
point

Four Coordinate Frames
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Using homogenous coordinate, we have a linear relation:
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World to Camera Coordinate

Transformation between the camera and world coordinates:
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Image Coordinates to Pixel Coordinates

x=(0,=x,)s, y=(0,=y,)s,

S8, 1 pixel sizes
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Put All Together — World to Pixel
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Camera Intrinsic Parameters

-fls, 0 o,
K= 0 -fls, o,
0 0 1

K is a 3x3 upper triangular matrix, called the
Camera Calibration Matrix.

There are five intrinsic parameters:

(a) The pixel sizes in x and y directions ..,

(b) The focal length f

(c) The principal point (0x,0y), which is the point
where the optic axis intersects the image plane.




Extrinsic Parameters

X, X,
X
K[R T] Yl B
p.o=|x,|= =
: Z, Z
X3
1 1

[RIT] defines the extrinsic parameters.
The 3x4 matrix M = K[RIT] is called the projection matrix.

Image Noise

Additive and random noise:

I(x,y)=1(x,y)+n(x,y)

I(x,y) : the true pixel values
n(x,y) : the (random) noise at pixel (x,y)

Gaussian Distribution

Single variable

e—(x—,u)2/20'2

()=—1—
PN

Gaussian Distribution

. . . 2
Bivariate with zero-means and variance O




Gaussian Noise

Is used to model additive random noise

*The probability of n(x,y) is e
*Each has zero mean
*The noise at each pixel is independent

Impulsive Noise

* Alters random pixels
* Makes their values very different from the true ones

Salt-and-Pepper Noise:

+ Is used to model impulsive noise

1(h,k) x<l
I (hk)=
(k) {i. F Wi =) X1

‘min max. -
x, y are uniformly distributed random
variables

1,i

are constants

min, Fmax

Image Filtering

Modifying the pixels in an image based on some
function of a local neighbourhood of the pixels

20 T11 |20 | — 5.7

Linear Filtering — convolution

The output is the linear combination of the neighbourhood pixels

m/2 m/2

LG p=1%A= > > AhKIGi—h, j-k)

h=—m/2 k=—m/2

The coefficients come from a constant matrix A, called kernel.
This process, denoted by “*’, is called (discrete) convolution.

1 3 o EE
1012 [*]|1 lo1]1 ]| = 5
4 [1 1 1 o |-

Image Kernel Filter Output




Smoothing by Averaging

Convolution can be understood as weighted averaging.

Gaussian Filter

G, (x,y)= EXP[— 5 +,y2))

270°

Discrete Gaussian kernel:

24k
202

G(h,k)= e

270

where G(h, k)is an element of an mx m array

Gaussian Filter
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Gaussian Kernel is Separable

IG=I*G=
m/2 m/2
= > Y GhiIi-hj-k)=
h=-m/2 k=—m/2
mi2 w2 I
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Gaussian Kernel is Separable

Convolving rows and then columns with a 1-D Gaussian kernel.

N O

= result

Ir *

The complexity increases linearly with 72 instead of with m?

Gaussian vs. Average

Smoothing by Averaging

Gaussian Smoothing

Nonlinear Filtering — median filter

Replace each pixel value I(i, j) with the median of the values
found in a local neighbourhood of (i, j).

123 | 125 | 126 | 130 | 140

Neighbourhood values:
122 | 124 | 126 | 127 | 135

115,119,120, 123, 124,
118 | 120 | 150 [ 125 | 134 125, 126,127, 150

1% | 115 | 119 (123 | 133

Median value: 124

Median Filter

=T ) Video Viewerd (256425 =T
o o

Axes Axes

Salt-and-pepper noise After median filtering




Edges in Images

Definition of edges
«  Edges are significant local changes of intensity in an image.
«  Edges typically occur on the boundary between two different regions in an image.

Images as Functions

2-D

b e
(O TS A (R

Red channel intensity

Y

I=f(x,y)

Finite Difference — 2D

Continuous function:

af(x’y):hm f(-x+hsy)_f(x’y)
ox h=0 h

af(xay)zlim f(x’y+h)_f(x’y)
ay h—0 h

Discrete approximation: Convolution kernels:

,szz =] -1 1]
ax s L]
_ofley) -1
Iy - ay - fz,j+l fx/ |: 1

Image Derivatives
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Edge Detection using Derivatives

1-D image f(x)

gray value

15t derivative f'(x)

f (x)‘ threshold 'A‘ ,A threshold

Pixels that pass the
threshold are I I
edge pixels

Image Gradient

gradient
o
Vi=ly
dy
magnitude
VFl =)+ G
direction

arctan(% / %)

Finite Difference for Gradient

Discrete approximation:

Ix(i’j):ai:fwl,j_fuj [_1 1]
ox
N S -1
Iy(l’J)—ay’*f,,jﬂ f:‘/‘ |:1:|
magnitude  G(j, ) = If(i, j)+15(l', J)
aprox. magnitude  G(i, j) = |I |+,

direction arctan(/ /1)

Convolution kernels:

Edge Detection Using the Gradient

Properties of the gradient:

» The magnitude of gradient
provides information about the
strength of the edge

EDGE #*——NORMAL
DIRECTION

* The direction of gradient is
always perpendicular to the
direction of the edge

Main idea:

« Compute derivatives in x and y directions
« Find gradient magnitude
¢ Threshold gradient magnitude

11



Edge Detection Algorithm

edges

1 1] \‘
« x
Image 1 Oi. 4>

Edge Detection Example

Edge Detection Example
G, )=+12G, N+T;G. )
' EE 1

G(i, j) > Threshold =t

Finite differences responding to noise

Wiy alV/7 41/ 4

/

Increasing noise ->
(this is zero mean additive gaussian noise)
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Solution: smooth first

Sigma = 50
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Where is the edge? Look for peaks in (h*f)

Sobel Edge Detector

Approximate derivatives with
central difference

. .9
1., J) :a*]; = fi—l,j _fi+l._/

Smoothing by adding 3 column
neighbouring differences and give
more weight to the middle one

Convolution kernel for | ’

Convolution kernel

1 o -1]

1 0 -1
2.0 -2
1 0 -1

1 2 1
0 0 0
-1 -2 -1

Sobel Operator Example

a, | a, | a _1 0 -1
a, s | % |2 0 -2
a, | ag| a, 11 0 -1
G| G| % (1 2 1
a, A *x |0 0 0
a; | Gg | 4y -1 -2 -1

The approximate gradient at a;
I =(a,—ay)+2a,—as)+(a, —ay)

I, =(a,—a;)+2(a, —ay)+(a;—a,)

Sobel Edge Detector

1 0 -1

2.0 —2\
/1 0 -1 e edges

O vl

\*\121/
I,

0o 0 0
-1 -2 -1
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Edge Detection Summary

Input: an image / and a threshold 7.

1. Noise smoothing: I, =1#*h
(e.g. h is a Gaussian kernel)

2. Compute two gradient images /, and /, by convolving /;
with gradient kernels (e.g. Sobel operator).

3. Estimate the gradient magnitude at each pixel
Gi, )= I; G, H+T; G )

4. Mark as edges all pixels (i, j) such that G(i, j) >

Corner Feature

Corners are image locations that have large intensity changes
in more than one directions.

Shifting a window in any direction should give a large
change in intensity

Harris Detector: Basic Idea

“flat” region: “edge’™ “corner”:
no change in no change along significant change
all directions the edge direction in all directions

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

Change of Intensity

The intensity change along some direction can be quantified
by sum-of-squared-difference (SSD).

D(u,v)=> (I +u, j+v)-1G, )

L)

14



Change Approximation

If u and v are small, by Taylor theorem:

LG+u, j+v) = 1G, )+ Lu+1y

where 1, :% and 1, :%
therefore
(IG+u, j+v) =16, ) =16, )+ Lu+ I y=1G, )
2
=(tu+1y)

=1’ +21x1)_uv+1)2.v2

17 I, [u
=[u v )
11, I |v

Gradient Variation Matrix

2
D(M,V)=[M v ZIA lely u
YL

This is a function of ellipse.

o [Zr oz,
Su, v

Matrix C characterizes how intensity changes
in a certain direction.

Eigenvalue Analysis

12, et

If either A is close to 0, then this is not a corner, so look for
locations where both are I g[e.
C:Ti\ 1. 1]

c=[ﬂ[1¥ 1]=4"a

)
*C is symmetric
C has two positive eigenvalues

Corner Detection Algorithm

Algorithm

Input: image f. threshold ¢ for 4y, size of @

(1) Compute the gradient over the entire image f

(2) For each image point p
(2.1} form the matrix C over the neighborhood 0 of p
(2.2) compute Aj. the smaller eigenvalue of €
(2.3)1f Az = ¢, save the coordinates of pina list L

(3) Sort the list in decreasing order of 4;

(4) Scanning the sorted list top to bottom: delete all the points that appear in the
list that are in the same neighborhood O with p

15



Line Detection

The problem:
*How many lines?
*Find the lines.

Equations for Lines

The slope-intercept equation of line
y=ax+b

‘What happens when the line is vertical? The slope a goes
to infinity.

A better representation — the polar representation

y P =xcos@+ ysin 8
PN

X

Hough Transform: line-parameter mapping

A line in the plane maps to a point in the 8-p space.

<

x 0

Pl = 6.p)

All lines passing through a point map to a sinusoidal curve in the
0-p (parameter) space.

y % p
X

p=xcos@+ ysinf

Mapping of points on a line

(]

Points on the same line define curves in the parameter space
that pass through a single point.

Main idea: transform edge points in x-y plane to curves in the
parameter space. Then find the points in the parameter space
that has many curves passing through.

16



Quantize Parameter Space

e
=

0
SEs

|

]

EEE:'
O

Detecting Lines by finding maxima / clustering in parameter space.

Examples

input image Hough space lines detected

TImage credit: NASA Dryden Research Aircraft Photo Archive

Algorithm

1. Quantize the parameter space
int P[0, Pmax][0, Omax]; // accumulators

2. For each edge point (x, y) {
For (9 = 0, 0<= emax; 0= 9+A9) {
P =xcos@+ ysin@ //round off to integer
(PIpl[OD++;
}
}

3. Find the peaks in P[p][6].

Equations of Ellipse

2 2
Y
72+72=1
non

ax® +bxy+cy’ +dx+ey+ f =0

Let x=[x"xy,y°,x 1]

a=[a,b,c.d,e, fI

Then X a=0

17



Ellipse Fitting: Problem Statement

Given a set of N image points P: =51
find the parameter vector a,such that the ellipse

f(p.a)=x"a=0

fits P; best in the least square sense:

min 3 [D(p,.)f
i=l

Where D(P;»a) is the distance from P; to the ellipse.

Euclidean Distance Fit

l’i,‘ -P;

P, D(p,.a)=

P, is the point on the ellipse that
is nearest to Pi

f(f)i,a)ZO

B; =P, is normal to the ellipse at B;

Compute Distance Function

Computing the distance function is a constrained optimization
problem:

- la 2
min
Pi

D, —Dp; subjectto  f(p;,a)=0

Using Lagrange multiplier, define:
LCx,y, D) =, —p)|" —24f (B,.2)

where P, =[x, y]"
Then the problem becomes: min L(x, y, A
bi

AL A

Set ==%-0  wehave D;,—P,=AVf(D,.a)
ox dy

Ellipse Fitting with Euclidean Distance

Given a set of N image points P: =[%.51"
find the parameter vector a,such that

2

. |/ (p,.a)

© TV )

This problem can be solved by using a numerical nonlinear
optimization system.
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