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From Pixels to Features:
Review of Part 1

COMP 4900D

Winter 2006

Topics in part 1 – from pixels to features

• Introduction
• what is computer vision? It’s applications.

• Linear Algebra
• vector, matrix, points, linear transformation, eigenvalue, 

eigenvector, least square methods, singular value decomposition.

• Image Formation
• camera lens, pinhole camera, perspective projection.

• Camera Model
• coordinate transformation, homogeneous coordinate, 

intrinsic and extrinsic parameters, projection matrix.

• Image Processing
• noise, convolution, filters (average, Gaussian, median).

• Image Features
• image derivatives, edge, corner, line (Hough transform), ellipse.

General Methods

• Mathematical formulation
• Camera model, noise model

• Treat images as functions

• Model intensity changes as derivatives
• Approximate derivative with finite difference.

• First-order approximation

• Parameter fitting – solving an optimization 

problem
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Vectors and Points

We use vectors to represent points in 2 or 3 dimensions
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Homogeneous Coordinates
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Go one dimensional higher:
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is an arbitrary non-zero scalar, usually we choose 1.w
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From homogeneous coordinates to Cartesian coordinates:

2D Transformation with Homogeneous Coordinates

2D coordinate transformation using homogeneous coordinates:
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2D coordinate transformation:

Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if

xAx λ=

λ is called eigenvalue and is called eigenvector.

The transformation defined by A changes only the

magnitude of the vector x

Example:
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Symmetric Matrix

We say matrix A is symmetric if

AA
T =

Example: BB
T

A symmetric matrix has to be a square matrix

is symmetric for any B, because

BBBBBB
TTTTTT == )()(

Properties of symmetric matrix:

•has real eignvalues;

•eigenvectors can be chosen to be orthonormal.

• has positive eigenvalues.BBT
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Orthogonal Matrix

A matrix A is orthogonal if

IAA
T = 1−= AA

Tor

Example:
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The columns of A are orthogonal to each other.

Least Square

When m>n for an m-by-n matrix A, bAx = has no solution.

In this case, we look for an approximate solution.

We look for vector      such that x

2
bAx −

is as small as possible.

This is the least square solution.

Least Square

Least square solution of linear system of equations

bAx =

bAAxA
TT =

AA
T is square and symmetric

bAAAx
TT 1)( −=

Normal equation:

2
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The Least square solution

makes minimal.

SVD: Singular Value Decomposition

TUDVA =

An m×n matrix A can be decomposed into:

U is m×m, V is n×n, both of them have orthogonal columns:

IUU T =

D is an m×n diagonal matrix.

IVV T =

Example:
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Pinhole Camera Why Lenses?

Gather more light from each scene 

point

Four Coordinate Frames
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World to Camera Coordinate

TRXX += wc



























=



















Τ

1

1

1

w

w

w

c

c

c

Z

Y

X

Z

Y

X

0

TR

Transformation between the camera and world coordinates:

R,T

Image Coordinates to Pixel Coordinates
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Put All Together – World to Pixel
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Camera Intrinsic Parameters
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K is a 3x3 upper triangular matrix, called the 

Camera Calibration Matrix.

There are five intrinsic parameters:

(a) The pixel sizes in x and y directions

(b) The focal length

(c) The principal point (ox,oy), which is the point

where the optic axis intersects the image plane. 
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Extrinsic Parameters

[R|T] defines the extrinsic parameters.

The 3x4 matrix M = K[R|T] is called the projection matrix.
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Image Noise

Additive and random noise:

I(x,y) : the true pixel values 

n(x,y) : the (random) noise at pixel (x,y)
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Gaussian Noise

Is used to model additive random noise
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•The probability of n(x,y) is

•Each has zero mean

•The noise at each pixel is independent

Impulsive Noise

Salt-and-Pepper Noise:

• Is used to model impulsive noise

• Alters random pixels

• Makes their values very different from the true ones

x, y are uniformly distributed random 
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Image Filtering

Modifying the pixels in an image based on some 

function of a local neighbourhood of the pixels
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The coefficients come from a constant matrix A, called kernel.

This process, denoted by ‘*’, is called (discrete) convolution.
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Smoothing by Averaging
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Gaussian Kernel is Separable

Convolving rows and then columns with a 1-D Gaussian kernel.
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The complexity increases linearly with      instead of with     .m 2m

Gaussian vs. Average

Gaussian Smoothing Smoothing by Averaging

Nonlinear Filtering – median filter

Replace each pixel value I(i, j) with the median of the values

found in a local neighbourhood of (i, j).

Median Filter

Salt-and-pepper noise After median filtering
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Edges in Images

Definition of edges

• Edges are significant local changes of intensity in an image.

• Edges typically occur on the boundary between two different regions in an image.

Images as Functions

2-D
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Edge Detection using Derivatives

Pixels that pass the

threshold are

edge pixels

1-D image )(xf

1st derivative )(' xf

threshold)(' xf

Image Gradient
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Edge Detection Using the Gradient

Properties of the gradient:

• The magnitude of gradient 

provides information about the 

strength of the edge

• The direction of gradient is 

always perpendicular to the 

direction of the edge

Main idea:

• Compute derivatives in x and y directions

• Find gradient magnitude

• Threshold gradient magnitude
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Edge Detection Algorithm
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(this is zero mean additive gaussian noise)
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Where is the edge?  

Solution:  smooth first

Look for peaks in 

Sobel Edge Detector
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Edge Detection Summary

Input: an image I and a threshold τ.

1. Noise smoothing:

(e.g. h is a Gaussian kernel)

2. Compute two gradient images and      by convolving

with gradient kernels (e.g. Sobel operator).

3. Estimate the gradient magnitude at each pixel

4. Mark as edges all pixels     such that 

hII s ∗=

),(),(),( 22 jiIjiIjiG yx +=

),( ji τ>),( jiG

xI yI sI

Corner Feature

Corners are image locations that have large intensity changes

in more than one directions.

Shifting a window in any direction should give a large 
change in intensity

Harris Detector: Basic Idea

“flat” region:

no change in 

all directions

“edge”:

no change along 

the edge direction

“corner”:

significant change 

in all directions

C.Harris, M.Stephens. “A Combined Corner and Edge Detector”. 1988

Change of Intensity

The intensity change along some direction can be quantified

by sum-of-squared-difference (SSD).
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Change Approximation

If u and v are small, by Taylor theorem:
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where
y

I
Iand

x

I
I yx

∂

∂
=

∂

∂
=

therefore

( ) ( )
( )

[ ] 
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












=
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u
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vu
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vIuI

jiIvIuIjiIjiIvjuiI
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yxx

yyxx
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2

2

2222

2
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Gradient Variation Matrix

[ ] 



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














=

∑∑
∑∑

v

u

III

III
vuvuD

yyx

yxx

2

2

),(

This is a function of ellipse.












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∑∑
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2

2

yyx

yxx

III

III
C

Matrix C characterizes how intensity changes

in a certain direction.

Eigenvalue Analysis

QQ
III

III
C

T

yyx

yxx
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
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


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
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
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


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∑∑
∑∑

2

1

2

2

0

0

λ

λ

If either λ is close to 0, then this is not a corner, so look for 

locations where both are large.

(λmax)
-1/2

(λmin)
-1/2

[ ]yx

y

x
II

I

I
C 








=

[ ] AAII
I

I
C

T

yx

y

x
=








=

•C is symmetric

•C has two positive eigenvalues

Corner Detection Algorithm
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Line Detection

The problem:

•How many lines?

•Find the lines.

Equations for Lines

baxy +=

ρ

What happens when the line is vertical? The slope a goes

to infinity.

The slope-intercept equation of line

A better representation – the polar representation

θθρ sincos yx +=

Hough Transform: line-parameter mapping

ρ

θθρ sincos yx +=

A line in the plane maps to a point in the θ-ρ space.

ρ
ρ (θ,ρ)

All lines passing through a point map to a sinusoidal curve in the

θ-ρ (parameter) space.

Mapping of points on a line

ρ

Points on the same line define curves in the parameter space

that pass through a single point.

Main idea: transform edge points in x-y plane to curves in the

parameter space. Then find the points in the parameter space

that has many curves passing through.
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Quantize Parameter Space

m

ρ

θm

Detecting Lines by finding maxima / clustering in parameter space.

Examples

Image credit: NASA Dryden Research Aircraft Photo Archive

input image Hough space lines detected

Algorithm

1. Quantize the parameter space

int P[0, ρmax][0, θmax];  // accumulators

2.  For each edge point (x, y) {

For (θ = 0; θ <= θmax; θ = θ+∆θ) {

// round off to integer

(P[ρ][θ])++;

}

} 

3.  Find the peaks in P[ρ][θ].

θθρ sincos yx +=

Equations of Ellipse

1
2

2

2

2

1

2

=+
r

y

r

x

0
22 =+++++ feydxcybxyax

Let
T

yxyxyx ]1,,,,,[ 22=x

T
fedcba ],,,,,[=a

Then 0=axT
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Ellipse Fitting: Problem Statement

0),( == axap
T

f

fits      best in the least square sense:ip

[ ]∑
=

N

i

iD
1

2
),(min ap

a

),( ap iDWhere               is the distance from       to the ellipse.  ip

Given a set of N image points 

find the parameter vector such that the ellipse

T

iii yx ],[=p

0
a

Euclidean Distance Fit

iiiD ppap −= ˆ),(ip

ip̂

ip̂ is the point on the ellipse that

is nearest to ip

0),ˆ( =apif

is normal to the ellipse at ii pp −ˆ
ip̂

Compute Distance Function

Computing the distance function is a constrained optimization

problem:
2

ˆ
ˆmin ii

i

pp
p

− subject to 0),ˆ( =ap
i

f

Using Lagrange multiplier, define:

),ˆ(2ˆ),,(
2

appp iii fyxL λλ −−=

Then the problem becomes: ),,(min
ˆ

λyxL
ip

Set 0=
∂

∂
=

∂

∂

y

L

x

L
we have ),ˆ(ˆ appp iii f∇=− λ

where T

i yx ],[ˆ =p

Ellipse Fitting with Euclidean Distance

Given a set of N image points 

find the parameter vector such that

T

iii yx ],[=p

0
a

∑
= ∇

N

i i

i

f

f

1
2

2

),(

),(
min

ap

ap

a

This problem can be solved by using a numerical nonlinear 

optimization system.


