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Linear Equations

A system of linear equations, e.g.
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can be written in matrix form:
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or in general:
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Vectors
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The length or the norm of a vector is
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Vector Arithmetic
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Vector addition

Vector subtraction

Multiplication by scalar
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Dot Product (inner product)
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Linear Independence

• A set of vectors is linear dependant if one of 
the vectors can be expressed as a linear 
combination of the other vectors.

• A set of vectors is linearly independent if 
none of the vectors can be expressed as a 
linear combination of the other vectors.
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Vectors and Points

Two points in a Cartesian coordinate system define a vector

P(x1,y1)

Q(x2,y2)

x

y
v










−

−
=

12

12

yy

xx
v

P(x1,y1)

Q(x2,y2)

x

y
v

A point can also be represented as a vector, defined by the point

and the origin (0,0).
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Note: point and vector are different; vectors do not have positions

Matrix

A matrix is an m×n array of numbers.
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Matrix Arithmetic

Matrix addition
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baBA
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Matrix multiplication
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Matrix transpose
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Matrix multiplication is not commutative

Example:
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Symmetric Matrix

We say matrix A is symmetric if

AA
T =

Example:
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A symmetric matrix has to be a square matrix

Inverse of matrix

If A is a square matrix, the inverse of A, written A-1 satisfies:

IAA =−1 IAA =−1

Where I, the identity matrix, is a diagonal matrix with all 1’s

on the diagonal. 
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Trace of Matrix

The trace of a matrix:
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Orthogonal Matrix

A matrix A is orthogonal if

IAA
T = 1−= AA
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Matrix Transformation

A matrix-vector multiplication transforms one vector to another
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Example:

Coordinate Rotation
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Eigenvalue and Eigenvector

We say that x is an eigenvector of a square matrix A if

xAx λ=

λ is called eigenvalue and      is called eigenvector.

The transformation defined by A changes only the

magnitude of the vector x

Example:
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Properties of Eigen Vectors

• If λ1, λ2,…, λq are distinct eigenvalues of a 
matrix, then the corresponding eigenvectors 
e1,e2,…,eq are linearly independent.

• A real, symmetric matrix has real eigenvalues
with eigenvectors that can be chosen to be 
orthonormal.
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Least Square

When m>n for an m-by-n matrix A, bAx = has no solution.

In this case, we look for an approximate solution.

We look for vector      such that x

2
bAx −

is as small as possible.

This is the least square solution.

Least Square

Least square solution of linear system of equations

bAx =

bAAxA
TT =

AA
T is square and symmetric

bAAAx
TT 1)( −=

Normal equation:
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The Least Square solution

makes minimal.
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Least Square Fitting of a Line
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The best solution c, d is the one that minimizes:
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Line equations:

yAx =

Least Square Fitting - Example

x

y

P1=(-1,1), P2=(1,1), P3=(2,3)

Problem: find the line that best fit these three points:

Solution: 
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SVD: Singular Value Decomposition

T
UDVA =

An m×n matrix A can be decomposed into:

U is m×m, V is n×n, both of them have orthogonal columns:

IUU
T =

D is an m×n diagonal matrix.
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Example:
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