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Abstract

Separation of object foreground from background
is used in 3D model creation and matting in video
production. Robust background subtraction tech-
niques that function in uncontrolled lighting environ-
ments would be useful for many applications. We in-
troduce a method using bi-tonal self-identifying pat-
terns as a background that can be used to recognize
the foreground object despite the background inten-
sity and colour being non-uniform across the image.
Detected pattern points are used to sample the black
and white colour levels in several image points. A
surface is fitted to both the black and white colour
levels allowing an estimated background image to be
created. The background image is then subtracted
from the original image to isolate the foreground ob-
jects. The method of using self-identifying patterns
also provides the camera-pattern pose for use in 3D
model creation. A visual hull 3D model can be cre-
ated by identifying the outline of an object from sev-
eral known camera poses. Examples of this method
applied to both matting and 3D model creation are
given. Experimental results are shown.
Keywords: background subtraction, 3D modeling,
space carving, self-identifying markers

1 Introduction

Many imaging and graphics applications require seg-
menting foreground object from background pixels in
an image or video. This problem is called matting in
the film-making industry and keying in video pro-
duction. In image processing, this problem is often
referred to as background subtraction. Studios take
great care to attempt to create a uniform background
so that image pixels can be trivially segmented by
thresholding their difference from a set colour. This
uniformity of background pixels is not easy to achieve
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outside a studio.

A segmented image is useful for 3D model con-
struction. A visual hull 3D model can be created
by identifying the outline of an object from several
known camera poses [6]. 3D modeling can be per-
formed by space carving if the pose is known and
the image is segmented into object and background
pixels.

Figure 1: 8D model construction: A set of images are
captured from different angles to automatically create
a visual hull model. The background is a planar array
of self-identifying markers (ARTag markers). The
pattern-camera pose is calculated for each frame.

To address both the background subtraction and
camera pose determination problem, a background
pattern of self-identifying patterns can be used.
Points in the image where part of this pattern is de-
tected with a high level of confidence can be used to
create surfaces to estimate the variation across the
image. We use a bi-tonal pattern, consisting of just
black and white sections. A surface of the RGB ap-
pearance as a function of image coordinates is cre-
ated for both black and white pattern shades, this
is used along with knowledge of the full pattern to
create what that background would look like in the
absence of the object. This estimated background
image is then subtracted from the original image to
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produce a foreground /background mask image (com-
monly communicated as an alpha channel).

The background pattern is an array of self-
identifying ARTag markers which provide pattern-
image point correspondences used to calculate
the camera-pattern pose. This allows the fore-
ground/background mask to be used to carve out
3D voxels to create a visual hull.

The 3D modeling can be done as simply as in
Fig. 1 where a set of digital camera images are cap-
tured from different angles of the object or scene on
the self-identifying background. The user does not
need to measure where the images are taken from,
knowledge of the camera parameters (focal length
only in our experiments) is all that is needed along
with the images to create a 3D model.

Examples are shown for both the image mat-
ting and 3D model making applications of using self-
identifying pattern backgrounds.

2 Previous Work

2.1 Background subtraction

Background subtraction techniques fall into two
groups. One group works with a known or con-
trolled environment and the other group works on
images with natural scenes. Among the techniques
in the first group, blue-screen matting is the old-
est and most used method, especially in the film-
making industry. Smith and Blinn [12] gives a good
description and analysis of this previously considered
“black art”, which involves experienced users to tune
a few parameters. In particular, they provide an ef-
fective solution in which the background consists of
two shades of colour. Their method, however, re-
quires two shots of the scene, one for the background,
one for the background with the subject. Qian and
Sezan [9] also pre-shoot the background and com-
pute the difference between the background image
and the image with the subject. They apply diffu-
sion techniques to improve the boundary areas.

The work on natural image matting has concen-
trated on estimating the probability of each pixel to
decide whether it belongs to the background or the
foreground. Ruzon and Tomasi [10] and Chuang et
al. [1] demonstrate good results by using a Bayesian
approach. More recently, Sun et al. [13] propose to
use the gradient of the alpha channel and solve a
Poisson equation to estimate the foreground and the
background. All these methods rely on the user to
carefully specify a trimap—regions that belong to
the background, regions belong to the foreground,
and region that is unknown.
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2.2 Model building

Many systems have demonstrated the capability of
constructing 3D models from multiple images. In
this application, one not only needs to extract the
foreground subject from the image, but also needs
to decide the poses of the cameras. In a recent work,
Matusik et al. [8] uses a plasma monitor displaying a
two-coloured background. They pre-record the mon-
itor image and then put the subject on a turntable
in front of it. A commercial software package from
Canon [2] uses a circular pattern to calculate the
camera poses. They rely on controlled uniform back-
ground and the user editing to separate the object
from its background. The object has to be elevated
above the self-identifying pattern and the user must
manually select and reject images with incorrectly
determined foreground outlines.

Our system is similar to the Canon software,
which uses a self-identifying pattern to decide the
camera poses. However, unlike previous methods
that require pre-recording of background or user as-
sistance we extract the subject from the background
and determine the camera poses automatically.

2.3 Self-identifying patterns: ARTag

Self-identifying patterns are special marker patterns
that can be placed in the environment and automati-
cally detected in camera images. Also known as fidu-
cial marker systems, a library of these patterns and
the algorithms to detect them help to solve the corre-
spondence problem. Self-identifying marker systems
such ARToolkit [4] and ARTag [3] are typically used
for applications such as calculating camera pose for
augmented reality and robot navigation.

The ARTag self-identifying pattern system was
employed in our system as a background, objects
would be imaged in front of a planar background
pattern of ARTag fiducials at known locations. The
patterns are used for two purposes; it is used to reli-
ably identify which image points belong to the back-
ground, and to calculate camera pose for 3D model
reconstruction.

ARTag was chosen because of its availability (can
be downloaded from! and added to user programs),
its robustness to lighting variation, its very low false
positive detection rate, and its very low inter-marker
confusion rate (falsely identifying the marker ID).
ARTag fiducials are square planar bi-tonal patterns
which have a square border and internal 36 bit digital
pattern (Fig. 2).

Iwww.artag.net
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Fig. 2 shows the markers being automatically lo-
cated in an image. ARTag has some robust features
that allow it to detect markers when partly occluded,
however this ”incomplete marker detection” can be
turned off so that only complete background markers
are used as sample background points.

1823

Figure 2: ARTag self-identifying patterns. ARTag
markers are bi-tonal planar marker patterns consist-
ing of a square border and a 6x6 interior grid of cells
representing logic 1’ or ’0°. (Top) 12 out of the li-
brary of 2002 markers are shown. (Bottom)ARTag
self-identifying markers located in the image. The
ID and sub-pizel location of the four corners are pro-
vided for each marker located, they are overlaid on
the image with a quadrilateral and ID number in this
image for visualization of the marker detection stage.

3 Approach

The foreground can be separated from the back-
ground using background subtraction. If the back-
ground could be estimated despite variations in its
appearance, due to lighting, then similar results may
be achieved outside the controlled lighting of a stu-
dio.

Our method uses known points in the background
to create a surface for each colour channel. To auto-
matically identify the background, a self-identifying
pattern of ARTag markers is employed. The detected
ARTag marker points are used to calculate the pat-
tern to image homography which is used in creating
the estimated background for each image. The pro-
jection matrix is also calculated for each image and
used to space carve a 3D model.
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4 Background Sampling

The background pattern is bi-tonal (two shades of
colouring on the pattern surface), however there will
likely be variation in the RGB value across the image
of the same background shade. Several samples are
taken across the image and used by the procedure of
Section 5 to estimate the RGB value at other points
in the image. Since our pattern is bi-tonal this is
performed twice, one surface is generated for white
and one for black.

The ARTag markers have a very low false positive
detection error rate so it is robust to use points inside
the marker to sample the RGB value (Fig. 3). In our
experiments 50-100 points are found for each shade
for each image.

Figure 3: Sampling of background points. Points in-
side the ARTag markers are known to belong to the
background. Samples of the RGB values are taken
for points corresponding to white and black points
in the ARTag marker. White samples are shown
as white crosses, black samples are shown as white
dots. Only completely unoccluded markers are used
for sampling.

5 Lighting Approximation

Different points on the pattern surface receive differ-
ent lighting. The intensity and colour of the light
reflected from different parts of the surface may vary
greatly. In order to reconstruct the image of the pat-
tern with similar lighting conditions as the original
image, we need to know the lighting conditions on
the surface of the pattern. At the sample points, we
record the RGB values at these locations. We esti-
mate the image appearance on the entire surface of
the pattern by interpolating the sampled data.
Assume we have a set of m sample points
P, P,,...,P,. Let the pixel coordinate of each point
P; be x; = (ui,v;), and let the the RGB values of the
pixel at P; be (7, 9:,b;). We want to find three bi-
variate continuous functions f,, f,, and f, such that
ri = fr(ui,vi), 9i = fo(ui,vi), and b; = fy(us,vi).
This is a typical scattered data interpolation prob-
lem. This problem arises from many fields in science
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and engineering and there are many solutions.

Lee et al. [7] uses B-splines to approximate irreg-
ularly sampled image data to solve the image warp-
ing problem. B-spline offers great smoothness and
efficient evaluation. However, it relies on determin-
ing many variables including the degrees, the knot
vectors, and the control points. The least square
fitting is often ill-conditioned when data points are
clustered.

In this work, we use natural neighbour interpola-
tion [11]. The basic idea of natural neighbour inter-
polation is to compute the value of the interpolat-
ing function at a point based on a weighted average
of the data values of its neighbouring points. The
method pre-process the input data by constructing
a Voronoi diagram of these points. The Voronoi di-
agram, which is the geometric dual of Delaunay tri-
angulation [14], subdivides the image plane into dis-
joint cells, each corresponding to a data point and
containing the points in the plane that are closer to
this point than any other data points. When eval-
uating the value of a new point, we first insert the
new point into the Voronoi diagram to compute its
own new cell. The intersection of the new cell with
the old cells results in a set of convex polygons. The
areas of these polygons represent the contributions
of these neighbouring points to the new points. The
function value of the new point is computed as the
weighted average of the values of the neighbouring
points—weighted by the areas.

A natural neighbour interpolant can be made C?!
continuity by estimating the gradient at each data
points. It is a more robust method than the B-spline
fitting method because it uses only area averages. Its
use of area averages also avoids the unpleasant effect
caused by clustered data points, a situation that may
happen in our application.

Our sample points are all lying in the interior of
the image. Therefore, the interpolated function is
only defined on the convex hull of the sample points.
As we need to provide the estimation for entire im-
age, we extrapolate the interpolated function to the
boundary of the image. We do this by including the
four corners of the image and use the colour value of
the points that are nearest to them for the interpo-
lating values.

Fig. 5(a) shows the sample points and their colour
values from the image in Fig 4(a). Fig. 5(b) shows
the interpolated function plotted as a surface.
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6 Background Reconstruction

6.1 Homography and projection ma-

trix calculation

Let X = [X Y Z 1]" be a point in 3-space and x =
[z y1]T be its image. Then they can be related by

ax = KR t]X = PX, 1)

where R is a rotation matrix, t is a translation vec-
tor, and a is an arbitrary constant. The projection
matrix P is required for the 3D modeling. K is a
3 X 3 matrix containing camera intrinsic parameters

fu s wo
K= 0 fv Vo
0 0 1

where f, and f, are the focal lengths, s is the skew
factor, and (ug,vo) is the principal point.

We assume the pattern lies in the Z = 0 plane in
the world coordinate system. Then

X
= K[l‘]_ T2 t] Y
1

X
ax = K[r; ra rg t] }6
1

A point x = [zy1]" on the pattern is related to its
image x' = [2'y’'1]" by a homography H, ax’ = Hx,

where
H= K[l‘l I t] (2)

The homography matrix H can be solved by us-
ing four or more pairs of matching points. Let
h = [hlla h12a hl3s h21a h22a h231 h31, h327 h33]T7 the
homogeneous equation x’ = Hx can be written in

the form
Ah=0 3)

where each matching pair of points x} <> x; makes
two rows of the matrix A:

Uk T I T
OT _)g’i e T ]
) :
x; 0 —Z;X;

If we have n matching points, the matrix A is 2n x 9.
By constraining ||h|| = 1, equation 3 can be solved
by singular value decomposition. The solution is the
eigenvector of AT A with least eigenvalue [5].

Once the homography H is determined, the full
rotation matrix R can be estimated from r; and rs.
The projection matrix P can then be found from
Eqn. 1.

In our experiments we assumed K to be constant
across the sequence, the center of projection (uq,vo)
to be the image center, and the skew factor s to be
Zero.
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(a)

(©)

Figure 4: Approximating lighting conditions. (a) Original image; (b) Light intensity estimation using samples
from the white points; (c) Reconstructed the pattern image.

(a)
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(b)

Figure 5: Sample data and the interpolation function plotted as a surface.

6.2 Binary pattern

For each image I;, the homography H; is used to
create a binary image of the background. The self-
identifying pattern is an array of ARTag markers in
known positions and a binary image is created for
it. H; is used to map this over to line up with the
camera view as shown in Fig. 6.

6.3 Background reconstruction

The binary image from Section 6.2 above describes
for each image pixel whether it would have a black or
white shade assuming no foreground objects. This is
used to obtain an RGB pixel from either of the two
surfaces created by the method of Section 5. Per-
forming this for each pixel yields the estimated back-
ground image, this is the estimate of what the cam-
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Figure 6: (Left) Original image. (Right) Binary im-
age of background converted to line up with the cam-
era view with the homography calculated using the
self-identifying pattern. (Right) shows what the pat-
tern would be from that viewpoint despite occluding
objects.
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era would have seen had the foreground objects not
been present. This is analoguous to having captured
two images without moving the camera, one with
the objects present and one with them absent. Ex-
amples of estimated background images can be seen
in Fig. 4(c)(right) and in the second row of Fig. 7.

6.4

Simple image subtraction can be performed between
the original image and estimated background, with
the result thresholded to produce a binary mask im-
age. This mask image was filtered with the erode and
dilate morphological operators to produce a cleaner
mask image. The mask image is bi-tonal and each
pixel simply indicates if it belongs to the object or
background.

Background subtraction

7 Results and Applications
7.1 Model building

3D models of objects were created with our system
by capturing a set of images with varying viewpoints
with the self-identifying pattern background. The
ARTag planar array allows the projection matrix to
be calculated (for a calibrated camera). From each
camera image, the mask image and projection matrix
is calculated. These are used to carve out a voxel
space to create a 3D model.

Four experiments are shown, an object or scene
set on the ARTag array and a set of images were
taken without moving the object or adjusting the
camera zoom. The experiment was performed in a
room with diffuse lighting to avoid hard shadows.
Fig. 7 and Fig. 8 show the results, each 3D voxel
model was generated from 14 to 19 colour images of
resolution 640x480 pixels using a Canon PowerShot
S60 consumer digital camera. The focal length and
aspect ratio was measured of the camera (complete
calibration to find the image center and radial dis-
tortion, etc was not performed).

Fig. 7 shows a 3D model generated of a vase along
with the stages of processing for 2 of the 14 im-
ages. The ARTag patterns are detected and white
and black sample points found which are known to
be from the background. The white and black levels
are then estimated for the image and used to create
an estimated background which is subtracted from
the original image using the euclidean distance of
the RGB points. This greyscale difference image is
thresholded to produce a binary image. Morpholog-
ical operators were applied to clean up this binary
image; one iteration of dilation, followed by two it-
erations of erosion, and finally by a single iteration
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Figure 7: Stages of 8D model creation. Vozel model
(bottom) generated from 14 views, two of these im-
ages are shown (left and right columns). The stages
are; original image (top), estimated background (2nd
down), difference image (3rd down) and the binary
mask. The visual hull model is created from space
carving of the vozels from binary masks from the 1/
image.
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of dilation produced the mask image used to carve
out the voxel space. The projection matrix was cal-
culated for each image using the ARTag pattern.

Figure 8: Three more examples of model making. In-
put images (left column) were 6402480 from a con-
sumer digital camera. 15 image were used for the tea
bozes scene (top), 18 images for the clown (middle)
and 19 for the pumpkin (bottom). All images taken
were used, none had to be manually removed from
the set. 3D models (right column) have some holes
where the object colour too closely matched the white
or black from the background pattern.

The voxel space was carved simply by projecting
each voxel center point into each of the mask im-
ages and removing those voxels that projected to a
background pixel (black pixels in the mask images in
Fig. 7). This results in a visual hull voxel model of
the object.

There are some errors caused by when sections
of the object have a similar colour to pixels in the
background pattern, causing the binary mask to have
gaps which create holes in the 3D models.

This demonstrates the feasibility of this back-
ground subtraction technique using self-identifying
patterns, however future work is needed to carry this
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toward the goal of a system for creating 3D models
useful for public use. Computer animators, game de-
velopers, etc expect a 3D texture mapped mesh that
is not just the visual hull. Further voxels can be re-
moved using photo-consistency methods and/or the
voxel model can converted into a 3D mesh or NURB
surface description that can be refined to best fit to
the input image set.

7.2 Image composition

Our background subtraction technique can be used
for making composite images as show in Fig. 9. The
“holes” in the binary mask image occur when sub-
ject pixels have the same colour as the estimated
background pixels, this was more of a problem with
the human subjects than with the objects of Section
7.1 because of a similar shade of black existing in
both the pattern and the people. Future work to
improve this could involve using connectivity to re-
move holes in the main object, or using calours other
than white and black for the self-identifying pattern
background.

8 Conclusions

We have presented a method for segmenting fore-
ground and background in an image and demon-
strated its usefulness by applying the technique in
two applications; building 3D models from multi-
ple images, and image compositing. From an im-
age of the subject in front of a planar array of self-
identifying patterns (ARTags markers), our system
separates the background and the subject automat-
ically. The ARTag markers also relate the feature
points in the images to their corresponding points
in the pattern, resulting in automatic determination
of the camera pose for each image. Therefore, 3D
models can be created from voxel space carving.

The key to the success of our background sub-
traction system is that we estimate the lighting con-
ditions on the surface of the pattern by interpolating
samples from the ARTag feature points. This allows
us to reconstruct the image of the background pat-
tern under uncontrolled lighting conditions.

Our research suggests several intriguing direc-
tions for future work. One extension to the current
system is to apply more sophisticated statistical tech-
niques like the one suggested by Chuang et al. [1] to
refine the boundaries between the subject and the
background. Another possible extension is to make
the algorithm run in real-time so that it can be used
in online video matting applications.
Acknowledgements:
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Figure 9: Image composition.
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