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Abstract

We propose a posture invariant surface descriptor for
triangular meshes. Using intrinsic geometry, the surface
is first transformed into a representation that is indepen-
dent of the posture. Spin image is then adapted to derive
a descriptor for the representation. The descriptor is used
for extracting surface features automatically. It is invariant
with respect to rigid and isometric deformations, and robust
to noise and changes in resolution. The result is demon-
strated by using the automatically extracted features to find
correspondences between articulated meshes.

1. Introduction
Surface meshes obtained through active and passive 3-D

sensing such as range scanning, structured-light projection,
and stereo have increasingly become a new media for rep-
resenting the 3-D shapes of the real-world objects. In prac-
tice, we need certain processing techniques that are simi-
lar to what can be found in image processing. Automati-
cally extracting and corresponding prominent surface fea-
tures are examples of these techniques that arise in various
applications such shape correspondence [23], object recog-
nition [10], and segmentation [11].

Existing methods that extract large numbers of features
based on the geometry of a surface are not invariant with
respect to significant non-rigid deformations. Hence, fea-
tures extracted for different poses of an articulated object
do not correspond to the same intrinsic locations. In this
paper, we consider the problem of posture invariant surface
description and feature extraction. We derive a posture in-
variant surface descriptor and use it to extract features. This
way, we can extract large numbers of features for meshes
with significant articulation. Note that these corresponding
features can be used to find dense point-to-point correspon-
dences between articulated shapes [23].

More precisely, this paper proposes a descriptor that is
invariant with respect to rigid and isometric transformations
of an triangular manifold mesh S. A transformation of S is
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isometric if and only if all of the lengths measured on S are
preserved. Isometric transformations are relevant in prac-
tice because the locomotions of humans and many animals
are approximately isometric.

The basic idea is to first map different shapes into a
space in which the postures of the same shape under isomet-
ric transformations have similar representations. Feature
extraction can subsequently be performed on the posture-
invariant representation. One approach for this is to map the
intrinsic geometry of S into R3 using Multi-Dimensional
Scaling (MDS). This mapping removes the non-intrinsic
shape variations and thus obtains a posture-invariant rep-
resentation known as a canonical form [7].

To obtain a posture invariant descriptor, we propose to
use a novel modification of the Spin image [10] computed
on the canonical form of S. A spin image is a rotation-
invariant surface descriptor that is obtained by projecting
part of the surface into the local coordinate system of a ver-
tex. By varying the projection area, it is possible to control
the descriptor continuously from local to global.

Spin images are defined on oriented points, which are
3-D points with surface normal. However, the canonical
form obtained through MDS does not preserve the surface
orientation. We will show, in Section 3.3, that Spin images
can be modified to allow their use on non-oriented surfaces.

Finally, we extract features on S by finding the vertices
of S that have the most unusual descriptors. We demon-
strate that the proposed feature finder is robust to surface
noise and change of resolution. We also validate the ap-
proach by finding corresponding features between pairs of
poses of articulated models.

2. Related Work
This section reviews approaches that describe a surface

locally. First, we review approaches that are suitable for
large posture change. Katz et al. [11] proposed to extract as
feature points vertices that correspond to local maxima of
the average geodesic distance function and that are located
on the convex hull of the canonical form [7]. They used
these feature points to compute a posture invariant segmen-
tation. Due to the restriction that only vertices on the con-
vex hull of the canonical form are selected, this approach
can only extract features that are tips of prominent com-
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ponents. Furthermore, no special care is taken to address
possibly self-intersecting canonical forms. While this suf-
fices to compute a segmentation, applications such as shape
recognition or shape correspondence require more features.
Tierny et al. [17] developed shape signatures to locally de-
scribe patches of the shape. The approach uses the Reeb
graph to decompose a shape into patches (disks and annuli)
and maps each patch to a plane in a canonical way. The sur-
face is described by the amount of stretch required to map
the patches to their canonical shape in the plane. Note that
not every vertex has a descriptor. Hence, this approach can-
not be used to extract features. Hilaga et al. [9] proposed a
descriptor based on the average geodesic distance function
on a surface. Zhang et al. [22] used this descriptor com-
bined with Reeb graphs to find features. However, they did
not show that the approach is suitable for posture invariant
feature extraction.

Second, we review approaches that allow for restricted
posture change. Gelfand et al. [8] proposed a surface de-
scriptor based on local volume. Hence, this descriptor is
invariant with respect to deformations that locally main-
tain the volume. Gelfand et al. did not demonstrate that
the descriptor is posture invariant with respect to any de-
formation in practice. Zaharescu et al. [20] recently pro-
posed a descriptor that can incorporate both geometric and
photometric information. The descriptor is an extension of
SIFT [14] in that it uses a scale space. Although the de-
scriptor is applied to compute the correspondences between
two non-rigid objects, all of the illustrated deformations are
small. The descriptor proposed in this paper is applied to
models with large deformations.

Third, we review approaches that can be adapted to al-
low for posture changes. Note that none of the following
approaches allows for posture changes in its current form.
Zhang and Hebert [21] computed a descriptor by comput-
ing a local parameterization of a surface patch using har-
monic maps. The harmonic map is then transformed to an
image by giving each pixel a color corresponding to the
mean curvature at the corresponding surface point. Sun
and Abidi [16] proposed a descriptor that projects geodesic
contours at a vertex p to the tangent plane at p. While the
geodesic contours are posture invariant, the orientation of
the tangent plane at p is not.

3. Surface Descriptor
This section outlines a surface descriptor that is invari-

ant with respect to rigid transformations and isometric de-
formations. Suppose S contain n vertices. Denote a vertex
of S by p and denote the position vector of p by ~p. For each
vertex, we compute a descriptor that is posture invariant.
The descriptor at a vertex p of S is computed as a modifi-
cation of the Spin image at p of the canonical form of S. In
the following, we review canonical forms and Spin images.

3.1. Canonical Form

Elad and Kimmel [7] define the canonical form X of a
triangular manifold S as the mapping of S to R3, such that
the Euclidean distances between the mapped vertices ap-
proximate the geodesic distances between the original ver-
tices well. Let δ(p, q) denote the geodesic distance on S be-
tween two vertices p and qon S and let dX(p, q) denote the
Euclidean distance between the two points in X that corre-
spond to p and q. The canonical form of X is computed via
multi-dimensional scaling with the geodesic distances be-
tween vertices on the triangular manifold as dissimilarities.
That is, the canonical form is the embedding that minimizes
E =

∑
p,q∈S(δ(p, q)−dX(p, q))2. The canonical form has

the desirable property that it is posture invariant. Note that
the energy E is invariant with respect to translation, rota-
tion, and reflection of X .

We use fast marching [12] to compute geodesic distances
on S. We then use least-squares multi-dimensional scal-
ing [2, p.146-155] to compute the canonical form in R3.
For increased space efficiency, we compute the canonical
form using a coarse-to-fine strategy as outlined by Wuhrer
et al. [19]. The approach by Wuhrer et al. consists of two
steps. First, n′ vertices of S are used to compute a canonical
form at low resolution. Second, the remaining vertices of S
are added to the canonical form one by one by minimizing
a least-squares energy function.

The canonical form X of S is a set of vertices in R3. We
can enhance X by adding the edges and triangles present
in S to their corresponding vertices in X . This yields a
possibly self-intersecting triangular manifold mesh. On this
mesh, we can estimate the normal at a vertex p as the aver-
age of the normals of the faces incident to p. In the follow-
ing, when referring to X , we refer to this mesh. Since X
is invariant with respect to reflections, the orientation of the
normal of X at p is ambiguous.

3.2. Spin Image

Johnson and Hebert [10] define the Spin image of an ori-
ented triangular manifold S at a vertex p as an image ob-
tained by projecting part of S into a local coordinate system
defined by the surface normal ~n(p) at p. The projection of
a point q to the Spin image of p uses a reminiscent of cylin-
drical coordinates. That is, the x-coordinate of the Spin
image corresponds to the distance from q to the line in di-
rection ~n(p) passing through p and the y-coordinate of the
Spin image corresponds to the signed distance from q to the
tangent plane of p. It remains to define what part of S is
projected to the Spin image of p. This depends on three pa-
rameters: the width w of the (square) Spin image, the bin
size b of the Spin image, and the support angle α. A ver-
tex q of S is projected to the Spin image of p if and only
if ‖q − p‖ < wbr and ∠(~n(p), ~q − ~p) < α, where ‖q − p‖



denotes the Euclidean distance between q and q, r denotes
the resolution of the mesh, and ∠(~n(p), ~q − ~p) denotes the
angle between the two vectors ~n(p) and ~q − ~p.

Spin images have a variety of desirable properties. They
are invariant with respect to rotation, translation, and scal-
ing and robust with respect to noise and clutter. By adjust-
ing w or b, Spin images can go from a local representation
at p to a global representation of S.

3.3. Descriptor

We combine canonical forms and Spin images to ob-
tain a surface descriptor that is invariant with respect to
rigid transformations and isometric deformations. This
is achieved by eliminating posture dependence using the
canonical form X of S and by eliminating dependence on
rigid transformations using Spin images of X . That is, for
a vertex p of S, we use as descriptor a modification of the
Spin image of X at the vertex of X corresponding to p. We
next describe the modification of the Spin images.

Spin images are defined for oriented surfaces. However,
we wish to use Spin images of the canonical form X as sur-
face descriptors. Recall that orientation of normals onX are
ambiguous. By setting the support angle α to 180◦ and by
folding the Spin image along the median y-coordinate, such
that the y-axis corresponds to the unsigned distance, we can
eliminate the dependence on orientation. This is required
when using Spin images of canonical forms. Denote the
modified Spin image by folded Spin image. In the follow-
ing, we denote the folded Spin image of X at the vertex of
X corresponding to p with parameters b and w by Db,w(p)
and we use Db,w(p) as surface descriptor.

3.4. Dissimilarity

To extract features based on the surface descriptors,
we need to compare the surface descriptors Db,w(p) and
Db,w(q), where p and q are vertices of S. We use a dis-
similarity based on the normalized linear correlation coeffi-
cient R(Db,w(p), Db,w(q)) between Db,w(p) and Db,w(q)
as suggested by Johnson and Hebert [10]. The coeffi-
cient R(Db,w(p), Db,w(q)) takes values between −1 and
1. We define the dissimilarity d(Db,w(p), Db,w(q)) as
1 − R(Db,w(p), Db,w(q)). Note that d(Db,w(p), Db,w(q))
is always positive. The smaller d(Db,w(p), Db,w(q)), the
larger the similarity between Db,w(p) and Db,w(q).

3.5. Properties

The surface descriptor Db,w(p) has a number of desir-
able properties.

• Invariance with respect to rigid transformations since
folded Spin images have this property.

• Invariance with respect to isometric deformations
since canonical forms have this property.

• Can capture both local and global shape properties by
varying b and w.

• Robustness with respect to noise. Although canoni-
cal forms are not invariant to noise, we demonstrate in
Section 5 that features extracted using this descriptor
are robust with respect to small amounts of noise that
do not alter the global shape of the canonical form.
This is due to the use of multiple levels of folded Spin
images as outlined below.

• Robustness with respect to changes in the mesh reso-
lution. Although folded Spin images are not invariant
to the resolution of the mesh, we demonstrate in Sec-
tion 5 that features extracted using this descriptor are
robust with respect to changes in the mesh resolution.

4. Feature Extraction
This section introduces an algorithm to extract surface

features based on the descriptor introduced in the previous
section. We discuss a basic algorithm and its variant for
improved efficiency.

4.1. Basic Feature Extraction

We aim to extract features that are robust with respect
to noise and changes in resolution. When scalar surface
descriptors are considered, reducing sensitivity to noise is
often achieved using a scale-space representation [20].

The descriptor proposed in this paper is not a scalar func-
tion. However, since our surface descriptor can describe the
surface both locally and globally, we use m levels of Spin
images to make the feature extraction algorithm robust to
noise as follows. We start with a local descriptor computed
with bin size b (level zero) and gradually increase the bin
size of the descriptor to capture more global shape informa-
tion for higher levels. The descriptor at level i is Dib,w(p).

The approach extracts features in each of the m levels
independently and combines the features in different levels.
We extract k features in level i as the k vertices with the
most unusual descriptors Dib,w(p).

To find the vertices that have the most unusual descrip-
tors in level i, we use a modification of the approach by
Gelfand et al. [8]. We proceed in two steps.

First, we compute the descriptors at level i for all ver-
tices of S. Our goal is to efficiently compute a reminiscent
of a histogram of the descriptors based on the pairwise dis-
similarities d(Dib,w(p), Dib,w(q)), where p and q are two
vertices of S. Instead of computing a histogram in a high-
dimensional space, we compute for each vertex p the aver-
age of the dissimilarities between the descriptor of p and its



l most similar descriptors. Using an average of l most simi-
lar descriptors instead of the most similar descriptor makes
the approach more robust to noise. We set l =

⌈
n

100

⌉
in our

experiments.

Second, we extract as features the vertices with the
largest average values. These vertices have a descriptor that
is most dissimilar from its most similar descriptors. If two
vertices have the same average value, we cannot distinguish
them and we need to either extract both vertices as features
or none of them. Our algorithm repeatedly finds sets of fea-
tures that have the largest average value not yet considered.
We add the set to the feature set as long as the total num-
ber of features does not exceed k. Otherwise, the algorithm
terminates.

To avoid double-counting of features, when extracting
features, we do not accept a new feature that is located
within a 2-ring neighborhood of an existing feature.

In a last step, the features found over m levels are com-
bined as follows. A feature is reported if it was extracted in
at least two consecutive levels. That is, if p was extracted
as feature at level i and at least one vertex in 2-ring neigh-
borhood of p was extracted as feature at level i− 1 or level
i + 1, then we consider p to be a feature. As before, we
do not accept a new feature that is located within a 2-ring
neighborhood of an existing feature.

Finally, we analyze the running time for the feature ex-
traction. Since both m and k are constants, it takes on aver-
age O(n2 log n) time to extract the features.

Note that the feature extraction algorithm has the desir-
able property that if we extract a set F1 of k1 features and
if we extract a set F2 of k2 > k1 features using the same
parameters b, w, and m, then F1 ⊆ F2.

4.2. Sampling for Improved Efficiency

Computing folded Spin images of all of the vertices of
X at each level is time consuming. We therefore propose
to use only a sample set of the original vertices for feature
extraction. That is, we only consider a sample set P of n′′

vertices of S as possible features. This has the effect that we
only need to compute n′′ folded Spin images at each level.
Note that we do not change the resolution of S.

While this approach makes the algorithm more time effi-
cient, it produces results that are less accurate, thereby giv-
ing a way to trade off between time and accuracy.

In our experiments, we set n′′ = n′. This way, we only
need to compute one set of samples. When computing the
folded Spin image of a sample vertex v, we use the average
of all the normals on X corresponding to vertices in v’s 2-
ring neighborhood.

5. Results

The experiments were conducted on an Intel Pentium D
with 3.5 GB of RAM using a C++ implementation. The
cat models contain 7207 vertices and the horse models con-
tain 8431 vertices. Both data sets were created by Sum-
ner et al. [15]. The models of a female dancer and a male
dancer contain 3400 vertices and were created by Bronstein
et al. [5]. The models of a female dancer in a skirt were cre-
ated by Vlasic et al. [18]. We down sampled these models
to contain about 4000 vertices.

For the experiments in this paper, if each vertex is a pos-
sible feature, we set w = 10, b = 0.25, m = 5. If the
sampling strategy is used, we set w = 10, b = 0.25, and
m = 3. In all of the figures, features are shown in red.

5.1. Properties

We demonstrate the properties of using the proposed de-
scriptor for feature extraction. Namely, we demonstrate that
descriptor is robust with respect to non-rigid deformations,
Gaussian noise, and changes in resolution. We set k = 20.
For the following experiments, we do not use the sampling
strategy.

Figures 1 (top) and 2 show the effect of non-rigid defor-
mations of the mesh. Although the poses vary significantly,
similar features are found.

Figure 1. Top: Effect of non-rigid deformation model. Bottom:
Effect of the sampling strategy.

Figure 3 shows the effect of adding noise to the mesh.
We add random Gaussian noise to the model of a cat. The
noise has mean 0.005r (middle) and 0.01r (right), where r



Figure 2. Effect of non-rigid deformation model.

Figure 3. Effect of adding Gaussian noise to the model.

is the average edge length of the mesh. We can see that most
of the features are preserved.

Figure 4 shows the effect of changing the resolution of
the mesh. Although the proposed descriptor is not invariant
with respect to the resolution of the mesh in theory, we can
see that similar features are found for all resolutions. The
reason is the use of multiple levels of Spin images.

The bottom row of Figure 1 shows the features found for
the dancer model when using the sampling strategy. Note
that the features are similar to the ones shown in the top row
of Figure 1. With the sampling strategy, it takes about 39
seconds to extract the features for each of the poses. When
each vertex is considered as a possible feature, it takes about
140 seconds to extract the features for each of the poses.

5.2. Comparison

We compare the features extracted using our approach to
the features extracted by Katz et al. [11]. For our approach,
we set k = 60. For Katz et al., the number of extracted
features is fixed. We use qhull for the convex hull computa-
tion [1].

Figure 5 shows the features extracted on different poses
of a horse. The top row shows the result using our algorithm
and the bottom row shows the result using the algorithm by
Katz et al. While the features extracted by Katz et al.’s algo-
rithm are posture invariant, there are few features because
it only extracts features at extremities of prominent com-
ponents. That is, the algorithm cannot extract features on
joints of an animal. In the example shown in Figure 5, not
every extremity contains features. For instance, no features
are extracted on the front legs of the horse. In contrast, our
algorithm is able to extract many posture invariant features
located at extremities and joints of prominent components.

5.3. Application to Surface Correspondence

We validate our approach by computing correspon-
dences between the features extracted on articulated mod-
els. The correspondences between features can be used to
find dense point-to-point correspondences [23]. In all of the

experiments, corresponding vertices are shown in the same
color.

The correspondence is computed greedily by corre-
sponding the vertices with the most similar descriptor val-
ues. We compute the similarity between two feature points
by averaging the descriptor similarities between the two fea-
tures over all m levels. Furthermore, we compute the dis-
similarity between two features as the minimum dissimilar-
ity between descriptor values in a 2-ring neighborhood of
the features. If the most similar descriptor value is not sym-
metric for a feature, then no correspondence is assigned.

Note that this greedy correspondence is intended for val-
idation only. We do not intend to solve the correspondence
problem efficiently in this paper.

We first compute the correspondences for the horse
dataset with known ground truth. The experiment com-
putes the correspondences between the features extracted
on two pairs of poses. We set k = 60. Figure 6 shows the
feature correspondences that are obtained with and with-
out the sampling strategy. Note that not all of the features
are visible in this figure. Figure 7 shows the histograms
of the errors of the feature correspondences with respect to
the ground truth correspondences. The error is measured
as the number of edges on the shortest path between the
ground truth correspondence and the computed feature cor-
respondence. This error measure is suitable for nearly uni-
form meshes. Note that this means that errors obtained by
matching features to symmetric parts of the horse are po-
tentially huge. However, since a surface descriptor cannot
distinguish locally between symmetric parts, these symmet-
ric mismatches should not be counted as errors.

We discuss the results obtained with and without using
the sampling strategy. First, we discuss the results obtained
when all of the vertices are possible features. It takes about
10.5 minutes to compute the features for each of the poses.
For the pair of poses on the right, all but four of the mis-
matched features are matched to symmetric body parts. For
the pair of poses on the left, all but two of the mismatched
features are matched to symmetric body parts. Hence, the



Figure 4. Effect of changing the resolution of the model. The left model contains 14410 triangles, the model in the middle contains 5000
triangles, and the right model contains 1024 triangles.

Figure 5. Comparison. Top: Result of our algorithm with k = 60. Bottom: Result by Katz et al. [11].

accuracy of the computed correspondences is high.

Second, we discuss the results obtained when the sam-
pling strategy is used. It takes about 4 minutes to compute
the features for each of the poses. For the pair of poses on
the right, all but two of the mismatched features are matched
to symmetric body parts. For the pair of poses on the left,
all but three of the mismatched features are matched to sym-
metric body parts. The accuracy of the result is lower than
before, as can be seen in Figure 7. Furthermore, fewer fea-
tures are extracted when the sampling strategy is used.

All of the following experiments use all of the vertices
as possible features. Figure 8 shows the correspondences
between the features extracted with k = 20 on three pairs
of dancers. Note that all of the correspondences are ei-
ther close to the true correspondence or on symmetric body
parts.

Finally, we use the method to establish correspondences
between surfaces with similar, but not identical intrinsic ge-
ometry. Figure 9 shows the correspondences between the
features extracted with k = 20 on a male and a female
dancer. Although both models are humans, they are not
isometric to each other. Note that all but one of the cor-
respondences are either close to the true correspondence or
on symmetric body parts of the dancers. Figure 10 shows
the correspondences between the features extracted with
k = 60 on two female dancers wearing a skirt. Note that
the surface joining the skirt and the legs of the dancer moves
in a non-isometric fashion during the motion of the dancer.
The left of Figure 10 shows the front view of the pair of
dancers and the right of Figure 10 shows the back and side
view of the same pair of dancers. Note that most of the

correspondences are either close to the true correspondence
or on symmetric body parts of the dancers. Hence, the ap-
proach is suitable for surfaces with similar, but not identical
intrinsic geometry.

Figure 9. Correspondences.

6. Conclusion
This paper introduces a posture invariant shape descrip-

tor and applies it to feature extraction and feature correspon-
dence. The descriptor is invariant with respect to rigid and
isometric transformations and it is robust with respect to
noise and changes in mesh resolution. Furthermore, the de-
scriptor can describe the shape locally and globally.

The user can set the following parameters: the number
of features to be extracted, the bin size b, the width w, and
the number of levels m. We leave it for future work to find



Figure 6. Correspondences. Top: All vertices are possible features. Bottom: Sampling strategy is used.

Figure 7. Comparison to ground truth. Grey columns correspond to the poses in Figure 6(left). Black columns correspond to the poses in
Figure 6(right). Left: All vertices are possible features. Right: Sampling strategy is used.

the best b, w, and m automatically.
We leave the following limitations for future work.

• The descriptor is not suitable for surfaces with non-
Euclidean geometry. This limitation can be remedied
if prior knowledge about the surface’s intrinsic geome-
try is available by using generalized multi-dimensional
scaling [4].

• The descriptor is sensitive with respect to topologi-
cal noise because geodesics are used to compute the
canonical forms.

• For meshes with boundaries, many features are ex-
tracted along boundaries of the mesh because vertices
along a boundary have fewer close neighbors.

• The approach is not suitable for partial matching be-
cause two globally different shapes have different
canonical forms.
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