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3-D anthropometry data obtained from 3-D scanning technology provide detailed information about 

the human shape. However, due to the limitations of the sensors, such as field of view, lighting 

condition, and object self-occlusion, the raw 3-D data are usually noisy and incomplete. Much 

processing is necessary before they can be used for statistical analysis. In this paper, we present 

geometry processing tools for preparing the raw data for shape analysis. We show that these tools help 

extract useful information about the human shape.  

 

 

INTRODUCTION 

 

Recent 3-D anthropometry surveys, such as the CAESAR 

project, provide tremendous amount of information about the 

shape of the human body. Unlike traditional anthropometry 

data which consist of one-dimensional measurements, 3-D 

anthropometry data usually come from digitizing the surface of 

the human body and are typically represented as surface 

meshes. They are able to capture detailed shape information 

about the human body. However, due to the limitations of the 

optical sensors, for example, occlusion and lighting conditions, 

the raw 3-D mesh data are noisy and incomplete. Much 

processing is needed before any statistical analysis can be 

performed. In this paper, we present geometry processing tools 

for preparing the raw data for shape analysis. Most of these 

tools were developed in computer graphics, computer vision, 

and pattern recognition. We show here that they are effective 

in characterizing human shape for designing products that fit 

humans. 

The fundamental measurements of the 3-D anthropometry 

are the 3-D points represented as the x, y, and z coordinates in 

certain coordinate frames. These points represent the shape 

implicitly. However, different scans have different number of 

points and the points are not ordered in the same way. 

Performing statistical analysis requires a set of consistent 

measurements. In other words, we need to compare likewise 

measurements. This means that the data models have to be 

parameterized such that all of the models have the same 

number of points and points representing the same anatomical 

parts correspond to each other. Once we have a 

parameterization, multivariate statistics is applicable 

(Bookstein 1997, Dryden and Mardia 1998). 

An effective way of establishing a correspondence among 

all the models is to fit a generic surface model to each scanned 

model such that the key anatomical features are in 

correspondence. Some 3-D anthropometry surveys place 

landmarks on the subjects prior to the scan. These landmarks 

can be used to guide the deformation of the generic model to 

the scan. The problem can be formulated as a large-scale 

nonlinear optimization problem. Modern computer hardware 

and numerical algorithms allow us to solve this problem 

efficiently. 

Placing the landmarks prior to scan is a tedious and 

time-consuming task; not all 3-D anthropometry data contain 

landmarks. Fortunately, it is possible to locate the landmarks 

automatically. We present a method that is based on statistical 

learning. We use the landmark data in the CAESAR database 

as a training set. Local surface properties and distance between 

landmarks are used to learn the parameters of a probabilistic 

graphical model. The prediction of the landmark locations is 

formulated as finding the maximum likelihood configuration 

of the landmark labeling. An efficient technique called belief 

propagation is used to solve the optimization problem.  

 Finally, we perform principal component analysis (PCA) 

on the parameterized dataset. The main mode of variation of 

the whole body shape is analyzed. Since each model is 

parameterized by a template mesh, different body parts, like 

the head, arms, legs, and torso can be analyzed separately. We 

present PCA results on the segmented body parts. Through 

these analyses, we show that the space of the human body 

shape is spanned by a small number of basis vectors. 

Furthermore, the main mode of variations can be visualized 

through animating the shape changes along the PCA axes. 

 

 

DATA PARAMETERIZATION 

 

The goal of data parameterization is to establish a 

correspondence among the models. An early attempt to solve 

this problem adopts a volumetric approach (Ben Azouz et al. 

2003, Ben Azouz et al. 2006). Each model is embedded in an 

m x n x k regular grid. By carefully orienting and normalizing 

the models, a correspondence in the ambient space and thus a 

correspondence among the models is established. The 

advantage of this method is that it is landmark-free. It is also 

easy to implement. The drawback, however, is that the 



correspondence it produces is not accurate. Holes have to be 

filled before a model can be embedded into a grid. This proved 

to be a difficult task because certain parts of the model, for 

example, under the arms, have large holes. In some parts, like 

the hands and ears, up to 50% of the information is missing. 

A better approach is to fit a generic mesh model to each data 

scan (Allen et al. 2003, Mochimaru et al. 2000, Mochimaru et 

al. 2005). This model is complete and has well-shaped and 

well-distributed triangles. The fitting deforms the generic 

model to each scan such that the two models are made 

geometrically equivalent. When deforming the generic model, 

the correspondence between the anatomical parts has to be 

maintained. This is achieved by using landmarks, which serves 

as the initial conditions of the problem. When deforming the 

generic model, we have to be careful that the smoothness of 

the surface has to be maintained. Otherwise, the triangles can 

go into each other, causing invalid meshes and consequently 

leading to the failure of the deformation algorithm. 

Deforming a generic mesh smoothly to a data scan can be 

formulated as an optimization problem. Here, the variables we 

need to solve are the x, y, and z coordinates of the generic 

model. The initial solution can be simply the generic model. 

Given a solution, the cost function is defined by estimating the  

difference between the solution and the target data model. This 

includes three kinds of errors: (1) the landmark error, which 

accounts for sum of the distances between the known 

corresponding landmarks; (2) the smoothness error, which 

quantifies the local smoothness at every mesh points; and (3) 

the data error, which measures the sum of the distances 

between every pair of corresponding points. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Data parameterization process. (a) generic model; (b) 

original scan; (c) RBF deformation; (d) nonlinear fitting. 

 

A typical scan consists of 100,000 to 300,000 points. Thus, 

our optimization problem involves the solving of a large 

number of variables. As the problem is nonlinear, it is difficult 

to find stable solutions and the algorithm tends to be stuck in 

the local minima. Allen et al. suggested a multi-resolution 

approach where low resolution meshes are deformed before 

the high-resolution meshes. This method improves the 

efficiency and resolves some of the convergence problem, but 

it involves the hand setting of several parameters. Xi et al 

(2007) improved this method by first using Radial Basis 

Function (RBF) to deform the generic model to approximate 

the data model and then bringing the two models close 

together by the nonlinear optimization method of Allen et al. 

This simplifies the process and increases the speed by 50%. 

Fig. 1 shows the process of fitting a generic model to a scan. 

 

 

AUTOMATIC LANDMARKING 

 

In the CAESAR dataset, each scan contains 73 

anthropometric landmarks. Placing these landmarks involves 

palpating the subjects and requires special skills. The accuracy 

of the position varies between different operators. Furthermore, 

not all of the datasets have landmarks, and in the future, it is 

unlikely that a lot of 3-D anthropometry surveys will have 

landmarks data. 

Dekker et al (2001) attempted to locate the landmarks 

automatically. They define a set of rules for each landmark 

based on its local surface properties, such as curvature or 

distances to certain feature points. Then locating the landmarks 

becomes a classification problem. The problem of this 

approach is that the rules are based on intuitive observations. 

Because of the variations among humans, there are always 

exceptions and therefore the number of the rules quickly 

becomes too large to handle. More principled ways of locating 

the landmarks are necessary. 

Ben Azouz et al. (2006) introduced an approach that is 

based on statistical learning. They used a subset of the 

CAESAR dataset as a training set. A graphical probabilistic 

model is used to model the positions of the landmarks. A node 

of the graph represents a landmark and an edge of the graph 

represents the relationship between a pair of neighboring 

landmarks. Fig. 2 shows the graph of the landmarks. The 

probability of a surface point to be a particular landmark 

depends on the local surface properties as well as its 

relationships with other landmarks. These constraints are 

naturally modeled by Markov Random Field (MRF) or 

Markov network. In the training stage, the distributions of 

surface geometric properties such as the SPIN image (Johnson 

1997), and the relative positions of landmarks are computed. 

In the subsequent matching stage, landmarks are located by 

identifying the surface points that maximizes the joint 

probability defined by the Markov network. The probability of 

placing a landmark at a particular position depends on two 

types of information. One is the local surface property of that 

landmark. Another is the relationship to its neighboring 

landmarks. We use distance to measure this relationship. Both 

kinds of the probability distributions can be learned from the 

training data. We may also use geodesic distance. But since the 

landmarks are usually placed on the joints, the geodesic 

distance is usually proportional to the Euclidean distance. 

The probability optimization problem has a prohibitively 

large search space; exact computation is infeasible. An 

approximate method, called belief propagation, is used to solve 



this problem. Belief propagation is an efficient technique for 

solving large probabilistic optimization problem. When the 

graph has no loops, that is, when it is a tree, the solution is 

exact. When the graph has loops, we can only have an 

approximate solution. Our landmark graph contains loops. But 

in practice it works well. Fig. 3 shows the results of the 

predicted landmarks. On average, the algorithm predicts the 

landmark locations within 2.0 cm of the experts’ locations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Landmarks and landmark graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Results of automatic landmark locating. The 

green dots are the predicated location and the red dots are the 

landmarks placed by the human operators. 

 

 

 

PRINCIPAL COMPONENT ANALYSIS 

 

Having established the correspondence among all the 

models, we can perform statistical shape analysis. At this point, 

we have a set of parameterized models, each has the same 

number of points and the same mesh topology. The variables 

on which we perform statistics are the coordinates of the 

vertices on the meshes. A shape vector can be formed for each 

model and the mean vector and the covariance matrix can be 

computed. The eigenvectors of the covariance matrix form a 

basis of the shape space. This is the standard Principal 

Component Analysis (PCA) method. It transforms the data 

into a new coordinate system in which the modes of variations 

are ordered from large to small. The absolute values of the 

eigenvalues determine the significance of the corresponding 

variations (principal components). Many of them are 

negligible. It turns out that for full body and head fewer than 

50 principal components can explain more than 90% of the 

shape variability. 

 

VISUALIZATION 

 

One of the advantages of statistical shape analysis is that it 

provides intuitive visualization of the shape variation. Since 

we use a dense point set on the surface to perform PCA, each 

principal component can be visualized by an animation 

produced by varying the parameter of the component. Fig. 4 

shows the first 2 components.  

As the models are parameterized by a generic model, 

analysis can be performed on segments of the body. Fig. 5 

shows the results of the PCA analysis of the torso. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The first two principal components. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. First 3 components of the segmented analysis of 

the torso. 

 

 

 

CONCLUSIONS 

 

Processing 3-D anthropometry data requires special 

techniques in geometry processing. We have drawn tools from 

computer vision and computer graphics to solve the problem 

of correspondence. Statistical shape analysis reveals patterns 

of changes in the human shape. The detailed and intuitive 

visualization gives designers a powerful tool for making 

decisions. At the same time, these new tools also pose 

challenges. The PCA components do not always correspond to 

everyday measurements of shape changes. Effective use of 

them remains a research problem. 

A more challenging problem is analyzing human shapes in 

different postures. This allows the study of the human shape in 

dynamic environments. Again, the essential problem is 

establishing a correspondence among the models. Several 

authors have made some initial progresses in this area (Wuhrer 

et al. 2007, Anguelov et al. 2005, Bronstein et al. 2007)). 

However, much research remains to be done to find more 

robust and efficient algorithms. 
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