

Security Problems in Internet Routing Protocols

Tao Wan, Evangelos Kranakis, Paul Van Oorschot

Digital Security Group School of Computer Science Carleton University Oct 20, 2003

MITACS

Oct 20, 2003

Outline

- Introduction
- Routing Protocols & Vulnerability Analysis
- Countermeasures
- Our Approach
- Concluding Remarks

Introduction

An Example of Client/Server Communication

Internet Routing Infrastructures

AS: Autonomous System.

Compromise an end-user Computer (C)

- Eavesdropping (C to/from S, maybe A and B)
- Session Hijacking (C to/from S, but not A or B)
- Denial of Services (C)

Compromise a Router (R₁)

- Eavesdropping (A, B and C to/from S)
- Session Hijacking (A, B and C to/from S)
- Denial of Services

Compromise a Router (R₃)

- Eavesdropping (A, B and C to/from S)
- Session Hijacking (A, B and C to/from S)
- Denial of Services

Internet Routing Protocols & Vulnerability Analysis

Internet Routing Protocols

AS: Autonomous System.

Internet Routing Protocols

- Inter-domain Routing Protocol
 - Border Gateway Protocol (BGP)
- Intra-domain Routing Protocol
 - Routing Information Protocol (RIP)
 - Open Shortest Path First (OSPF)

Routing Information Protocol (RIP)

- G=(V, E)
- Distance vector routing protocol (v_i)
 - $[v_0, dist(v_i, v_0), nextHop(v_i, v_0)]$
 - $[v_1, dist(v_i, v_1), nextHop(v_i, v_1)]$
 -
 - $[v_n, dist(v_i, v_n), nextHop(v_i, v_n)]$
- Distributed Bellman-Ford algorithm
 - $\text{ dist}(v_i, v_j) = 0 \quad \text{ if } i = j$
 - $dist(v_i, v_j) = min\{dist(v_i, v_k) + dist(v_k, v_j)\} \qquad v_k ? nb(v_i)$
- Over UDP

An Example

RIP Vulnerabilities

- Null/weak authentication
 - RIPv1 (everybody can participate)
 - RIPv2 (system-wide password in plain text)
 - RIPv2 with MD5 (system-wide shared keys)
- Manipulating routing advertisements
 - make a distance shorter (*attract traffic*)
 - make a distance longer (avoid traffic)
 - Create loops

Joining a RIP domain without authorization

• A malicious node (M) may become a RIP peer by expoiting RIP vulnerabilities.

Shorter Distance Fraud

Longer Distance Fraud

Summary of Routing Vulnerabilities

- Routing Protocol Vulnerabilities
 - Lack of security services
 - *entity authentication*
 - message authentication or integrity
 - Weak Assumptions
 - nodes are trustworthy
 - Node are cooperative
- System Vulnerabilities
 - Software flaws
 - Other vulnerable protocols (SNMP, Telnet, HTTP, etc)
 - Misconfigurations

Countermeasures

Countermeasures

- Symmetric key mechanisms
 - System-wide shared keys
 - advantage: simple and efficient
 - disadvantage: no entity authentication, compromise one = compromise all
 - Pair-wised shared keys
 - advantage: entity authentication, efficient
 - disadvantage: key management is complex
- Digital Signatures
 - advantage: applicable to cross-domain
 - disadvantage: require public key infrastructures

What does crypto provide us

- Entity Authentication
 - What do you know (e.g., password, PIN, secret key)
 - What do you have (e.g., secure token)
 - what do you inherit (e.g., fingerprint)
- Data Integrity
- Confidentiality, etc

Weak Assumption by Crypto

- Compromising a computer = compromising K
- K can be read from disk or memory

What is the Problem

- A correctly signed message may contain false information
- A router with credentials may spread fradulent routing updates
- How to validate the *factual correctness* of routing updates ?

Our Approach

- Node Reputations
- Consistency Checks
- Accumulated Confidence
- Sized Window

Node Reputation

r_i(j, t_m): Node i's rating of node j's reputation at time t_m

$$r_i(j,t_m)? ? ? [c_i(j,t)?w(t)]$$

- c_i(j,t): a value calculated based on i's determination of the correctness of j's information at time t;
- w(t): a time weighting factor

 $c_i(j,t)$? $\begin{array}{c} ?0.5 \\ ? \\ ?0 \\ ?0 \end{array}$ if j provides consistent information at time t otherwise

$$w(t) ? \frac{1}{2^{tm?t?1}}$$

Node Reputation

• A new reputation can be computed from a previous one.

$$r_i(j,t?1)? \frac{r_i(j,t)}{2}? c_i(j,t?1) = 0? r_i(j)?1$$

- Examples:
 - Let $r_i(j,1)=0.5$; after providing an incorrect routing update, $r_i(j,2)=0.25$; $r_i(j,3)=0.125$
 - Let $r_i(k,1)=0.5$; after providing a correct routing update $r_i(k,2)=0.75$; $r_i(k,3)=0.875$

Node Reputation

Two thresholds (∠1, ∠2) divide reputation domain into three ranges, *low*, *medium*, and *high*.

Rules

- Rule 1 (*Low Reputation*): If 0 ≤ r_i(j) < ≤₁, node i will *ignore* a routing advertisement received from j without validating it. (*distrusted*)
- Rule 2 (*Medium Reputation*): If ≤ r_i(j) < ≤ r_i(j), node i will validate a routing advertisement received from j. (*on probation*)
- Rule 3 (*High Reputation*): If ∠ < r_i(j) ∠ 1, node i will accept a routing advertisement received from j without validating it. (*trusted*)
- Rule 4: Node reputation is periodically re-initialized with a value in the medium range.

Consistency Checks

- Use consistency to approximate correctness
- Check the consistency of an advertise route with those nodes that are informed of that route.

Consistency Checks in Other Contexts

- Paper Reviewing
- Reference Letters
- Intrusion detection by anomaly analysis
- Correlate sensor outputs in a distributed sensor network

Accumulated Confidence

• If nodes v₁, v₂, ..., v_n agree with each other on an advertised route, node i calculate its accumulated confidence in that route as :

$$\begin{array}{ll} ? r_i(v_1) & \text{if } n ? 1 \\ ? \\ r_i(v_{[1..n]}) ? ? ? r_i(v_1) ? [1 ? r_i(v_1)] ? r_i(v_2) & \text{if } n ? 2 \\ ? \\ ? \\ r_i(v_{[1..n ? 1]}) ? [1 ? r_i(v_{[1..n ? 1]})] ? r_i(v_n) & \text{if } n ? 2 \end{array}$$

Properties

- An entity with a reputation of 0 does not contribute to an accumulated confidence.
- An entity with a reputation of 1 increases an accumulated confidence to 1.
- The order by which entities to be consulted is of no significance.
- Consistent with Dempster-Shafer Theory of Evidence Reasoning

Sized Window

- A sized window starts with only one node, which is the originator of the advertised route to be validated.
- The window size keeps growing until:
 - the accumulated confidence in the corroborating group is greater than \mathbb{A}_2 ; or
 - all the informed nodes have been involved; or
 - disagreement arises

$$v_0 \qquad v_1 \qquad v_2 \qquad v_3 \qquad v_4 \qquad v_5 \qquad v_6 \qquad v_7$$

An Example - Secure RIP (SRIP)

- Prevent fraudulent routing updates from spreading
- Incremental Deployable
- Incremental Security
- Simulated in Network Simulator NS-2

Concluding Remarks

- "Abuse of the routing mechanisms and protocols is probably the simplest protocol-based attack available." Steven Bellovin, 1989.
- Securing routing infrastructures is a hard problem.
- Future work Study Border Gateway Protocol (BGP)

Acknowledgements

- MITACS
- OCIPEP
- Alcatel Canada

Thanks!