Location Awareness in Wireless Computing By Evangelos Kranakis School of Computer Science Carleton University ### Lots of Wireless Systems Wireless networks ranging from - Piconets, Bluetooth Networks (Home/Office Networks) - Sensor Networks - (Packet) Radio Networks - Cellular phone Networks - Satellite Networks are becoming all too pervasive in our everyday lives. ### Important Question: How do you navigate efficiently in such a wireless system? ### Location Awareness Paradigm An ideal wireless system should be infrastructureless! - Evolving wireless networks (adhoc, sensor) take advantage of location awareness of the hosts. - Wireless networking is made possible by tracking hosts' every movement. Lots of questions raised: from efficiency of wireless computing to privacy! # How do you find your location when traveling? Important problem in ship navigation! # Use longitude and lattitude Easy to find the lattitude! But the longitude? # Lets step back! The longitude problem's "who is who" - Werner, 1514 (Moon travels its diameter every hour) - Gallileo, 1610 (Suggestion to use Jupiter's moons) - Huygens, 1658 (Published the "Horologium") - Hooke, ≈ 1660 (Accuses Huygens he stole "spring" concept) - Digby, 1687 (Wounded dog theory and powder of sympathy) - Cassini, 1668 (Used Jupiter's moons) - Roemer, 1676 (Observations depended on speed of light) - St Pierre, 1678 (Use earth's moon plus select stars) - Fyler, 1699 (Identify 24 discrete rows of stars in sky) - Ditton+Whinston, 1713 (System of lightning and sound blasts) # The longitude problem's "who is who" July 15, 1714, Longitude Act: 20,000 pound prize for method to determine longitude to an accuracy of half a degree of a great circle. - Thacker, 1714 (Chronometer adjusted for temperature) - John "Longitude" Harrison (self-taught) - 1713 (Pendulum clock) - H-1 (Made with specially crafted "self-lubricating" wooden gears) - Flamsteed, 1725 (Published catalogue of stars) ### The Way it is today How do you discover a route from a source s to a destination t? - 1. s sends message to base station A. - 2. The public phone system transmits it to base station B. - 3. Base station B transmits it to t. ### Routing Data from s to t in a Wireless Ad-Hoc System How do you discover a route from a source s to a destination t through a maze of mobile devices (radios, mobile phones, PDAs, etc) and antenas? ### Power of the Signal and Connectivity The power of received signal is inversely proportional to the distance d between the receivers raised to some power a, i.e., $$P(d) = \frac{P_0}{d^a},$$ where P_0 is the power received at distance 1 from the transmitter. # **Equal Power Assumption!** To simplify things stations are assumed to have equal power! In the left picture A can reach B and B can reach A. In the right picture A can reach B but B cannot reach A. Later we will remove the equal power assumption! ### From Mobile Devices to Circles Looking at the power of received signal a group of circles is formed that determines network connectivity, i.e. who can reach whom! ### There are Other Factors Complicating Connectivity! More than one node may be transmiting to a given node t. Source Nodes Node i succeeds only if $$\frac{\frac{P(u_i,t)}{d(u_i,t)^a}}{N + \sum_{j \neq i} \frac{P(u_j,t)}{d(u_j,t)^a}} \ge \alpha$$ where α is a threshold value, and N is the noise level We ignore these factors! # Defining Location Awareness: The Neighborhood Graph The neighborhood graph $G_{\mathcal{S},\mathcal{P}}$ of a planar pointset P is determined by - 1. $(p,q) \to S_{p,q} \subseteq \mathbb{R}^2$, for $p,q \in P$. - 2. \mathcal{P} is a property on $\mathcal{S} := \{S_{p,q} : p, q \in P\}$. Graph $G_{\mathcal{S},\mathcal{P}} = (P, E)$: $(p,q) \in E \Leftrightarrow S_{p,q} \text{ has property } \mathcal{P}.$ ### Nearest Neighbor Graphs # Nearest Neighbor Graph (NNG): $(p,q) \in E \Leftrightarrow p$ is nearest neighbor of q. # k-Nearest Neighbor Graph (k-NNG): $(p,q) \in E \Leftrightarrow p \text{ is } k\text{-th nearest neighbor of } q \text{ or } q \text{ is } k\text{-th nearest neighbor of } p.$ # Relative Neighbor Graph (RNG) The lune $L_{p,q}$ of p and q is the intersection of the open discs with radius d(p,q) and centered at p and q, respectively. $(p,q) \in E \Leftrightarrow \text{the lune } L_{p,q} \text{ does not contain any point in the pointset } P.$ # Gabriel Graph (GG) $(p,q) \in E \Leftrightarrow \text{the disc centered at } \frac{p+q}{2} \text{ and radius } \frac{d(p,q)}{2} \text{ does not contain any point in the pointset } P.$ # α -Gabriel Graph (α -GG) Assume $1/2 \le a \le 1$. $(p,q) \in E \Leftrightarrow$ the intersection of the discs D(p(1-a)+aq,ad(p,q)) and D(q(1-a)+ap,ad(p,q)) does not contain any point in the pointset P. ### The Important Questions ### Something from Pattern Recognition **Theorem:** (Toussaint, 1980) For a given planar pointset P, $$NNG \subseteq MST \subseteq RNG \subseteq \alpha - GG \subseteq GG \subseteq DT$$ # Of Relevance to Wireless Computing! - 1. How do you construct these graphs? - 2. Can you base your constructions only on local information? - 3. Can you use these graphs in order to navigate in a wireless system? ### Constructing Geometric Graph not Always Simple! Graph is even more complicated when transmitters are too close to each other! # Spanners: From Circles to Edges There is always an underlying geometric graph with *faces* and *edges* spanning the whole wireless network. It is called a spanner. How do you construct this geometric graph from the original wireless system? You must remove non-essential edges! ### Gabriel Test Assume points A and B can reach each other. Draw circle with diameter AB. If there is another point, say C inside this circle then the link connecting A to B is not needed! So, forget the direct link from A to B! # How do you forget something? You maintain a Routing Table. A kind of data base that when you are at A you ask: How do I reach B? It gives you the answer: Go to C. And when you reach C you ask again: How do I reach B? It gives you the answer: Go to B. Standard routing table contains an entry for each possible destination with the out-going link to use for destination Message delivery proceeds in the obvious manner one link at a time, looking up the next link in the table. # Simple Example: Applying the Gabriel Test The Gabriel test is a distributed algorithm. Location Awareness in Wireless Computing, MITACS AGM, 2004 # Navigating from source to desination How does the source discover the coordinates of the destination? - 1. Can use the Global Positioning System. - 2. It may be given a priori! E.g., New cell phones are alredy GPS enabled. - 3. It may be given as an IP address: in this case one must use a search algorithm to associate the geographic location to the IP address. - E.g., "Tell me the address of the Tratoria Vitoria Italian Restaurant in Ottawa". ### **Back to Navigation** After applying the Gabriel test we have a planar graph. Using GPS we can find out the (x, y) coordinates of s and t. Hence, we can compute the slope of the line \vec{st} . But how do we use this information in order to discover a route? ### **Gravitation Routing** Project the planar graph onto a sphere and place the target node on the south pole. Route by gravitation! **Problem:** Must reprocess the whole graph! # **Compass Routing** ## Algorithm - 1. Start at source node c := s. - 2. in a recursive way: - (a) Choose edge of our geometric graph incident to our current position and with the smallest slope to that of the line \vec{ct} . - (b) Traverse the chosen edge. - (c) Go back to (a) and repeat until target t is found **Problem:** Compass routing can fail to reach destination! Location Awareness in Wireless Computing, MITACS AGM, 2004 ## **Face-Routing** ### Face-Routing Algorithm. - 1. Starting at c := s determine face $F := F_0$ incident to c intersected by the line segment \vec{st} . - 2. Select any of the two edges of F_0 incident to c and start traversing the edges of F_0 until we find the second edge, say xy, of F_0 intersected by \vec{st} . - 3. Update face F to the new face of the graph containing edge uv, and vertex v to either of the vertices x or y. - 4. Iterate until t is found. Initially c := s. Update c and repeat. Location Awareness in Wireless Computing, MITACS AGM, 2004 # **Analysis of Face-Routing** - Face routing always advances to a new face. We never traverse the same face twice. - The distance from the current position c to t gets smaller with each iteration. - Each link is traversed a constant number of times. Since the graph is planar face routing traverses at most O(n) edges. ## Characteristics of Face-Routing - No indication how long is the Euclidean distance traveled! - But does it matter? All we wanted was to discover a route! #### Conclusions - You can always find a route in a planar network - By using GPS - And you need little memory - Sometimes you can create planarity: - By applying "link removal" tests - By creating virtual links - By increasing power - The Menace of Non-planarity: Planarity is not necessary but preprocessing increases! - Can you do the same thing in 3-dimensional space? More information and papers in my web page: http://www.scs.carleton.ca/~kranakis/