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Abstract

A rogue insider, in a wireless network, is an authenticated member that exploits possession of a valid identity
in order to launch an attack. A typical example is the transmission of a verifiable message containing false or
incomplete information. An important step, in enabling the network authorities to attribute an attack message to its
originator, involves locating the physical source of the transmission. We propose a probabilistic scheme to determine
the location of a transmitting rogue, with a degree of confidence, using the relative signal strength received by
neighboring devices, even if the effective isotropic radiated power (EIRP) employed by the rogue is unknown. The
relative received signal strength between pairs of trusted receivers are combined with a range of possible EIRP
values to construct an area in Euclidian space bounded by minimum and maximum distance hyperbolas. The area
contained within the intersection of multiple hyperbola pairs pinpoints the location of the rogue transmitter with a
specific level of confidence.
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I. INTRODUCTION

Some of the most insidious security attacks are conducted by rogue insiders, and wireless networks are
in no way immune. In a recent survey of IT security professionals [25], nearly half of the respondents
reported that security breaches committed by malicious insiders engaging in corporate sabotage was a
frequent occurrence. As the owner of a valid logical identity such as a MAC address or digital certificate in
an open medium, the rogue insider in a wireless network can broadcast with impunity verifiable messages
containing falsified information. It may also evade retribution once an attack is detected, especially if its
identity is fraudulently obtained, for example through theft.

Before a rogue can be stopped, an attack must be detected. In some networks, unauthorized activity
can be flagged through access control mechanisms or unusual usage patterns. However in many domains,
for example vehicle safety applications where transmitted broadcast messages are digitally signed for
authentication and non-repudiation, an attack may only be detected if an invalid digital certificate is used
to sign the message. Attack broadcasts by a rogue insider can thus go unchallenged. In such technologies,
additional mechanisms to expose attack messages are required.

Once an attack is detected, current means of attributing the attack to an insider node are based on its
logical identity. This approach can be fraught with problems if the identity is forgeable. Dynamic MAC
addresses are supported in some domains, for example in vehicular networks [12], to promote privacy. A
rogue may easily abuse this feature to assume a new identity at will. Password-based access control and
digital certificates associated with public/private key pairs constitute additional means of identification.
However, in vehicular applications where messages may be signed but not encrypted, digital signatures
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have been deemed a critical threat to privacy for facilitating location tracking [15]. The current trend
in securing this type of message in vehicular networks circumvents the use of individualized digital
certificates for each node [16], [27], [29]. In a revocation scheme based solely on the originator’s logical
identity or other falsifiable credential, the network cannot attribute the source of an attack message directly
to the rogue, nor can it prevent the attacker from using a new identity in subsequent attacks. Determining
the physical location of the attack message’s originator can be an important first step in apprehending the
perpetrator, possibly linking its location to additional logical identities, and alerting neighboring devices
to its presence in order to preemptively contain the impact of further attacks.

An additional advantage to the use of a node’s physical location as a unique unforgeable identity allows
the network to detect and circumvent Sybil attacks, first described by Douceur [6], where one attacker may
assume multiple colluding identities in order to mislead honest nodes. Linking a node to a geographical
position ensures that it is a unique physical device in the network and not a virtual entity under an
attacker’s control.

We put forth a hyperbolic localization scheme for estimating the position of a transmitter using the
relative received signal strength (RSS) obtained by a number of trusted receivers. Since the effective
isotropic radiated power (EIRP) of the transmitter is unknown and RSS values may fluctuate, a probabilistic
model is used to estimate the range of distance differences between receiver pairs and the transmitter.
These differences are used to construct minimum and maximum hyperbolas between two receivers where
the transmitter may be located, with a certain degree of confidence. Multiple pairs of such hyperbolas
may be constructed by considering different pairs of receivers. As a result, the intersecting hyperbolic
area can be said to contain the transmitter with the combined degree of confidence.

Section II outlines the existing literature in location determination. Section III describes our relative
RSS based location estimation scheme. Section IV evaluates the performance of our localization algorithm.
Section V concludes the paper.

II. RELATED WORK

The lion’s share of existing research into wireless device location determination presumes the collabo-
ration of the node being localized. Whether geometric localization is used, such as time of arrival (TOA),
or the heuristic schemes commonly utilized in sensor networks [11], these techniques rely on the trusted
cooperation of the node seeking to learn its position. However, in the case where the node is a rogue, any
voluntarily supplied information may be falsified to enable the rogue to evade detection and retribution.
As a result, we focus our efforts on the use of information inadvertently leaked by the rogue, such as the
RSS associated with its transmitted message.

RSS-based localization algorithms come in two flavours: signature dependent or geometric. Signature
dependent techniques rely on an existing training set of RSS signalprints established during an offline
training phase. This map of known RSS measurements is subsequently consulted during the localization
phase to estimate a node’s location based on the similarity of the signals received at trusted base stations
or access points to the signalprints found in the training set, as outlined in Bahl and Padmanabhan [2],
Roos et al. [28] and Ladd et al. [13]. Such experiments have been conducted in indoor environments.
Use in outdoor scenarios, for example in WiMAX/802.16 wireless access networks or vehicular networks,
remains an open question. Geometric RSS-based localization techniques aim to estimate a node’s location
in Euclidian space based on the signal strength of messages received from trusted nodes within range, as
proposed by Chong Liu et al. [21] and Bo-Chieh Liu et al. [20]. These schemes assume the complicity
of the target node in reliably measuring the RSS of received beacon messages. As such, they cannot be
used to localize a rogue node. Existing hyperbolic localization schemes are based on Time Difference of
Arrival (TDOA) techniques. They take an algebraic approach to estimate a device’s coordinates by solving
a set of non-linear hyperbolic equations, for example in Chan and Ho [5]. Signal strength fluctuations
taken into account are restricted to small scale fading. As well, some of these techniques such as the ones
outlined by Bo-Chieh Liu et al. [20] [19] assume a known distance from the transmitter to the closest
receiver reference point.



Localization mechanisms that function independently of the targeted node are used in location veri-
fication and rogue detection. Location verification algorithms are predicated upon a set of trusted ver-
ifiers substantiating the alleged position of a prover within a specified area. The majority of existing
schemes rely on TOA information collected by the verifiers to bound the prover’s position, as outlined
in Brands and Chaum [4], Sastry et al. [30] and Waters and Felten [32]. Xiao et al. [33] describe a
signal strength based location verification method with an exhaustive set of possible rogue positions
to identify Sybil nodes in vehicular networks. In the realm of rogue detection, Faria and Cheriton [8]
outline a signature dependent RSS-based scheme in an indoor environment to detect rogue mobile stations
(MSs) in WiFi/802.11. Barbeau and Robert [3] employ RSS measurements in outdoor wireless access
networks (such as WiMAX/802.16) to allow a MS to detect whether a base station (BS) advertising its
availability for a handoff may be a rogue. A probabilistic RSS-based geometric model is presented where
the RSS measurements obtained from neighboring BSs by a non-localized MS may be used to construct
annuli whose non-empty intersection likely contains the MS. An empty intersection may indicate a RSS
measurement originating from a rogue BS.

Our scheme extends the RSS-based geometric model proposed in [3] to localize a single transmitter
from multiple receivers, taking into account the unknown EIRP employed by a rogue. In addition, since
the compounding effect of a large EIRP range and probabilistic fluctuations in RSS measurements may
result in a potentially extensive area for the rogue, we propose the use of hyperbola pairs rather than
annuli for the localization. In this manner, relative rather than absolute RSS values are used to effectively
reduce the area containing the rogue’s probable location.

III. LOCALIZATION USING RELATIVE SIGNAL STRENGTH

We outline the assumptions inherent in our threat model and examine suitable propagation models for
obtaining a signal source’s location information from RSS values. We describe our scheme for estimating
probabilistic minimum and maximum transmitter-receiver distances from RSS values and the subsequent
computation of minimum and maximum bounds on the distance difference from a transmitter to a pair
of receivers.

A. Threat Model
The goal of our localization scheme is to ascertain the source position of an attack message broadcast

as a radio frequency (RF) signal to all receivers within its range. We assume that the transmitting rogue
is a mobile device and that a number of trusted receiving stations are within range and can communicate
with each other over a secure channel to collect and aggregate RSS measurements. The coordinates of the
receiving stations are globally known. Such a scenario is feasible in a number of wireless technologies,
for example with WiMAX/802.16 [14] MSs and BSs or the On-Board Units and Road-Side Units in
vehicular network architectures [1].

In order to evade revocation from the network, the rogue may combine changes in its transmission
power with the judicious use of directional antennas to modify the signal gain and obfuscate its true
position. As a result, no assumptions can be made regarding the EIRP employed to transmit the attack
message.

B. Radio Propagation Models
RF signals are subject to attenuation as they propagate through the air. Large scale fading occurs when a

signal encounters large terrain-based obstacles such as buildings, trees and hills. Small scale signal fading
is caused by the movement of a mobile device. The cumulative effect of fading over time and distance
is termed the path loss. A number of theoretical models for estimating path loss have been put forth in
the literature for the purpose of simulating propagation environments, and these models may be classified
into two categories. Empirical propagation models use probabilistic methods to predict received signal



characteristics such as path loss and strength. Deterministic models are specific to a particular area and
take into account the various obstacles therein. The dynamic nature of outdoor environments inherent to
wireless access networks such as WiMAX/802.16 and vehicular networks lends itself better to empirical
models rather than deterministic ones. As a result, we focus on the former approach.

Several empirical propagation models have been proposed for forecasting large scale path loss as a
function of the distance between a transmitter and a receiver. These are of particular interest, since they
lend themselves to our purpose. If the distances between the transmitter and receivers can be approximated
from the path loss, which is directly proportional to the RSS values, the transmitter’s location can be
estimated. The Okumura model [24] predicts path loss based on transmitter and receiver antenna height,
as well as the mean attenuation and the environment-based gain which can be obtained from experimental
results. Miyashita et al. [22] observe that the Okumura model is unsuitable over complex terrain due to the
difficulty in ascertaining the required correction factors. The validity of the Hata model [10], also known
as the Okumura-Hata model [22], has been demonstrated for frequencies between 150-1500 MHz, but
not at the higher frequencies commonly used in newer technologies. For example, WiMAX/802.16 uses
the 2-11 or 10-66 GHz bands, while DSRC vehicular networks operate in the 5.9 GHz band. The two-
parameter Nakagami model [23] has been suggested as best suited for modeling channel characteristics in
vehicular communications [31]. This model is dependent upon two parameters, the mean received power
and a fading parameter, that are both obtained through experimental studies for a given discrete value of
the distance d between a transmitter and a receiver. If d changes, so do the values of both parameters.
As a result, the Nakagami model is unusable for predicting d from the measured path loss, since the
parameters required to compute the path loss are dependent upon d. The log-normal shadowing model
outlined by Rappaport [26] provides a simple model to measure large scale path loss from d. Since our
aim is to approximate d based on a measured path loss, the log-normal shadowing model is best suited
to our purpose.

C. Estimating Distance From Signal Strength
We outline Rappaport’s large scale path loss model and describe how the minimum and maximum

distance between a transmitter and a receiver can be computed from the RSS with a desired level of
confidence.

1) The Log-Normal Shadowing Model: In [26], Rappaport outlines a log-normal shadowing model,
which is a statistical path loss model for a signal received at distance d from a transmitter. This model is
used to estimate the signal loss at various distances from the transmitter, based on a pre-defined reference
distance d0 close to the transmitter, a path loss exponent n dependent upon the propagation environment
and the standard deviation σ for the path loss. Values for n and σ can be obtained from experimental
measurements, for example in [18] and [7], where linear regression techniques are used to ascertain values
of n and σ from actual path loss measurements.

In describing the log-normal shadowing model, Rappaport defines the path loss L(d) of a signal at
distance d as a Gaussian (Normal) distribution random variable with mean L(d) and standard deviation
σ:

L(d) = L(d) + Xσ

where Xσ is a Normal distribution zero-mean random variable with standard deviation σ. The mean path
loss at distance d is in turn defined as:

L(d) = L(d0) + 10n log(
d

d0

)

where L(d0) is the average path loss at the reference distance d0, assuming free space propagation, and
n is the path loss exponent. Rappaport concludes the following fact.



Fact 1. The path loss L(d) of a signal at distance d from the transmitter is stated as:

L(d) = L(d0) + 10n log(
d

d0

) + Xσ

A further observation can be made about Xσ.

Fact 2. For a selected confidence level C, Xσ lies in the confidence interval [−zσdB, +zσdB], where
z = Φ−1(1+C

2
) and can be obtained from a Normal distribution table.

From Facts 1 and 2, we can specify the probabilistic path loss more precisely.

Lemma 1. The path loss L(d) of a signal at distance d from the transmitter is defined with a confidence
level C as:

L(d) = L(d0) + 10n log(
d

d0

)± zσ

where z = Φ−1(1+C
2

).

Proof: This can be derived directly from Fact 1 and Fact 2.
Example. Figure 1 illustrates an example of the distribution of path loss at a distance of d = 100

m from the transmitter. In the 2.4 GHz frequency band, the average free space path loss measured at
d0 = 1 m equals 40 dB. For a path loss exponent of 2.76, we obtain the average loss at 100 m as
L(100 m) = 95 dB. With a standard deviation σ = 5.62, the shaded area in Figure 1 depicts 95% of
the probability distribution around the average path loss. The path loss shadowing lies in the interval
[−1.96 × 5.62 dB, +1.96 × 5.62 dB] = [−11 dB, +11 dB] with probability 0.95, and so L(100 m) is
contained in the interval [84 dB, 106 dB] with probability 0.95.

70 80 90 100 110 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Probability distribution of loss

Loss in dB

P
ro

ba
bi

lit
y

95% of area

L(d) = 95dB

σ = 5.62

Fig. 1. Example of Log-Normal Shadowing Model

2) Distance Range with Log-Normal Shadowing: In [3], Barbeau and Robert demonstrate that the
minimum and maximum distances from a transmitter to a receiver can be calculated from the path loss
using Rappaport’s log-normal shadowing model.

Lemma 2. For a chosen confidence level C, the minimum and maximum distances (d− and d+ respectively)
from a transmitter to a receiver can be computed as a function of path loss with:

d− = d0 × 10
L(d)−L(d0)−zσ

10n

d+ = d0 × 10
L(d)−L(d0)+zσ

10n

Proof: The proof is based on Lemma 1 and can be found in [3].



In the threat model specified in Section III-A, each receiver Rk obtains a RSS measurement RSSk, but
the path loss L(d) value required to compute the distance using the equations in Lemma 2 is not readily
available. We can thus replace the path loss with its equivalent, based on the transmitted power EIRP and
RSS.

Fact 3. The path loss L(d) at distance d can be stated in terms of the EIRP and RSS at receiver Rk:

L(d) = EIRP −RSSk

A rogue may transmit at various EIRP levels in order to mask its location. In our solution, we address
this issue by assuming an unknown value for the EIRP. We thus update Barbeau and Robert’s minimum
and maximum distance equations for a range of EIRP values, bounded by a minimum and a maximum
EIRP, denoted as P− and P+ respectively.

Lemma 3. The minimum and maximum distances, d−k and d+
k respectively, between transmitter T and

receiver Rk, sent within an estimated EIRP interval [P−,P+], can be computed with confidence level C
as:

d−k = d0 × 10
P−−RSSk−L(d0)−zσ

10n (1)

d+
k = d0 × 10

P+−RSSk−L(d0)+zσ

10n (2)

Alternately, we say that the probability that transmitter T is located in the area bounded by [d−k , d+
k ] is

C:

Pr(d−k ≤ T ≤ d+
k ) = C

Proof:
1. For a single EIRP value P , Lemma 2 and Fact 3 can be combined to show that d−k and d+

k are the
minimal and maximal distances respectively.

2. For a range of EIRP values [P−,P+], let Dk(P ,V) represent the distance between a transmitter T
and receiver Rk if the signal EIRP is P and the signal shadowing value within the shadowing interval
[−zσ, +zσ] is V . Therefore, Dk(P ,V) = d0 × 10

P−RSSk−L(d0)+V
10n .

Four possible distance boundaries between T and Rk can be computed using combinations of EIRP
and shadowing interval bounds:
(i) Dk(P−,−zσ)

(ii) Dk(P−, +zσ)
(iii) Dk(P+,−zσ)
(iv) Dk(P+, +zσ)

These points form a lattice with an infimum, and so a minimum distance d−k , of Dk(P−,−zσ), since
P− is the minimum EIRP and −zσ is the minimum shadowing bound. Its supremum, and thus the
maximum distance d+

k , is the value Dk(P+, +zσ), because P+ is the maximum EIRP and +zσ is
the maximum shadowing bound.

An additional observation may be gleaned from the results uncovered in Lemma 3.

Lemma 4. For a given EIRP value P , the minimum and maximum distances between a transmitter and
a receiver are bounded solely by the signal shadowing range [−zσ, +zσ] with confidence level C.

Proof: With a constant EIRP value P = P− = P+, the proof can be directly inferred from Lemma
3, since −zσ and +zσ are the lower and upper bounds, respectively, of the signal shadowing range.



D. Estimating Location From Distance
Minimum and maximum distances between a transmitter and a receiver have been used, for example

in [3], [21] and [20], to construct a pair of rings forming an annulus within which a transmitter may be
located. Multiple annuli may be computed around several receivers, and the location of the transmitter
can be estimated within the annuli intersection area. However, this approach is more successful when the
difference between minimum and maximum distances is not significant. If it is, the annuli may be so
wide that their intersection is too large to effectively locate the transmitter, even if multiple receivers are
considered.

Our approach relies on the use of the relative distance difference from a transmitter between pairs of
receivers, similar to the Time Difference of Arrival (TDOA) technique. In TDOA, a hyperbola is constructed
with two points of known coordinates at the foci. The properties of hyperbolas are such that every point
on the hyperbola is at the same distance difference of the two foci. For example, if the difference in
distances from a transmitter T to two receivers A and B is known, the corresponding hyperbola HA,B

can be constructed, as shown in Figure 2. The transmitter must necessarily lie on the hyperbola between
A and B. If a second distance difference is known, for example between receivers B and C, a second
hyperbola can be plotted, and the location of the transmitter T is discovered at the intersection of the two
hyperbolas.
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Fig. 2. TDOA Example

However in our threat model, because neither the transmitter EIRP nor its signal shadowing value are
known, we cannot determine the precise distance difference between a pair of receivers. Instead, we use
a TDOA-based technique combined with the estimated minimum and maximum distances between the
transmitter and receivers. We can thus define a candidate area Ai,j bounded by two hyperbolas between
a pair of receivers Ri and Rj: one hyperbola at the minimum bound of the distance difference range and
another at the maximum bound.

1) Computing the Distance Difference Range: We use the minimum and maximum distance equations,
defined in Lemma 3, to compute the minimum and maximum bounds in the range of distance differences
between a pair of receivers Ri and Rj . Intuitively, the minimum bound of this range from Ri’s perspective
is the difference between the distances closest to Ri yet farthest from Rj , at the minimum transmission
power. This bound is typically located between the two receivers. In turn, the maximum bound of the
range from Ri’s perspective is the difference between the distances farthest from Ri yet closest to Rj , at
the maximum EIRP, resulting in a bound that may be located beyond Rj .

Theorem 1. Let di be the unknown distance between a transmitter T and receiver Ri.
1. The minimum bound ∆d−i,j of the distance difference range between di and dj is the distance difference



at the minimal EIRP (P−) over the full signal shadowing range [−zσ, +zσ] with confidence level C.

∆d−i,j =

(
d0 × 10

P−−RSSi−L(d0)−zσ

10n

)
−

(
d0 × 10

P−−RSSj−L(d0)+zσ

10n

)
(3)

2. The maximum bound ∆d+
i,j of the distance difference range between di and dj is the distance difference

at the maximal EIRP (P+) over the full signal shadowing range [+zσ,−zσ] with confidence level C.

∆d+
i,j =

(
d0 × 10

P+−RSSi−L(d0)+zσ

10n

)
−

(
d0 × 10

P+−RSSj−L(d0)−zσ

10n

)
(4)

Proof: Because both Ri and Rj receive the same attack message sent with a single (albeit unknown)
transmitted power, the EIRP value used to calculate the distance difference between Ri and Rj must be
the same. Thus the minimum bound of the distance difference range uses P−, and the maximum bound
uses P+. From Lemma 4, we know that for each EIRP value, the range of minimum and maximum
distances must encompass the full signal shadowing range between −zσ and +zσ with confidence level
C.

Let Dk(P ,V) represent the distance between T and Rk if the signal EIRP is P and the shadowing is
V . Thus according to Lemma 3, Dk(P ,V) = d0 × 10

P−RSSk−L(d0)+V
10n .

1. At the minimal EIRP, the possible distance difference boundaries between Ri and Rj can be computed,
with confidence level C, using combinations of shadowing bounds:
(i) Di(P−,−zσ)−Dj(P−,−zσ)

(ii) Di(P−,−zσ)−Dj(P−, +zσ)
(iii) Di(P−, +zσ)−Dj(P−,−zσ)
(iv) Di(P−, +zσ)−Dj(P−, +zσ)

These points form a lattice with infimum ∆d−i,j = Di(P−,−zσ) − Dj(P−, +zσ), since −zσ and
−(+zσ) represent the minimum shadowing bound. The supremum of this lattice consists of Di(P−, +zσ)−
Dj(P−,−zσ), given that +zσ and −(−zσ) represent the maximum shadowing bound. It should be
noted that this supremum equals −∆d−j,i, which is the minimum bound of the distance difference
between dj and di.

2. At the maximal EIRP, the possible distance difference boundaries between Ri and Rj can be com-
puted, with confidence level C, as follows:
(i) Di(P+,−zσ)−Dj(P+,−zσ)

(ii) Di(P+,−zσ)−Dj(P+, +zσ)
(iii) Di(P+, +zσ)−Dj(P+,−zσ)
(iv) Di(P+, +zσ)−Dj(P+, +zσ)

These form a lattice with supremum ∆d+
i,j = Di(P+, +zσ)−Dj(P+,−zσ), since +zσ and −(−zσ)

represent the maximum shadowing bound. The infimum of this lattice consists of Di(P+,−zσ) −
Dj(P+, +zσ), given that −zσ and −(+zσ) represent the minimum shadowing bound. This infimum
equals −∆d+

j,i, which is the maximum bound of the distance difference between dj and di.

2) Plotting the Minimum and Maximum Bound Hyperbolas: Given the definitions for the range of
distance differences between a pair of receivers, we may construct the corresponding hyperbolas bounding
the location of the transmitter.

Theorem 2. Let a transmitter T be located at unknown coordinates (x, y) and a pair of receivers Ri, Rj

at known coordinates (xi, yi) and (xj, yj) respectively. Let ∆d−i,j and ∆d+
i,j be defined as the minimum and

maximum bounds, respectively, of the distance difference range between Ri and Rj with confidence level
C. Let H−

i,j be the hyperbola representing the minimum bound of the distance difference range between
Ri and Rj , as defined by equation

√
(x− xi)2 + (y − yi)2 −√

(x− xj)2 + (y − yj)2 = ∆d−i,j . Let H+
i,j



be the hyperbola representing the maximum bound of the distance difference range between Ri and Rj ,
as defined by equation

√
(x− xi)2 + (y − yi)2 −√

(x− xj)2 + (y − yj)2 = ∆d+
i,j .

Then a transmitter T is located in the area Ai,j between the hyperbolas H−
i,j and H+

i,j with confidence
level C. Alternately, we say that Pr(T ∈ Ai,j) = C and Pr(T /∈ Ai,j) = (1− C).

Proof: We define the distance between T and Ri as di =
√

(x− xi)2 + (y − yi)2 and the distance
between T and Rj as dj =

√
(x− xj)2 + (y − yj)2. If ∆di,j = di−dj is defined as the distance difference

between Ri and Rj , we obtain the equation for the hyperbola between Ri and Rj:
√

(x− xi)2 + (y − yi)2 −
√

(x− xj)2 + (y − yj)2 = ∆di,j

We know from Theorem 1 that ∆d−i,j is the minimum bound of the distance difference between di and
dj and that ∆d+

i,j is the maximum bound of this difference with probability C. We can therefore deduce
that the probability of T being located in the area between H−

i,j and H+
i,j is C and the probability of T

being located outside this area is (1− C).
An additional pair of minimum and maximum bound hyperbolas can be constructed between receivers

Ri and Rj , namely the hyperbolas based on the inverted order of the receivers, Rj and Ri. Thus any
pair of receivers can yield four hyperbolas to help determine the location of the transmitter. We have also
noted in simulations that the maximum bound of the distance difference range between receivers is often
too large for the corresponding hyperbola to be plotted to scale. However, it is still required to bound
candidate hyperbolic areas for the transmitter.

3) An Example: Let us compute the candidate hyperbolic areas Ai,j and Aj,i for the location of a
transmitter T with confidence level C = 0.95, which yields the normal distribution constant z = 1.96.
We assume a transmitter frequency of 2.4 GHz. For a reference distance d0 = 1 m, we use the parameter
values obtained by Liechty et al. [18] [17] for Line of Sight (LOS) propagation and a seven meter high
antenna, where the path loss exponent is n = 2.76 and the standard deviation is σ = 5.62. The average
path loss at d0 is calculated with Friis’ transmission equation for free space propagation [9], assuming
isotropic transmitting and receiving antennas:

L(d0) = (
4πfd0

c
)2 = 40 dB

We assume an example layout as depicted Figure 3, where receivers R1 and R2 receive an attack
message from a transmitter T with signal strength RSS1 = −79.20 dBm and RSS2 = −74.27 dBm
respectively, corresponding to an actual transmitted EIRP of 30 dBm. Further, we model the EIRP range
with P− = 15 dBm and P+ = 40 dBm. Equations (1) and (2) reveal that the transmitter T is located
between 37 m and 1848 m from R1 and between 24 m and 1225 m from R2 with probability C = 0.95.
Using equations (3) and (4), we compute the minimum bound of the distance difference between d1 and
d2 as ∆d−1,2 = −115 m and the maximum bound as ∆d+

1,2 = 1653 m. Conversely, the minimum bound
between d2 and d1 is calculated as ∆d−2,1 = −205 m and the maximum bound is ∆d+

2,1 = 930 m. The
minimum bound hyperbolas H−

1,2 and H−
2,1 associated with ∆d−1,2 and ∆d−2,1, respectively, are depicted in

Figure 3. The candidate areas for transmitter T include the area between H−
1,2 and H+

1,2, known as A1,2 and
shown with dotted arrows, and the area between H−

2,1 and H+
2,1, named A2,1 and featured with dash-dotted

arrows. T is located within A1,2 with probability 0.95 and within A2,1 with the same probability.
Minimum and maximum bound hyperbolas can be constructed between multiple pairs of receivers,

forming a number of intersecting areas within which the transmitter location can be further bounded. For
example, Figure 4 illustrates the minimum bound hyperbolas between receiver pairs R1, R2 and R3, R4.

IV. PERFORMANCE EVALUATION

In this section, we outline the results obtained by simulating our localization algorithm using various
transmitter locations with two scenarios involving fixed receivers. We analyze the success rate of the
algorithm in locating the transmitter and the corresponding candidate area size.



0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

T

R
1

R
2

H
−

1,2

H
−

2,1

A1,2

A2,1

Fig. 3. Minimum Hyperbolas for R1, R2

0 200 400 600 800 1000
0

100

200

300

400

500

600

700

800

900

1000

T

R
1

R
2

R
3

R
4H

−

1,2

H
−

2,1

H
−

3,4

H
−

4,3

Fig. 4. Minimum Hyperbolas for R1, R2 and R3, R4

A. Configuration
Results are presented for two separate scenarios, one with two receivers and the other with four receivers,

located on a 1000 × 1000 meter grid. The transmitter location is simulated at each 100 meter interval
in the grid from zero meters to 1000 meters on both the X-axis and Y-axis, as shown in Figure 5.
The transmitter localization algorithm yields results for each of the possible 121 transmitter locations,
given four individual confidence levels: C = 0.95, 0.90, 0.85 and 0.80. Minimum and maximum bound
hyperbolas are constructed between each pair of receivers. The simulation assumes a frequency of 2.4
GHz, as well as the values for the reference distance, path loss exponent and shadowing standard deviation
determined for this frequency in an outdoor environment by Liechty et al. [18] [17], where d0 equals one
meter, n equals 2.76 and σ equals 5.62. A transmitter EIRP of 30 dBm is assumed for computing simulated
RSS values at each receiver. For each execution, a random amount of signal shadowing is added to the
RSS values along a Normal distribution, with mean zero and Liechty’s shadowing standard deviation. The
EIRP range is determined dynamically by taking the closest receiver to the transmitter location, i.e. the
receiver with the highest RSS, as a reference point. The EIRP range is set to the intersection of the EIRP
ranges required for each remaining receiver to reach the reference point.
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B. Results
The performance of the transmitter localization algorithm is evaluated along two metrics: the success

rate in correctly localizing the transmitter within a bounded area, and the minimization of the size of
this area. Consequently, both metrics were gathered for each execution of the localization algorithm. The
success rate reflects the percentage of executions for which the intersection of all hyperbolic areas, i.e.
the maximal probability candidate area, contains the actual transmitter location. The area size represents
the percentage of the 1000× 1000 meter grid covered by the candidate area. Optimal results are obtained
when the success rate is maximized and the area size is minimized.

Figure 6 illustrates the success rate for the four-receiver scenario, given C = 0.95. Since metrics were
gathered solely for the grid points shown in Figure 5, values for the intermediate points were intrapolated
linearly between the values for the computed grid points. The success rate is highest in the cross shape
between the receivers, which we term the aggregate range. This range constitutes the zone in which
the transmitter is located between at least one pair of receivers, enabling the receivers to aggregate and
support each other’s findings. The lowest success rates are achieved in the corners of the grid, outside
the aggregate range, since these zones are not situated between any pair of receivers. Low success rates
are also obtained when the transmitter is located precisely at the receiver locations. These special cases
are eliminated from our subsequent analysis, because a zero meter distance is less than the reference
distance of d0 (one meter) used in the path loss model. Figure 6 displays the success rates averaged
over the 1000 executions of the localization algorithm for each transmitter location. With a confidence
of 90%, the success rate associated with each grid point within the aggregate range lies in a confidence
interval of ±3% of the mean for that point. The non-aggregate range points are situated in an interval
of ±4% from the grid point mean, with confidence 90%. Consequently, not only is the success rate of
the localization algorithm lower in the non-aggregate range, the results are also less reliable due to their
greater variance. This bears out the intuition that a greater receiver coverage poses a significant advantage
to the localization of a rogue device.

Figure 7 depicts the success rate as a function of the distance from the grid’s midpoint, located at
coordinates (500, 500), for the four-receiver scenario. This success rate is shown for each of the four
confidence levels tested, with a 90% confidence interval depicted with each point for C = 0.95. Intuitively,
the farther the transmitter from the midpoint, the lower the expected success rate, and Figure 7 confirms
this hypothesis for all confidence levels. At the midpoint, where the distance is zero, the highest success
rate is achieved. However, because the higher success rates occur between the receivers in a cross shape
rather than concentric circles, Figure 7 does not show a completely linear decrease in success rate. For
example, noticeable dips in the graph occur at distances 361 m, 424 m, 500 m and 566 m. These correspond
to the instances where the transmitter is located in the non-aggregate range at the corners of the grid,
and thus within the range of only one receiver. Figure 8 captures the same data as Figure 7, but with the
non-aggregate range points excluded. A more linear success rate is achieved as the transmitter location
moves away from the midpoint.
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While the highest success rates are associated with higher confidence levels, so are the area sizes.
Figure 9 shows the area size as a percentage of the total area depicted in the 1000 × 1000 meter grid
for the simulations using the two-receiver and four-receiver scenarios. In each scenario, the area size
decreases with the confidence level. This reflects the reduced value of the normalization constant z for
lower confidence levels. The shadowing interval is therefore smaller, resulting in reduced hyperbolic
areas whose intersections are correspondingly smaller. However, the candidate areas for the two-receiver
scenario are significantly larger than those for the four-receiver scenario, reaching 62% of the total area
in some instances. Clearly, this type of result is of very little use in locating an attacker. The four-receiver
scenario yields more promising results, where even the 0.95 confidence level produces a candidate area
on average below 25% of the total size of the grid. This finding is consistent with the expectation that
a higher number of receivers yields finer grained results and thus bounds the transmitter location to a
smaller candidate area.

Figure 10 illustrates the average area size for the success rates achieved with each confidence level in
the four-receiver scenario. In general, the size of the candidate area is larger for given success rate as
the confidence level increases. For example, a success rate of 80% yields a candidate area of 23% for
C = 0.95, an area size of 18% for C = 0.90 and an area of 17% for C = 0.85. Thus the average area size
clearly decreases with the confidence level, due to the reduced shadowing interval.

C. Discussion
The localization algorithm can be applied to multiple types of wireless networks for the purpose of

bounding the position of an uncooperative transmitting device. Applications for wireless network security
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include the localization of nodes that cannot be trusted. For example, the attribution of attack messages
as originating from a particular candidate area may implicate devices known to the trusted members of
the network and thus suspect. It is also possible that our mechanism can play a role in localizing nodes
that are simply unable to assist with efforts to determine their position, for example in sensor networks.

We expect that future experiments involving the application of our localization mechanism to specific
types of wireless technologies, for example in vehicular networks, will confirm our findings that a greater
number of receivers reduces the candidate area size. While our simulations focus on two and four-receiver
scenarios, evidence of a vehicular communications attack may be gathered from receivers such as private
and commercial vehicles in order to supplement the information obtained from the trusted infrastructure
devices. Additional reductions in candidate area size can also be achieved using available navigation
information, such as street and road layouts and building positions. If a rogue device’s location is restricted
to a known navigable space, the size and shape of hyperbolic areas can be tailored to this layout. Further
research is required to investigate the degree to which the size of a candidate area can be minimized while
maximizing the rogue localization success rate.

While our scheme accounts for a range of possible EIRP values employed by a rogue in order to
obfuscate its position, the use of directional antennas may influence the relative RSS values received
by trusted devices and foil our attempts at localization. An important area for future research involves
assessing the potential impact of directional signals and augmenting our mechanism accordingly.

Another area for future investigation is the combination of the confidence levels ascribed to the
intersection of hyperbolic areas by multiple receiver pairs. Intuitively, an area endorsed by a greater number
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of receivers should be given a higher probability than areas advocated by fewer receivers. However in
multiplicative probabilities, if two receiver pairs agree with confidence 0.95 that a transmitter is located in a
particular area, then that area is assigned confidence 0.952. If four receiver pairs agree, then the confidence
drops to 0.954. We require a scheme to assign a probability distribution to the possible transmitter location
where agreement from multiple receivers compounds the probability inside the intersecting hyperbolic
areas without redistributing it outside the intersections.

V. CONCLUSION

In this paper, we presented a hyperbolic location estimation mechanism for attributing an attack message
to an originating rogue device by estimating its position in a wireless network without the rogue’s
cooperation. The localization algorithm utilizes the relative RSS values of the attack message received at
a set of trusted receivers to estimate the position of the transmitting device based on the aggregated RSS
values, even though the transmitting EIRP power is unknown.

The scheme presented employs a large scale path loss statistical model to estimate the distances from the
transmitter to a set of trusted receivers, with a selected confidence level. These distances are computed from
the RSS values and yield a distance difference range between the transmitter and each pair of receivers.
Hyperbolas are then constructed between each receiver pair at the minimum and maximum bounds of the
distance difference range. The intersecting hyperbolic area between multiple pairs of receivers constitutes a
candidate area for the location of the transmitting device with the given degree of confidence. Performance
evaluation through simulations reveals a success rate commensurate with the selected confidence level,
although the size of the candidate area also increases with the success rate. Correspondingly, a confidence
level of 95% yields an average candidate area size slightly below 25% of the simulated grid area.

The localization algorithm presented herein is sufficiently generic to be applicable to various types
of wireless networks. It may also play a role outside the realm of network security where an attack is
attributed to a rogue insider. For example in sensor networks, a malfunctioning device may be localized
with our mechanism even if it is unable to assist in efforts to pinpoint its position. We foresee that
each specific type of technology, for example WiMAX/802.16 access networks or vehicular networks,
can exploit its particular characteristics to enhance the localization algorithm. It is expected that future
research into the application of the localization algorithm to specific wireless technologies will result in
the reduction of candidate area size for more precise rogue localization with higher success rates.
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he was a professor at Université de Sherbrooke. During the ’98-’99 academic year, he was a visiting researcher at the University of Aizu,
Japan. Since 2000, he works at Carleton University, Canada. The topic of wireless communications has been his main research interest. He
puts his efforts more particularly on the topics of wireless security, vehicular communications and wireless access network management. He
also conducts work on small satellite software and AI for computer games.




