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Abstract—Hyperbolic position bounding of malicious devices
aims to estimate the location of a wireless network rogue insider
that transmits an attack message containing falsified information
to mislead honest nodes. A probabilistic path loss model is used
to construct an area in Euclidian space bounded by minimum
and maximum distance difference hyperbolas between each pair
of trusted receivers. This hyperbolic area is said to contain
the rogue insider with a degree of confidence. We explore the
combination of evidence provided by a set of multiple receiver
pairs supporting the intersection of their hyperbolic space. We
propose a novel heuristic scheme to aggregate area probability
so that the combined degree of confidence ascribed to the
intersecting space is computed according to a paradigm of
supportive rather than competitive evidence.

Index Terms—Combination of Evidence, Location Estimation,
Vehicular Communications, Wireless Access Networks, Wireless
Networks, Wireless Security

I. INTRODUCTION

As attacks upon the integrity of wireless networks migrate
from theoretical pursuits in academic laboratories to front-
page news, the imperative for security mechanisms ensuring
attack detection and attribution becomes increasingly com-
pelling. The recent manipulation of tram system control signals
by a young hacker in Poland nearly resulted in disastrous
consequences for the passengers of several trains [1]. Similar
incidents in technologies safeguarding public safety, such as
collision avoidance applications in vehicular networks, have an
even greater potential for dire outcomes. High profile exploits
underscore the vulnerability of wireless networks to attacks,
given the open nature of the radio signal propagation medium.
Insider attacks are perpetrated by malicious nodes capitalizing
on their access to valid credentials such as digital certificates.
Since these rogues are authenticated members of the wireless
network, they pose a particularly daunting challenge. Not only
can they evade detection due to the inherent trust vested
in them by network authorities, but if their credentials are
fraudulently obtained, for example through theft, they can also
escape retribution and eviction from the network. Since rogues
cannot be trusted to provide credible clues to their identity,
the attribution of an attack to its perpetrator must rely on
distinguishing characteristics which cannot be falsified. One
method for attributing an attack message to its originator is
to pinpoint the physical location of the signal source using
information divulged inadvertently, such as the signal strength
of the transmission.

In [2], we describe a hyperbolic position bounding scheme
to surmise the location of a transmitter using the relative
received signal strength (RSS) measured at a number of trusted
receivers. The threat model assumes the transmission of an
attack message originating from a rogue insider capable of
generating verifiable, authenticated messages. Infrastructure
units with known coordinates, for example base stations (BSs)
in wireless access networks such as WiMAX/802.16 [3] or
road-side units (RSUs) in vehicular networks [4], constitute
the receivers tasked with locating an attacker. A probabilis-
tic model is used to estimate the minimum and maximum
distance differences between a transmitter and each pair of
receivers, assuming an unknown effective isotropic radiated
power (EIRP) and signal fluctuations commensurate with a
large scale propagation path loss model. Hyperbolas feature
an interesting geometric property: every point on a hyperbola
between two foci is located at the same distance difference
of the foci. We exploit this property and compute hyperbolas
between each receiver pair at the minimum and maximum
bound of the distance difference range with both receivers at
the foci. The maximum and minimum hyperbolas thus define a
hyperbolic area in Euclidian space where the transmitter is lo-
cated with a degree of confidence. The confidence provided by
multiple receiver pairs must be combined for a higher degree
of confidence associated with a smaller area as more receiver
pairs are considered. When combining evidence supporting a
given candidate area for a transmitter, the intuitive expectation
is that an area endorsed by a large number of receivers should
be assigned a greater confidence than the areas advocated by
few. However in existing mechanisms, the opposite is true. For
example, in multiplicative probabilities based on a binomial
distribution, if two receiver pairs agree with confidence 0.95
that a transmitter is located in a particular area, that area is
assigned confidence 0.952. If four receiver pairs agree, the
confidence drops to 0.954. This counter-intuitive reduction in
confidence has led us to develop a new probability distribution
mechanism. We propose a novel heuristic scheme based on the
Bayesian conditioning model to compound the degree of con-
fidence endorsed by multiple receiver pairs in such a way that
additional evidence supports the probability assignment in the
common hyperbolic area intersection rather than redistributing
it outside the intersection.

Section II outlines the existing literature on the combination
of evidence. Section III reviews the hyperbolic position bound-



ing mechanism. Section IV describes our heuristic method for
compounding probabilistic localization evidence. Section V
analyzes the performance of our compounding probability
algorithm. Section VI concludes the paper.

II. RELATED WORK

RSS values are used in location estimation mechanisms
based on established signalprint maps [5], [6] and geometric
methods [7], [8]. However, in assuming the cooperation of
the device being localized, these mechanisms are unsuitable
for insider attack attribution. In [2], we expand upon the
probabilistic rogue detection scheme outlined by Barbeau and
Robert [9]. Our mechanism bounds the possible location of
a transmitter within hyperbolic areas, each associated with
a degree of confidence. These confidence levels must be
aggregated so that additional evidence supports rather than
weakens the common hyperbolic area intersections.

The seminal work of Dempster and Shafer in establishing
the Dempster-Shafer theory of evidence [10], [11] formulates
the foundations for belief functions and rules for the combina-
tion of evidence provided by a set of independent observers.
Previously, a multiplicative probability approach reconciled
varying degrees of confidence in a given event by multiplying
together the probabilities assigned to the event by the ob-
servers. In contrast, the Dempster-Shafer rule of combination
introduces a normalization mechanism to compensate for the
lack of knowledge of an observer vis-à-vis an event and to
resolve the degree of conflict between observers. Our threat
model requires the combination of probabilities in a hyperbolic
area intersection common to a large number of receiver pairs,
each assigning the intersection a high degree of confidence.
By definition, the common intersections are the subject of
little conflict in the evidence supplied by the receiver pairs.
As demonstrated in Section IV-B, in circumstances of little
conflict, the Dempster-Shafer rule of combination reduces to
simple multiplicative probability.

Variants on the Dempster-Shafer theory aim to address
situations with even greater sources of conflict, for example
in Yager [12] and Inagaki [13]. As with the Dempster-Shafer
approach, these reduce to multiplicative probability in the
absence of significant conflict. Proportional assignment of
probability according to the percentage of observations sup-
porting an event is presented in Zhang [14] and Cholvy [15].
In the case of our threat model, where we are interested
in a small intersection of relatively large hyperbolic areas,
proportional assignment distributes the probability over the
vast extent of the hyperbolic areas, rather than concentrating
it in the intersection. The consensus operator introduced by
Jøsang [16] yields similar results by combining both positive
and negative observations for an event, but attributing weight
to each observer according to a proportional assignment basis.

Voorbraak [17], [18] and Wakker [19] advocate the
Dempster-Shafer theory for scenarios dealing with ignorance
and Bayesian conditioning for those involving uncertainty.
The open world principle assumed by the Dempster-Shafer
theory of evidence is best suited to knowledge acquisition
systems seeking to expand a corpus of beliefs and thus to

alleviate ignorance. Our threat model assumes a closed world,
where a transmitter must necessarily be positioned within the
radio range of receivers. Although the transmitter’s precise
location within Euclidian space is uncertain, each receiver pair
assigns this entire space a fully defined probability distribution.
Because our attack scenario models uncertainty rather than
ignorance, the Bayesian conditioning model emerges as more
suitable for our purposes.

III. HYPERBOLIC POSITION BOUNDING

Fluctuations in large scale radio signal path loss are known
to follow a log-normal model, as outlined by Rappaport [20].
Other empirical propagation models can be used for predicting
path loss as a function of a transmitter-receiver distance, such
as the Okumura [21], Okumura-Hata [22] and Nakagami [23]
models, but they are unsuitable for forecasting the distance
given the path loss computed from RSS values, as observed
in [2]. The Rappaport model relies on a path loss exponent
n dependent upon the propagation environment, a reference
distance d0 close to the transmitter and the standard deviation
in path loss signal shadowing σ. These parameter values are
obtained for a given frequency through practical experiments,
as demonstrated by Durgin et al. [24] and Liechty et al. [25],
among others. The average loss L(d0) at the reference distance
d0 is calculated using free space propagation equations [26].

For a given confidence level C, its associated normal dis-
tribution constant z = Φ−1( 1+C

2 ) available from a normal
distribution table, and an estimated EIRP range [P−,P+], we
establish in [2] the minimum and maximum bounds of the
distance difference range between a transmitter T and a pair
of receivers Ri and Rj .

Theorem 1. Let di be the unknown distance between a
transmitter T and receiver Ri.

1. The minimum bound ∆d−i,j of the distance difference
range between di and dj is the distance difference at
the minimal EIRP (P−) over the full signal shadowing
range [−zσ,+zσ] with confidence level C.

∆d−i,j = d0 × 10
P−−RSSi−L(d0)−zσ

10n

− d0 × 10
P−−RSSj−L(d0)+zσ

10n

2. The maximum bound ∆d+
i,j of the distance difference

range between di and dj is the distance difference at
the maximal EIRP (P+) over the full signal shadowing
range [+zσ,−zσ] with confidence level C.

∆d+
i,j = d0 × 10

P+−RSSi−L(d0)+zσ

10n

− d0 × 10
P+−RSSj−L(d0)−zσ

10n

Proof: The proof can be found in [2].
From the distance difference range computed in Theorem 1,

we construct the associated minimum and maximum hyperbo-
las between a receiver pair with both receivers lying at the
foci. The minimum and maximum hyperbolas delineate the
possible location of the transmitter, with the given degree of
confidence.



Theorem 2. Let a transmitter T be located at unknown
coordinates (x, y) and a pair of receivers Ri, Rj at known
coordinates (xi, yi) and (xj , yj) respectively. Let ∆d−i,j and
∆d+

i,j be defined as the minimum and maximum bounds, re-
spectively, of the distance difference range between Ri and Rj

with confidence level C. Let H−
i,j be the hyperbola representing

the minimum bound of the distance difference range between
Ri and Rj , as defined by equation

√
(x− xi)2 + (y − yi)2−√

(x− xj)2 + (y − yj)2 = ∆d−i,j . Let H+
i,j be the hyper-

bola representing the maximum bound of the distance dif-
ference range between Ri and Rj , as defined by equation√

(x− xi)2 + (y − yi)2 −
√

(x− xj)2 + (y − yj)2 = ∆d+
i,j .

A transmitter T is located in the area Ai,j between the
hyperbolas H−

i,j and H+
i,j with confidence level C. Alternately,

we say that Pr(T ∈ Ai,j) = C and Pr(T ∈ Ai,j) = (1− C),
where Ai,j is the complement of Ai,j .

Proof: The proof can be found in [2].
For example, Figure 1 illustrates the hyperbolic areas be-

tween receiver pairs R1, R2 and R3, R4, as bounded by the
minimum hyperbolas computed for both receiver pairs. The
maximum hyperbolas are too large to be plotted to scale.
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Fig. 1. Hyperbolic Areas for R1, R2 and R3, R4

IV. COMPOUNDING POSITION BOUNDING CONFIDENCE

Theorem 2 provides the means to delineate a hyperbolic area
to bound the possible location of a transmitter, with a desired
confidence level. However, given a number of receivers, hyper-
bolic areas can be constructed between multiple receiver pairs,
and the confidence levels aggregated together. We define a set
of partitions over the hyperbolic areas and their intersections.
We revisit the application of existing mechanisms to combine
the confidence levels in the partitions. We introduce a heuristic
scheme to compound the evidence contributed by multiple
receiver pairs and thus the probability in each hyperbolic area
partition.

A. Partitioning the Hyperbolic Areas
We first define the partitioning of the Euclidian space

encompassing the transmitter range, based on the number of
intersecting hyperbolic areas in which each sub-area lies.

Definition 1. Let W be the set of all defined hyperbolic areas
computed using Theorem 2:

W = {Ai,j : ∃ H−
i,j ,H

+
i,j and

Ai,j is the area situated

between H−
i,j and H+

i,j}

where n = |W|. Let ξ be the union of all hyperbolic areas in
W and the Euclidian space comprising their complements.

We define disjunctive partitions Sk of ξ such that for all 0 ≤
k ≤ n, the partition Sk contains the sub-areas sm of ξ situated
at once within the intersection of k hyperbolic areas and within
the intersection of the complements of the remaining n − k
hyperbolic areas in W . More formally:

Sk =
{
sm : sm = (∩kAi,j) ∩ (∩n−k Ai,j)

}
where ∩kAi,j is the intersection of any k hyperbolic areas
and ∩n−k Ai,j is the intersection of the complements of the
remaining n− k hyperbolic areas.

Example. Figure 2 depicts the partitioning of the Eu-
clidian space covered by the n = 4 hyperbolic areas
{A1,2,A2,1,A3,4,A4,3} shown in Figure 1. To define sub-
area G, for example, we compute the intersection of k = 3
hyperbolic areas (A1,2,A2,1,A4,3), which yields D ∪G. The
complement of the remaining n− k = 1 hyperbolic area A3,4

consists of J ∪G ∪M . The intersection of both defines sub-
area G, since (D ∪ G) ∩ (J ∪ G ∪ M) = G. So we see
that G = A1,2 ∩ A2,1 ∩ A4,3 ∩ A3,4. In Figure 2, partition
S4 = {D}, S3 = {E,F,G,H}, S2 = {J,K, M, N} and
S1 = S0 = {}. If the Euclidian space could be displayed in
its entirety, additional sub-areas for S2, S1 and S0 would be
visible. However, we restrict the scope of this example to a
1000× 1000 meter grid.

Fig. 2. Hyperbolic Area Partitions

B. Existing Evidence Combination Schemes

Every partition Sk is comprised of sub-areas situated in
the intersection of the same number k of hyperbolic areas,
and are thus equally likely sub-areas for the location of the



transmitter. As a result, we assign a single probability to each
partition Sk based on the value of k. The intuitive idea is that
the more hyperbolic areas a partition belongs to, the more
likely it is that the transmitter is located in that partition, i.e.
Pr(T ∈ Sj) < Pr(T ∈ Sk) for all 0 ≤ j < k ≤ n.

One method to compute the probability in a given partition
involves multiplying together the probabilities assigned to its
sub-areas by each receiver pair.

Lemma 1. The multiplicative probability Pr∗ of a transmitter
located in sub-area sm of partition Sk is the probability that
it is situated in the intersection of k hyperbolic areas and
the intersection of the complements of the remaining (n− k)
hyperbolic areas:

Pr∗(T ∈ sm ∈ Sk) = Ck × (1− C)n−k

Proof:

Pr∗(T ∈ sm ∈ Sk) = Pr((T ∈ ∩kAi,j)

∩ (T ∈ ∩n−k Ai,j))
by Definition 1

= [Pr(T ∈ Ai,j)]k

× [Pr(T ∈ Ai,j)]n−k

= Ck × (1− C)n−k

by Theorem 2

Of even greater interest is the probability assigned to the
set of all sub-areas situated within a given partition Sk. Each
hyperbolic area computed by a receiver pair can be thought of
as an independent Bernoulli trial with probability of success C
and probability of failure (1−C). The findings of each receiver
pair are independent of each other even if they share a common
receiver, because the distance difference is unique to each pair.
The probability distribution of a total of n hyperbolic areas
is akin to n Bernoulli trials, and the resulting distribution is
binomial.

Lemma 2. The multiplicative probability Pr∗ of a transmitter
located in partition Sk is the probability that it lies in any of
the sub-areas of Sk:

Pr∗(T ∈ Sk) =
(

n

k

)
× Ck × (1− C)n−k

Proof: Since there are
(
n
k

)
possible ways in which the

transmitter can be located in k hyperbolic areas and in the
complements of the remaining n − k hyperbolic areas, there

are
(
n
k

)
possible sub-areas in partition Sk. Therefore:

Pr∗(T ∈ Sk) =
(n

k)⋃
m=1

Pr∗(T ∈ sm ∈ Sk)

=
(n

k)∑
m=1

Pr∗(T ∈ sm ∈ Sk)

=
(n

k)∑
m=1

[Ck × (1− C)n−k]

by Lemma 1

=
(

n

k

)
× Ck × (1− C)n−k

However, the multiplicative probability method fails to
effectively compound the confidence levels. Combined evi-
dence from an increasing number of receiver pairs supporting
the confidence in a given intersection actually decreases the
overall probability in that area, since the multiplicative proba-
bility scheme re-distributes the associated probability outside
the intersection. In the example depicted in Figure 1, with
C = 0.95, two hyperbolic areas inform us that the probability
of the transmitter located in the intersection is 0.952 = 0.90.
But the evidence provided by four hyperbolic areas locates the
transmitter in a smaller area with probability 0.954 = 0.81.
In effect, additional evidence supporting the original finding
reduces the probability of the transmitter’s location in the
intersection, leading to the counter-intuitive conclusion that
the transmitter is more likely to be found in the intersection
of two hyperbolic areas than in the intersection of four areas.

The Dempster-Shafer method computes the plausibility Pl
in a sub-area as its multiplicative probability, normalized
to exclude the sub-areas of conflict. For our scenario, the
Dempster-Shafer plausibility applies as follows:

Pl(T ∈ Sk) =
(

n

k

)
× Ck × (1− C)n−k

1−K
(1)

where K equals (1− C)k × C(n−k) and represents the degree
of conflict.

For our threat model, we are interested in localizing the
rogue insider with a high degree of confidence, so C will
generally be close to one, and so (1 − C) will be close to
zero. The more useful probabilities are vested in the partitions
with k close to n, since that is where the transmitter is most
likely to be located. With a relatively large k compared to
(n− k) and a low value of (1− C), the value of K is nearly
equal to zero, so the denominator of Equation 1 is close to
one. The Dempster-Shafer plausibility Pl thus reduces to the
multiplicative probability Pr∗ defined in Lemma 2.

C. Compounding Hyperbolic Area Confidence

We propose an alternate, heuristic method for aggregating
evidence in such a manner that supporting evidence increases
the likelihood of a transmitter located in a given area. The
intuitive idea behind our mechanism is based on the Bayesian



conditional probability model and reflects the democratic
principle. Given n hyperbolic areas, if all n agree that the
transmitter is located in their common intersection with prob-
ability C, then the partition corresponding to this intersection
is assigned probability C. Of the remaining probability (1−C),
the proportion assigned to the intersection of n−1 hyperbolic
areas is C, for C× (1−C). Of the remaining (1−C)× (1−C),
C is assigned to the intersection of n−2 hyperbolic areas, and
so on until the intersection of zero hyperbolic areas is assigned
the remainder (1− C)n.

Theorem 3. Let ξ be the Euclidian space covered by n
hyperbolic areas and their complements. Let the compound
probability Pr� that a transmitter is located in a partition
Sk of ξ lying within k hyperbolic areas, for k > 0, be the
probability that it is situated within k hyperbolic areas, given
the supporting evidence that it is within k− 1 of these areas,
combined with the probability that it is outside the remaining
n − k hyperbolic areas. In the case where the partition is
outside of all hyperbolic areas, i.e. for k = 0, the compound
probability reduces to the simple multiplicative probability.
Thus:

Pr�(T ∈ Sk) =

{
C × (1− C)n−k, for k > 0
(1− C)n, for k = 0

Proof:

1. (i) For k > 0:

Pr�(T ∈ Sk) = Pr(T ∈ ∩kAi,j | T ∈ ∩k−1Ai,j)

× Pr(T ∈ ∩n−k Ai,j)

=
Pr(T ∈ [∩kAi,j ] ∩ [∩k−1Ai,j ])

Pr(T ∈ ∩k−1Ai,j)
× Pr(T ∈ ∩n−k Ai,j)
by the definition of
conditional probabilities

=
Pr(T ∈ ∩kAi,j)

Pr(T ∈ ∩k−1Ai,j)
× Pr(T ∈ ∩n−k Ai,j)

since ∩kAi,j ⊆ ∩k−1Ai,j

=
[Pr(T ∈ Ai,j)]k

[Pr(T ∈ Ai,j)]k−1

× [Pr(T ∈ Ai,j)]n−k

=
Ck

Ck−1
× (1− C)n−k

by Theorem 2

= C × (1− C)n−k

(ii) For k = 0:

Pr�(T ∈ S0) = Pr(T ∈ ∩0Ai,j)

× Pr(T ∈ ∩n Ai,j)

= Pr(T ∈ ξ)× [Pr(T ∈ Ai,j)]n

= 1× (1− C)n = (1− C)n

by Theorem 2

2. Pr�(T ∈ Sk) is a probability distribution, since∑n
k=0 Pr�(T ∈ Sk) = 1.

n∑
k=0

Pr�(T ∈ Sk) = (1− C)n

+
n∑

k=1

[C × (1− C)n−k]

= (1− C)n + C ×
n−1∑
k=0

(1− C)k

= (1− C)n

+ C ×
(

1− (1− C)n

1− (1− C)

)
= (1− C)n + 1− (1− C)n

= 1

In contrast to the multiplicative probability Pr∗ which
follows a binomial distribution, the compound probability
Pr� reflects a geometric distribution. Every hyperbolic area
within which the transmitter is located counts for a successful
Bernoulli trial for Pr∗, but these are compounded as one
combined success with probability C for Pr�, due to the
democratic agreement. Consequently, only the number of
failures (n− k) with probability (1− C) are counted.

Example. The compound probability for the example illus-
trated in Figures 1 and 2 is shown in Figure 3. The probability
associated with partition S4 = {D} is C = 0.95, with partition
S3 = {E,F,G,H} is 0.05×0.95 = 0.0475 and with partition
S2 = {J,K, M, N} is 0.052 × 0.95 = 0.002375. If any sub-
areas were associated with partition S1, their probability would
be 0.053 × 0.95, and the remainder would be assigned to S0

with 0.054.

Fig. 3. Compound Probability for Hyperbolic Area Partitions

An optimization of Theorem 3 can be achieved by consid-
ering the probability of a transmitter’s location within paired
hyperbolic areas. The reason for this is one of symmetry. If
a transmitter is centrally located between a pair of receivers
Ri and Rj , it must necessarily lie within the symmetric
hyperbolic area pair Ai,j and Aj,i. If the transmitter is not



centrally situated, little granularity is lost by twinning the
asymmetric pairs of hyperbolic areas within which it lies. We
thus require a mechanism for combining the probabilities of
paired hyperbolic areas, whether they correspond to symmetric
receiver pairs or not.

Definition 2. Let r = n
2 be the number of paired hyperbolic

areas associated with the total n hyperbolic areas. We define
disjunctive partitions V γ of ξ such that for all 0 ≤ γ ≤
r, the partition V γ contains the sub-areas of ξ situated in
the intersection of at least γ paired hyperbolic areas. More
formally:

V γ =

{
S2γ , for γ = r

S2γ ∪ S2γ+1, for 0 ≤ γ ≤ r − 1

Example. In the example shown in Figure 2, partition V 2 =
{D} is comprised of the sub-area situated within four hyper-
bolic areas and thus two paired areas, for example A1,2,A2,1

or A3,4,A4,3. Partition V 1 = {E,F,G,H, J,K,M,N} in-
cludes the sub-areas located in the intersection of two or
three hyperbolic areas and thus in at least one paired area.
Some of these paired areas are symmetric, as for sub-areas
{E,F, G,H} appearing in A1,2,A2,1 or in A3,4,A4,3. Other
sub-areas are situated in asymmetric paired areas, for example
{J} is located in the intersection of A2,1 and A4,3. Partition
V 0 equals {} since every sub-area in Figure 2 appears in at
least one paired hyperbolic area.

We extend the compound probability method proposed in
Theorem 3 to consider paired hyperbolic areas.

Corollary 1. Let the compound probability Pr� that a trans-
mitter is located in a partition V γ of ξ lying within γ paired
hyperbolic areas, for γ < r = n

2 , be the probability that it
is situated within partition S2γ or S2γ+1. In the case where
the transmitter is located in the intersection of all hyperbolic
areas, i.e. for γ = r, the compound probability is equal to
that of Sn. Thus:

Pr�(T ∈ V γ) =


C, for γ = r
C × (2− C)
×(1− C)(n−2γ−1), for 1 ≤ γ ≤ r − 1

(1− C)n−1, for γ = 0

Proof:

1. For γ = r:

Pr�(T ∈ V r) = Pr�(T ∈ Sn) by Definition 2

= C × (1− C)0 = C by Theorem 3

2. For 1 ≤ γ ≤ r − 1:

Pr�(T ∈ V γ) = Pr�(T ∈ S2γ ∪ S2γ+1)
by Definition 2

= Pr�(T ∈ S2γ) + Pr�(T ∈ S2γ+1)

= C × (1− C)n−2γ

+ C × (1− C)(n−(2γ+1))

by Theorem 3

= C × (1− C)(n−2γ−1) × (2− C)

3. For γ = 0:

Pr�(T ∈ V 0) = Pr�(T ∈ S0 ∪ S1)
by Definition 2

= Pr�(T ∈ S0) + Pr�(T ∈ S1)

= (1− C)n + C × (1− C)n−1

by Theorem 3

= (1− C)n−1

V. PERFORMANCE EVALUATION

We describe the scenario configuration employed to acquire
our simulation results. We compare the performance of both
the compound and multiplicative probability schemes against
our experimental results.

A. Scenario Configuration

The attack scenario is modeled on a 1000 × 1000 meter
grid. The possible location of a transmitter is simulated along
each grid point located at 100 meter intervals. Four receivers
are simulated, and the RSS values computed at each receiver
follow the Rappaport model [20] with a random amount
of shadowing along a normal distribution curve with mean
zero. We assume the radio signal frequency to be 2.4 GHz.
The reference distance, path loss exponent and shadowing
standard deviation measured experimentally for this frequency
by Liechty et al. [25], [27] are used. One thousand executions
of the position bounding algorithm are computed for each
of four confidence levels C = {0.95, 0.90, 0.85, 0.80}, for
each possible transmitter location on the grid. The number
of hyperbolic areas in which the transmitter is located is
accumulated over the executions. The success rate of our
results is deemed accurate within a confidence interval of ±3%
to ±4% of the grid point mean, depending on distance between
the transmitter location and center of the grid, with confidence
90%.

B. Experimental Results

We partition the simulation grid into three ranges of grid
points within which the hyperbolic position bounding al-
gorithm exhibits different behaviors. As with the bounding
scheme, the compound probability mechanism performs op-
timally when the transmitter is located between pairs of
receivers. Figure 4 illustrates the grid points at which the



transmitter locations are simulated, as well as the positions
of the four receivers, each depicted by a small cross. The
central range comprises the centrally located grid points, the
aggregate range includes the grid points located between pairs
of receivers so that the confidence levels can be combined, and
the outer range includes the points outside the scope of any
pair of receivers. The aggregate range points are deemed to
encompass the central range points as well.
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Fig. 4. Simulation Grid Ranges

With four receivers in the simulation scenario, six possible
receiver pairs compute a total of 12 hyperbolic areas. Figures 5
and 6 compare the probability distributions within these hy-
perbolic areas for C = 0.95 and C = 0.90. The compound
probability (CP) and multiplicative probability (MP) distribu-
tions are computed according to Theorem 3 and Lemma 2
respectively. The experimental results depicted correspond to
the simulated transmitter locations within the central (CR)
and aggregate (AR) ranges. While both computed probability
distributions decrease noticeably below the maximum 12 hy-
perbolic areas, the CP distribution remains more proportional
to the simulation results obtained within both the central
and aggregate ranges. For example, the relative probability
decrease exhibited in the simulation results from 12 to 11
hyperbolic areas for C = 0.95 averages around 93%, and the
same decrease in compound probability is 95%. By contrast,
the multiplicative probability decreases by only 37%.

The goodness-of-fit of the CP and MP distributions to
the experimental results is measured using the statistic DN

associated with the Kolmogorov-Smirnov test [28], [29].
The Kolmogorov-Smirnov statistic expresses the difference
between an empirical probability distribution F0(x) and a
hypothesized one FN (x) as the least upper bound of the
absolute difference between all the corresponding points of
both distributions: DN = supx[|FN (x) − F0(x)|]. Figure 7
depicts the Kolmogorov-Smirnov statistics with the computed
distributions, CP and MP, as the empirical distribution, and
the experimental results in the central and aggregate ranges
as the hypothesized distribution. For all confidence levels,
the maximum point-wise differences between the CP distri-
bution and simulation results in both ranges are minimal,
compared to their differences with the MP distribution. For
C = {0.95, 0.90}, the Kolmogorov-Smirnov statistics for CP
and the simulation data remain below 15%, while they reach
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Fig. 5. Hyperbolic Area Probability Distributions for C = 0.95
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Fig. 6. Hyperbolic Area Probability Distributions for C = 0.90

60% when MP is considered. The performance of the CP
algorithm in the central range alone is even better, with the
maximum difference not exceeding 5% for C = {0.95, 0.90}.
The compound probability distribution is clearly the better
model for the experimental results than multiplicative prob-
ability, although compound probability performs even better
for the central range points.

Figures 8 and 9 illustrate the cumulative probability distri-
bution results for C = 0.95 and C = 0.90. Again, it can be
seen that the CP distribution more closely models both the
central and aggregate range simulation results than does the
MP distribution. Figure 10 plots the cumulative probability
distribution for both CP and MP, given each of four confi-
dence levels C = {0.95, 0.90, 0.85, 0.80}. It should be noted
that as a binomial distribution, the multiplicative cumulative
probability follows a Gaussian curve, while the compound
cumulative probability reveals an exponential curve. Because
the probabilities exhibited by the simulation data also follow
an exponential curve, as shown in the central range results
of Figure 11, the compound probability mechanism inherently
provides the better model independently of the value of C.
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Fig. 8. Cumulative Probability Distributions for C = 0.95

The performance of the CP mechanism when hyperbolic
areas are paired, as defined in Corollary 1 of Theorem 3, can
be assessed by comparing the results of Figures 5 and 6 with
those of Figures 12 and 13. Because the pairing algorithm
exploits the natural symmetry between some of the hyperbolic
area pairs, the correspondence between the CP distribution
and simulation results is closer. For example, Figures 5 and 6
indicate a dip in the central range probability for 11 hyperbolic
areas. Given that the grid points are centrally located, a
significant portion of them are located in symmetric hyperbolic
area pairs. As a result, their appearance in an odd number
of hyperbolic areas is likely an anomaly. When hyperbolic
areas are paired, as with Figures 12 and 13, this aberration
disappears, and the corresponding probabilities are at once
more commonsensical and better fitted to the experimental
results.

VI. CONCLUSION

We presented a compound probability mechanism to com-
bine together the confidence levels that the trusted receivers of
an attack message assign to the hyperbolic areas delineating
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Fig. 9. Cumulative Probability Distributions for C = 0.90
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a malicious insider node’s probable position. These areas are
computed using a position bounding algorithm that employs
the relative RSS values of the attack message to estimate the
location of the transmitting device within minimum and maxi-
mum hyperbolas, with a degree of confidence. The confidence
of the hyperbolic areas computed by multiple pairs of receivers
are aggregated to determine the confidence ascribed to the
common intersections.

Given that our threat model is based on a closed world
assumption necessitating the reduction of uncertainty rather
than ignorance, the compound probability mechanism is based
on the Bayesian conditioning model. This approach enables
the supportive aggregation of concurring evidence rather than
its weakening through competitive probability redistribution.

Performance evaluation through simulation reveals that the
compounding probability paradigm constitutes a better proba-
bilistic model of the hyperbolic position bounding experimen-
tal results than the simple multiplicative probability model.
While the latter results in a maximum point-wise difference
of up to 60% for the higher confidence levels when compared
to the simulation data, our compound probability method
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Fig. 12. Paired Hyperbolic Area Probability Distributions for C = 0.95

never exceeds a 15% difference. Our model clearly yields
the better probability distribution for the experimental location
estimation results.

The hyperbolic rogue position bounding algorithm is suffi-
ciently generic to be applicable to various types of wireless
technologies, such as WiMAX/802.16 access networks or
vehicular networks. Consequently, any type of wireless tech-
nology adopting the position bounding mechanism will benefit
from the probability compounding algorithm presented herein.
What additional classes of problems in alternative domains can
benefit from our confidence aggregation mechanism remains
an open question.
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Université de Sherbrooke. During the ’98-’99 academic year, he was a visiting
researcher at the University of Aizu, Japan. Since 2000, he works at Carleton
University, Canada. The topic of wireless communications has been his main
research interest. He puts his efforts more particularly on the topics of wireless
security, vehicular communications and wireless access network management.
He also conducts work on small satellite software and AI for computer games.


