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Abstract. We give a new local test, called a Half-Space Proximal or HSP

test, for extracting a sparse directed or undirected subgraph of a given
unit disk graph. The HSP neighbors of each vertex are unique, given a
fixed underlying unit disk graph. The HSP test is a fully distributed,
computationally simple algorithm that is applied independently to each
vertex of a unit disk graph. The directed spanner obtained by this test is
shown to be strongly connected, has out-degree at most six, its dilation
is at most 2π + 1, contains the minimum weight spanning tree as its
subgraph and, unlike the Yao graph, it is rotation invariant. Since no
coordinate assumption is needed to determine the HSP nodes, the test
can be applied in any metric space.

1 Introduction

An ad-hoc network is a network consisting of transmitters, often called hosts,
that is established as needed, typically without any assistance from a fixed in-
frastructure. It is assumed that each host can communicate with all the hosts
within its transmission range with a single transmission, called a hop. Typically,
not all hosts are within the transmission range of each other and the transmis-
sion ranges of all hosts are identical. We will additionally assume that each host
knows its location, its coordinates in the plane, obtained by a low energy GPS
device or by other means.

Such an ad-hoc network can be represented by a unit disk graph (UDG) in
which the vertices are points in the Euclidean plane at coordinates corresponding



to the geographical location of the hosts. Two nodes are connected by an edge
if their Euclidean distance is less than a given unit, where the unit represents
the common transmission range of the hosts. Due to the use of unit disk graphs
for ad-hoc network representations, computations in the UDG are of interest in
computer science.

A subgraph of the UDG is called a geometric graph. The length of an edge
[u, v] between adjacent vertices u and v of a geometric graph is defined to be
the Euclidean distance between u and v. Given a path p in a geometric graph
G the length of the path is the sum of the Euclidean lengths of the edges of p.
Thus, for any pair of vertices u, v of a geometric graph G we define the distance
dG(u, v) to be the length of the shortest path between u and v in G. Let G be
a geometric graph and G′ be a spanning subgraph of G. If two vertices of G are
connected by an edge e in G and the distance of these vertices in G′ is equal
to k then we say that the dilation of e is equal to k. We call G′ a t−spanner of
G if the dilation of any pair of adjacent vertices of G is at most t. A geometric
graph is planar if no two of its edges represented by the straight line segments
intersect each other.

When a UDG contains regions with many vertices, the graph may contain a
large number of edges, or in an extreme case it may contain a complete subgraph
(all the nodes are reachable). For many applications, like routing, energy efficient
broadcast, power optimizations, etc., it is often preferable to extract from a
given UDG a subgraph having some specific properties, e.g., being planar, or
close in weight to a minimal spanning tree, or a t−spanner [7, 17, 4, 13]. In an
ad-hoc network the topology of the whole network is typically not available in
the nodes of the network due to the lack of a central infrastructure, the reduced
amount of memory available and the possible mobility of the hosts. Thus, in these
situations, the extraction of a suitable geometric subnetwork must be done in a
distributed manner in the network using local information. Ideally, there should
be a simple algorithm that is executed by each node of the network using only
information on nodes reachable within a fixed number of hops, called a fixed-hop
neighborhood. This algorithm would determine which edges of the UDG incident
with the node are retained for the suitable geometric subgraph. Such algorithms
are called tests and the geometric graphs which are obtained in this manner are
usually called local proximity graphs [9].

For extracting a planar subgraph of a given UDG one can use the Relative

Neighborhood test [17], the Gabriel test [7], or the Morelia test [3]. Given a UDG
G, the spanner RNG(G) is obtained by applying the RNG test to every edge
of the UDG: edge [u, v] is retained in RNG(G) if there is no vertex z such that
max{dG(u, z), dG(v, z)} < dG(u, v). The Gabriel and the Morelia tests have a
different condition to retain edges for the spanner and the graphs produced by
applying the tests are denoted G(G) and M(G), respectively. Given a UDG G
we have RNG(G) ⊆ G(G) ⊆ M(G), but none of the graphs is a t−spanner for
any fixed number t.

For extracting a spanner of a given UDG having a bounded dilation of edges,
one can use a Yao test [18] that is defined as follows. Let k be an integer greater



or equal to 6. ¿From each vertex v of a unit disk graph G draw rays separated
by 2π/k angles, starting with a ray in the horizontal line. A cone is defined as
the space between two rays and including one of the rays so that the plane is
partitioned into k cones. Yao test retains in each cone the shortest edge [u, v]
of G, if any exists. The collection of these oriented edges form the directed Yao

graph
→

Y k (G). The undirected Yao graph Yk(G) is obtained by omitting the
direction of edges. It has been shown [10] that the Yao graph is a 1

1−2 sin π/k -

spanner and, clearly, its out-degree is at most k. Unlike the spanners obtained
by the RNG, Gabriel, or Morelia test, the graph Yk(G) depends on the exact
position of the cones. Thus if G′ is obtained by a rotation of a unit disk graph
G then, in general, Yk(G) is not a rotation of Yk(G′).

In this paper we propose a new local test for constructing a t-spanner of a
UDG, called the Half-Space Proximal test, or HSP test for short. In Section 2,
we give a definition of the HSP test and show that, similarly to the Yao test, the
spanner obtained by the HSP test has a bounded dilation, out-degree at most 6,
and is strongly connected, and it contains the minimum weight spanning tree as
its subgraph. However, unlike the Yao test, the HSP test applied to a rotation
of the UDG G yields a rotation of the HSP spanner of G. Thus, the graph
properties of the HSP spanner are independent of the orientation of the unit
disk graph in the plane. Section 3 contains experimental results involving HSP
and Yao spanners of randomly generated unit disk graphs of different densities.

2 Half-Space Proximal Spanner and its properties

We assume that graph G = (V, E) is a unit geometric graph where each node v
has the coordinates vx, vy in the Euclidean plane and each vertex is assigned a
unique integer label.

2.1 HSP test

Input: a vertex u of a geometric graph and a list L1 of edges incident with v.

Output: A list of directed edges L2 which are retained for the
→

HSP (G) graph.

1. Set the forbidden area F (u) to be �.

2. Repeat the following while L1 is not empty.

(a) Remove from L1 the shortest edge, say [u, v], (any tie is broken by smaller
end-vertex label) and insert in L2 directed edge (u, v) with u being the
initial vertex.

(b) Add to F (u) the open half-plane determined by the line perpendicular
to the edge [u, v] in the middle of the edge and containing the vertex v.
(Notice that the points of the line do not belong to the forbidden area)

(c) Scan the list L1 and remove from it any edge whose end-vertex is in
F (u).



(a) Original set of points (note the zooming, below)

(b) The HSP spanner

(c) 1st neighbor (d) 2nd neighbor (e) 3rd neighbor (f) 4th neighbor

Fig. 1. Applying the HSP test to an UDG. The original set of points (a) and the
resulting indirected graph (b). A zooming around the vicinity of a selected node (c)
· · · (e). Notice the crossing (shaded area) in (b)



An illustration of the HSP test applied to an UDG is given in Figure 1,
zooming is applied to a selected node and the forbidden area is shaded.

We stated the test using the forbidden half space due to its easy visualization.
Computationally, the elimination of edge [u, z] by an edge [u.v] is done when the
Euclidean distance from z to v is less than the Euclidean distance from z to u.
Furthermore notice that the proximity test can be done without any explicit use
of the coordinates, the test can be accomplished in any metric space. The HSP
test is a local test since all we need to know in each vertex is the set of edges
incident with it.

Definition 1. Let G be a UDG with vertex set V . The oriented graph
→

HSP
(G) is defined to be the graph with vertex set V whose edges are obtained by

applying the HSP test to each vertex in V . The undirected graph HSP (G) is

obtained from
→

HSP (G) by omitting the directions of edges.

Theorem 1. If G is a connected UDG then the digraph
→

HSP (G) has out-degree

at most 6 and is strongly connected.

Proof. Let u be a vertex of G and [u, v] be an edge that is selected for
→

HSP
(G) by the above algorithm. The forbidden area generated by [u, v] is a half-plane
determined by the line perpendicular to the edge [u, v] at the middle of the edge

[u, v]. Furthermore, the next edge selected from u for
→

HSP (G) cannot be shorter
than [u, v]. This implies that the end-vertex v′ of the next edge selected from

u for
→

HSP (G) is in the area outside the circle around u of radius equal to the
length of [u.v] and inside the half-plane containing u. This means that angle
vuv′ is at least π/3. Since the angle between any two edges selected from u for

→

HSP (G) is at least π/3, the out-degree of u is at most 6. Notice that the degree
6 would be possible only if the selected edges form a regular hexagon.

We show the strong connectivity of
→

HSP (G) by showing that if [u, v] is

an edge of G than there is a directed path from u to v in
→

HSP (G). Assume
that there exist edges in G such that there is no directed path between the end-

vertices of the edges in
→

HSP (G). Let [u, v] be the shortest edge of G such that

there is no directed path from u to v in
→

HSP (G). According to the construction,

one possibility for [u, v] not being in
→

HSP (G) is that there exists an edge [u, z]

in
→

HSP (G) such that [u, z] is of length shorter or equal to the length of [u, v]
and v is in the forbidden area generated by the edge [u, z]. This implies that the
vertices u, v, z form a triangle with the angle vuz being at most π/3. Since G is a
UDG and the distance between z and v is strictly less than the distance between
u and v, edge [z, v] is in G, and furthermore, there exists a directed path from

z to v in
→

HSP (G). Since [u, z] is an edge in
→

HSP (G), there is a directed path

from u to v in
→

HSP (G). 2



One can lower the highest out-degree of any HSP−spanner to 5. As men-
tioned in the proof, the list L2 contains 6 edges after the execution of the
HSP−test on vertex v when v is the center of a regular hexagon. In this case
we may always remove from the list the directed edge closest to, say the vertical
line drawn through vertex v in the clockwise direction. It is easy to check that
this results in a strongly connected spanner of degree at most 5. Since there is
a sense of orientation for this edge deletion, this out-degree at most 5 spanner
depends on the rotation of the graph. In cases when the degree reduction is more
important, one can use the degree reduction to 5 using the above test.

One can ask whether or not the degree of the spanning subgraph could be
further improved. The answer is negative, by considering a star graph of degree
5 in which all edges are of length 1 and the angles between two consecutive edges
is 2π/5. This is a UDG and the only spanning subgraph is equal to G and thus
the degree is necessarily 5 in some cases.

Theorem 2. Let G be a geometric UDG and
→

HSP (G) be the digraph con-

structed from G by the above algorithm. Then the stretch factor of
→

HSP (G) is

at most 2π + 1.

Proof. Let u be a vertex of G and [u, v] be an edge of G of length r ≤ 1 such

that the edge is not selected by u for
→

HSP (G). Then there exist an edge [u, u1]

in G which is selected by u for
→

HS (G) such that [u, u1] is shorter than [u, v]
and the angle u1uv is less than π/2. Thus the edge [u, u1] makes the vertex v to

be in the forbidden area (see Figure 1). If the edge [u1, v] is in
→

HSP (G) than
the stretch factor is less than 3, else we can argue inductively that there exists
a sequence of vertices (see Figure 2) u0 = u, u1, u2, u3, . . . , uk+1 = v such that:

1. for every i, 0 ≤ i ≤ k, there is an edge [ui, ui+1] in
→

HS (G),
2. for every i, 0 ≤ i ≤ k − 1, the length of [ui, ui+1] is less than the Euclidean

distance between ui and v,
3. for every i, 0 ≤ i ≤ k − 1, the angle ui+1uiv is less than π/2,
4. for every i, 0 ≤ i ≤ k−1, the vertices u0, u1, u2, . . . , uk are in either clockwise

or anticlockwise order around v,
5. for every i, 0 ≤ i ≤ k − 1, the Euclidean distance between ui+1 and v is

smaller than the Euclidean distance between ui and v,
6. the sum of the angles

∑k
i=0

uivui+1 < 2π

The items 1, 2 and 3 are due to the fact that the edge [ui, v] is not chosen

for
→

HSP (G) by ui. If the vertices u0, u1, u2, . . . , uk are not all in clockwise or
anticlockwise order then there exists and integer i such that the distance between
ui−1, ui+1 is less than the distance between ui, ui+1. Since G is a UDG the edge
[ui−1, ui+1] exists in G and we can argue that there is a path from u to v in

→

HSP (G) that is even shorter than the sequence u0 = u, u1, u2, u3, . . . , uk+1 = v.
The item 5 follows directly from item 3.



If
∑k

i=0
uivui+1 ≥ 2π then there exist integers i and j, 0 ≤ i < j − 1 such

that the vertex uj is in the triangle ui, v, ui+1. We can argue, since G is a UDG,

that there is a path from u to v in
→

HSP (G) that omits the edges between ui+1

and uj and hence is shorter than the sequence u0 = u, u1, u2, u3, . . . , uk+1 = v.

Consider the circle with center v of diameter r and denote by ci the point of
intersection of the line segment from v through vertex ui (see Figure 2). By the
triangular inequality, the Euclidean length of the edge [ui, ui+1] is bounded from
above by si+ri−ri+1 where si denotes the length of the circle segment from ci to
ci+1 and ri denotes the Euclidean distances between ui and v. Thus the Euclidean
length of the path specified by the sequence u0 = u, u1, u2, u3, . . . , uk+1 = v is

at most
∑k

i=0
si + ri − ri+1 ≤ 2πr + r. Thus the stretch factor is at most 2π +1.

2

The stretch factor given in the previous theorem cannot be improved since
the situation depicted in Figure 2 can occur. Due to the edges [u, u1], [u, y], [u, z],
there is no edge from u to v, u2, u3, . . . , uk and thus the path length is at least
2π(1− δ)− ε + (1− δ) = 2π + 1− δ(2π + 1)− ε. Since δ and ε can be arbitrarily
small positive numbers, the dilation can be arbitrarily close to 2π + 1. However,
it is clear that the configuration in Figure 2 is unlikely to occur in a UDG that
represents an ad-hoc network. The upper bound of 1

1−2 sin π/k for Yao spanners

is valid for k ≥ 7 and this bound is larger than 2π + 1 for k = 7.

u

y

k−1

v
1 1−

u1

uk

u

z

δ

u2

u3

c2

c3

Fig. 2. The worst case (maximum dilation) for the HSP-spanner.

A geometric minimum weight spanning tree of G is the minimum spanning
tree in which the cost of each edge is its Euclidean length.

Theorem 3. If G is a connected unit disk graph then a geometric minimum

spanning tree of G is a subgraph of HSP (G).



Proof. Let G be a geometric unit disk graph and T be the geometric minimum
spanning tree of G that contains the maximum number of edges of HSP (G).
Assume that there is an edge [u, v] ∈ T which is not in HSP (G). Since the edge
[u, v] is not in HSP (G), there exist an edge [u, w] in HSP (G) and either [u, w]
and [w, v] are shorter than [u, v] or dG[u, v] = dG[u, w] and [w, v] is shorter than
[u, v]. Clearly, for one of u and v there is a path p to w in T that does not contain
edge [u.v]. If such a path exists from v then removing [u, v] from T and adding
[u, w] we obtain a spanning tree of the same or lower cost containing one more
edge of HSP (G), a contradiction. If such a path p exists from u then removing
[u, v] from T and adding edge [w, v] instead we obtain a spanning tree of lower
cost, a contradiction. 2

It should be noted that, like in a Yao graph, the in-degree of
→

HSP (G) is not

bounded by any constant, and
→

HSP (G) is not necessarily a planar graph (see
Figure 1(f), shaded area). If a low in-degree is needed, one can apply to HSP
spanners the technique from [1] that has been used to lower the in-degree of Yao
graphs.

3 Experimental Results

In our experiments we used a UDG with 50 nodes randomly placed in a grid area
of size varying between 500 and 2000 units. The transmission radius is 250 units
in all of these graphs. Thus, as the grid size becomes larger the UDG density
gets smaller. For each unit disk graph HSP spanner and Y AO spanner (with 6
cones) were generated both directed and undirected versions.

We measured the dependence of the following parameters of the HSP and
Yao spanners on the density of UDG:

1. Minimum, maximum and average in-degree,
2. Minimum, maximum ans average out-degree,
3. The number of edges that cross each other,
4. The total weight of spanners,
5. Average Euclidean distance in the spanner,
6. The average number of hops.

See the results of experiments in Figures 3,4(a) and 4(b). The in-degree and out-
degree of HSP spanners is lower that those of Yao spanners and so is the total
weight of the spanners. As far as the number of crossing edges is concerned, it
is higher for HSP spanners when the density is higher, but is lower for smaller
densities. Due to the significantly lower in and out-degrees of HSP spanners,
the average distances in HSP spanners are higher.

4 Conclusion

The HSP test proposed in this paper is a distributed test that gives a 2π +
1)−spanner of a UDG. The computation of the test is simple, it easily generalizes
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Fig. 3. We performed some experiments to compare the Yao graph, in several parame-
ters, against the HSP graph. The in-degree and out-degree of the HSP graph is smaller
for the HSP for minimum, average and maximum, (a) and (b). The number of crossings
for HSP spanner is smaller than Yao spanner for more sparse graphs, and for denser
graphs is exactly the reverse. For dense graphs the HSP spanner have more crosses (c).
The total weigth of the HSP spanner is about half the total weigth of the Yao spanner,
consistently through the density (d).
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Fig. 4. The average dilation as a function of the density

to any metric space, and the spanner obtained by the test is independent of the
exact placement of the graph in the plane. The experiments on random unit
disk graphs show that the average in-degree of the spanner is very low and the
number of edges that cross each other is very low for small densities. The total
weight is small and a high in-degree in unlikely to occur. Thus, it could be very
convenient in network applications where spanners having these properties are
useful.
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