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Abstract: In thispaper, westudy the transition matrix of M=G=1type. The
radius of convergence is discussed, conditions on classi cation of the states
are obtained, and expressions of the -invariant measure are constructed.
The censoring technique is generalized to deal with nonnegative matrices,
which may nat be either stochastic or substochastic. This allows usto prove
a factorizaton result for the discounted transition matrix. This factorizaton
provides a uni ed algorithmic approach for expressing the -invariant mea-
sure for transition matrices with a block structure, including the matrix of
M=G=1 type.

Keywords: -invariant measures, duality, factorizations, M=G=1type, quasi-
stationary distributions, radius of convergence.

1 Introduction

We consider an irredudble aperiodic Markov chain £X,;n = 1;2:::g of
M=G=1 type, whose transition matrix P is partitioned into block form:

3
D, D, D; D, tot

Do Ci C, Cs ¢0¢
P = Co C, C, tte¢ : (]_)
C, C; ¢ttt

where D, isamatrix of sizemgEm, all C; are squarematricesof nitesizem,
the sizes of the other block-entries are determined accordingly and all empty
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entries are zero. P is assumed to be stochastic or strictly substochastic. By
srictly substochastic, we mean that P _ O, Pe - eand Pe & e, wheaee is
a column vedor of ones.

The state space of the above block-partitioned Markov chain can be
expressed as S = [iL,Li, where Ly = f(0;j);J] = 0;L12;:::;mog and
Li=T(;));) =0;1;2;:::;mg for i _ 1. In state (i;]), variable i is called
the level and variable j, the phase. Therefore, L; isthe set of all states at
level i. For convenience, wewrite L.; = [}_,Lx and L _; for the complement
of L-(iil)-

Let ® betheradiusof converqgwce for thetransition matrixP = (P¢:riG:s))-
We know that ® = supfz > 0, 720 2"P(i)y e < 10 . 1, where pe)). i
isthe n-step transition probability and ® is independent of states (i; r) and
(4:9).

I nonnegative nonzero row vector % is said to be an invariant measure of
Pif%=%P. For 0< - ®, anonnegative nonzero row vector % is said to
bea -invariant measureof P if . =% P. Cal P thediscounted transition
matrix at rate . Then, a -invariant measure is simply a invariant measure
of the discounted matrix. It follows from the de nition that a l-invariant
measure is simply an invariant measure.

For the transition matrix P of M=G=1 type, we are interested in

a) determination of the radius of convergence ®;
b) conditions on further classi cation of the states when P istransient; and

c) expressions for the -invariant measurefor 0< - ®.

There are a number of reasons why the above items are of interest.

1) It iswell-known that % = (%;) is a quasistationary diggibution if and
only if, for some > 1, %isa -invariant measuresatisfying ;% < 1. The
study of quasist ationary behaviour of a Markov chain isnot only theoretically
important, but also nds interesting and important applicationsin many ar-
eas, including, for example biology (Sche®er 1951, i olling 1973, Pakes 1987
and Pollett 1987), chemistry (Oppenheim, Shuler and Weiss 1977, Parsons
and Pollett 1987 and Pollett 1988), and telecommunications (Schrijner 1995).

2) When the entries ¥ in % cannot be summed, the concept of the -
invariant measure is a generalization of invariant measures for a nonergodic
chain (| erman 1955, | arris 1957, Latouche, Pearce and Taylor 1998, Gail,
t antler and Taylor 1998, Zhao, Li and Braun 1998). In this case, % can
still be interpreted probabilistically in terms of the movement of particles
whose initial states are governed by Poisson distributions (| erman 1955 and



Kelly 1983). | Iso, % can be used to de ne a time-reversed matrix or dual
matrix, which has important applications (Kelly 1979, Ramaswvami 1990,
I smussen and Ramaswami 1990, Bright 1996 and Zhao, Li and! Ifa 1999).

3) It is well known how important the Perron-Frobenius Theorem is in
the theory of ~nite nonnegative matrices. The radius of convergence ® of P
can be consider ed the Perron-Frobenius eigenval ue of the nonnegative matrix
P and an ®-invariant measure of P a Perron-Frobenius eigenvector of P.

It isbdieved that the study on quasist ationary behaviour was originated
by | aglom (1947). Since then, signi cant advances in the theory of qua-
sistationarity have been made through the e®orts of many researchers. |
detailed review on the literature can be found in the Ph. . dissertation of
Schrijiner (1995). This study has also successfully advanced to considering
transition matrices with blodk structure since Kijima (1993) made a break
through on the determination of the radius of convergence for Markov chains
of GI=M=1type and M=G=1 type without boundaries. For blodk-structured
transition matrices, studies have been centered on adbtaining probabilistic
measures to express the radius of convergence and quasistationary distribu-
tions, induding classi cationsof the statesin terms of t hese measures. People
are searching for expressions which are numerically preferable. Results on
quasi-birth-and-death (QB! ) processes can be found in Kijima (1993), Maki-
moto (1993), Bean et al. (1997), and Bean, Pollett and Taylor (1998, 2001).
Some preliminary results on t he expressions for the matrices of G1=M=1type
and M=G=1 type were obtained in Li (1997). | survey on quasistationary
distributions of Markov chains arising from queueing processeswas conduct ed
by Kijima and Makimoto (1998).

In this paper, we will study the matrix of M=G=1 type with boundary
blocks as de ned in (1). The issue on the radius of convergence will be
addressed by combining characteristic results obt ained by Kijima (1993) and
theboundary treatment based on censoring. For the casewithout boundaries,
the matrix is always ®-transient. With the presence of the boundary, the
matrix can be either ®-transient or ®-recurrent. Conditionson classi cations
of the transient states will also be discussed in this paper. For the matrix
of M=G=1 type, we have nat noticed the existence of an expression for the
~-invariant measure in the literature. We will provide a constructive way of
expressing such a measure.

The technique used in this paper to study the radius of convergence
and conditions on classi cations of the transient states is based on cen-
soring. This technique has been successfully used in studying many ot her
aspects of blodk-structured stochastic or strictly substochastic matrices (for
example, see Grassmann and t eyman 1990, Latouche 1993, Zhao, Li and
Braun 1998, 2001, Zhao, Li and i Ifa 1999, Latouche and Ramaswvami 1999,
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and Zhao 2000). In order to use the censoring technique to deal with the
issue of the -invariant measure, we need to generalize results of stochastic
or strictly substochastic matrices to that of nonnegative matrices.

What we will use to obtain expressions for the -invariant measure is
the method of factorization, where | j P isfactorized into the product of
an upper triangular matrix and a lower triangular matrix. We shall call it
the RG-factorization, since thefact ors in factorization involvethe R- and G-
measures, which are two key probabilistic measuresin our study and de ned
later. This factorization may beviewed as a UL-factorization for the in nite
matrix I § P. Theprocedureof dbtaininga solution for the -invariant mea-
sure can be considered a generalization of using a UL-factorization to solve a
“nite system of linear equations. Expressionsfor the -invariant measure are
di®erent accordingtothedassi cation of thestatesand thevalueof . When
we use the factorization technique, the key is how to associate the middle
factor or the diagonal matrix with either the upper triangular or the lower
triangular matrix. Our study will provide a way to successively ident ify two
di®erent setsof solutions for the -invariant measure. When = 1, an equiv-
alent form of this factorization was obtained and studied by ! eyman (1995),
Zhao, Li and Braun (1997, 2000) and Zhao (2000). In Li (1997), the matrix
I § P wasfactored into an equivalent form of the RG-factorization with-
out using the R-measure. Thee are three possible dit culties when using
the RG-factorization on in nite matrices. Firstly, the associativity of ma-
trix multiplications cannot be taken for granted, secondly, the existence of
a non-trivial solution to a linear system of in nitely many equations cannot
be taken for granted, and thirdly, the method of dealing with a recurrent
matrix and a transient matrix should be distinguished. When the Markov
chain is positive recurrent, these issues have been successfully addressed in
the literature, for example, seet eyman (199). Ramaswami (1988) pre-
sented a stable recursion, equivalent to the factorization of i eyman, for the
steady state vector for Markov chains of M=G=1 type. | Iso, Meini (1997)
studied the matrix of M=G=1typein termsof a method of factorization. For
quasistationary distributions, the method employed by Bean, Pollett and
Taylor (2001) to the quasi-birth-and-death process is essentially equivalent
the fact orization method used in this paper. t owever, they did not indicate
how the expressions for the ~-invariant measure are constructed.

It is our belief that the idea presented here can also be used to study
other types of block-structured matrices, for example, matrices of G1=M=1
type and, more generally, G1=G=1 type.

Therest of the paper is organized as follows.

In Section 2, some basic properties on matrix P are provided, including
properties on the existence of an inverseof | § P, the minimal nonnegative
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inverse and the fundamental matrix. These properties are needed in later
sections.
When P is transient, the states of P cangbe further class ed as ®-

recurrent or ®-transient according to ® = = L ®Pk = 1 or < 1,
respectivdy. The matrix &P is referred to as the fundamental matrix of
®P. If P is®-recurrent, either limp, « 1®”p(”) > O for all states (i;r) and

@in:G:9)

(J;s), or Iimn!1®”p$)r (Gis) = 0 for al states (i;r) and (J;s). In the former
case, P is called ®-positive and in the latter case, ®-null. In Section 3, we
provide a determination of the radius ® of convergence and conditions on
classi cations of the transient states, based on the combination of the result
of determining the radius ® of convergence for the matrix of M=G=1 type
without boundaries and a new treatment for the boundary.

In Section 4, the RG-factorization for matrix | § P isproven. We show
that

i P=[iRuOIN i UoO)IN i GO

where Ry( ) is a block-form upper triangular matrix involving only the R-
measure, G, (' ) is a block-form lower triangular matrix involving only the
G-measure, and Up( ) is a blodk-form diagonal matrix. The R-measure is
a sequence of matrices de ned by (14) and (15) and the G-measure for the
matrix M=G=1 type consists of two matrices de ned by (4) and (16). Prob-
abiligtic interpretations for both R- and G-measures are provided after the
de nition formulas. In this section, we also show that the RG-factorization
exists for the matrix of level-dependent M=G=1 type.

In Section 5, based on the RG-factorization, expressions for the -invariant
measure are obtained. There are two di®erent sets of expressions. Oneis for
the ®-invariant measure when P is ®-recurrent. In this case, the ®-invariant
measure is unique up to multiplication by a positive constant. For all ot her
cases, we provide a common expression for the -invariant measure. When
the -invariant measure cannot be summed, this uniqueness is no longer
guar anteed.

The nal section, Section 6, consists of concluding remarks.

2 Preliminaries

In this section, we provide some properties on negative matrix P, which
will be used in later sections. Most of these results can be viewed as general-
izations of the counterparts for a stochastic or strictly substochastic matrix.
Proofs to these properties may not be obvious. ! owever, since they can be



proved either in the same way as that for a stochastic or strictly substochas-
tic matrix or in a similar fashion, we omit most of the proofs. Rdevant
references are Seneta (1980), Kemeny, Snell and Knap (1976), Cinlar (1975)
among possible others.

I general statement on the existence and uniqueness of an ®-invariant
measure can be found in the literature, for example Seneta (1980) which
isstated in the following lemma. In order to do so, we need the concept
of superregularity. | row vector X is called a superregular measure of P if
X . XP. | row vector x iscalled a -superregular measureof P if x _  xP.
I 1-superregular measure is simply superregular.

Lemma 1 For irreducible aperiodic matrix P, there always exists a positive
®-superregular measure x. If P is ®-recurrent, then the unique ®-superregular
measure X, up to multiplication by a positive constant, of P is ®-regular and
positive.

Thefollowing are some basic properties about the existence of an inverse,
minimal nonnegative inverse and the fundamental matrix.

Lemma 2 (i) For0< < ® if P is ®-recurrent, orfor0< - ®if P is
®-transient, (I § P) is invertible. (ii) If (I § P) is invertible, then
X
P = TrpPK 2
k=0

is the minimal nonnegative inverse of (I § P), which is often referred to as
the fundamental matrix of P . (iii) Let P be partitioned into

T H .
L Q
Then, both (I § T) and (I § Q) are invertible for 0 < - ®.

P = (3)

Thefollowing lemma plays an important role in later sections, which will
be used to establish a relationship between block-entries of the fundamental
matrix P.

Lemma 3 Let P be partitioned as in (3) and let P be partitioned accord-
ingly as

T TH®
P= -

 0< - ®:



Assume that | j P is invertible. Then, the minimal nonnegative inverse
@ of (I § P) is given by

® = ~ #

(i Ti HR@ D/ i Ti HRLHH®
QLA T HO L ®+@L(Uj Ti HO L)L TH®

or equivalently,

_('P =
#
F+TFHIG Qi LF HN LT T HIi Qi LI H)I, .
(i Qi LY H)il LS (i Qi LI H)IL ’

where (1 j X)it =" L X is the minimal nonnegative inverse of 1 j X.

Remark 1 By sample path argument or the above lemma, we can show that
the fundamental matrix is invariant under censoring. Let E be a subset of
the state space. Let P be partitioned according to E and its complement
EC asin (3). | nd let the fundamental matrix P of P be expressed asin
(4). Then, the fundamental matrix of the censored matrix (" P)E is equal to
the block-entry corresponding to the states in E in the fundamental matrix

®.

3 Radius of convergence and classi cation of
states

Let ® betheradiusof convergence for P. If ® = 1, the classi cation of states
isconventional. So, we areonly interested in the classi cation of states when
® > 1. This corresponds to a further classi cation of the transient states.
The main purpose of this section is to determine the radius of convergence
® and to provide conditions on classi cation of the states. To pursue that,
we rgt de ne the matrix G( ) which, together with matrix G;.( ) de ned
in Section 4, is referred to as the G-measure for the transition matrix P of
M=G=1 type. The main results in this section will be expressed in terms of
the G-measurethrough the analysis of the fundamental matrix and censored
matrices N( ) and No( ). By introducing the G-measure, not only can the
theoretical analysis be carried out, but also it is computable.

Partition the discounted transition matrix P of M=G=1 type as in (3)
with T = D;,and H, L and Q being determined accordingly. | otice
that, in the partition, Q is the transition matrix of M=G=1 type without
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boundaries. Therefore, Q is the discounted transition matrix from Q. Let
Q@ = (@i;j(_))i;j —1.2.- bethe fundamental matrix for Q(' ) andwriteN( ) =
@]

The matrix G( ) isde ned by

G()=N() Cy (4)

G( ) isamatrix of sizem. The (r;s)th entry of G(' ) can be interpreted as
the total expected discounted reward with rate  induced by hitting state
(i;s) upon the process entering L .; for the rst time, given that the process
sarts in state (i + 1;r).

Remark 2 Though the matrix G( ) is de ned as the product of N( ) and
~ Cop, We usually rst compute G( ) and then determine N( ) in terms of
G( ). To do so, we need the following lemma, that says that all the other
block-entries in the "rst block-column in @ can be explicitly expressed in
terms of N(7), the (1; ) s block-entry in .

Lemma 4 For the fundamental matrix @ = (8;;(7))ij=12::»
Qi) =GCYINC): .1 (5)
Proof: It followsfrom (4) in Lemma 3 that
(@227 @aa()Ti::)T ="QLN():

Therepeating struct ure and the property of skip-free-to-left of the transition
matrix Q( ) leadsto

(@21 ()75 BT :)T = (NO)T; Bz0()52:2) T CoN():

The proof is completed by the above recursive expression and repeatedly
using N( ) Co=G( ). ]

For thediscounted transition matrix P of M=G=1type, we partition the
fundamental matrix ¥ of P according to levels. The block-entries of P
are denoted by lbi;j (). It isclear that to study the radius of convergence
and to classify the states, it is sux cient to only consider an arbitrary block-
entry in @ . For theblodk-structured transition matrix P in (1), partition P
according to (3) with T = D;. It sux cesto consider the (1;1)st block-entry,
denoted by No("), in ®. Weexpress N(7) in terms of G(7) and No(") in
terms of N( ). Thiswill enable us to determine the radius of convergence ®
and provide conditions on classi cation of the states.
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T heorem 1 For the transition matrix of M=G=1type, the (1; 1)st block entry
N() in @ can be expressed as

— _X —_— - -

NC)=TIi CG(T) i1, (6)
k=1
P

or N() is the fundamental matrix for U( ) = kl=1 CG()Kil, The

(1; 1)st block entry Ng(") in "® can be expressed as
No()) =[1 i Uo()I'™; (7)

where
S
U( )= Dy + Di+1G (¥ N (7) Dy; (8)
k=1

or No( ) is the fundamental matrix for Ug( ).

Proof: | pply Lemma 3 to the discounted transition matrix Q. It
follows from (4) that N(7) = ®41(7) is the fundamental matrix for ~T +
"H® L. Then,

T+ H®@ L=Ci+ HO@u():;820);:::)Co

X o
= Ci1+ CkOx;1.1(7) Co:
k=2

| oticing that N( ) Co = G( ) and using Lemma 4 will complete the proof
tothe rst assertion.

To prove the second, apply Lemma 3 to the discounted transition matrix
“P. Then, Ng() is the fundamental matrix for " T + H @ L, where

T= D1, H= (DyDs;:::), @ isthefundamental matrix of Q and
L= (Do;G:::). Therefore,
. X_ o
U( )= D1+ Di®;1.1(7) Do
k=2
The proof is complete by using Lemma 4. [



Remark 3 It follows from the de nition equation (4) and eguation (6) that
G( ) satis esthe following equat ion:
- S
G()= CkG( )™ (9
k=0
We can further provethat G( ) isthe minimal nonnegative solution to equa-
tion (9).

The determination of the radius of convergence ® and the conditions on
classi cation of the states given below are based on the combination of the
classi cation result for thematrix without boundaries given by Kijima (1993)
and the treatment of the boundary. For convenience, we state two results by
Kijima here.

For thetransition matrix P of M=G=1type in (1) without boundaries, or
all Dy =Ck for k =0;1;:::, Kijima (1993) provided a method for determin-
ing the radius of convergence ® and showed that P is always ®-transient.
Lemma 5 (Kijima) Let C°%(z) be de ned by

X
C°(z)= CkZ¥; 0-1z<zg (10)

k=0
Let A(z) be the erron-Frobenius eigenvalue of C"(z). If zo > 1, then there
always exists a unique ° such that A(z) _ °z for all 0 < z < z, and
there exists some p with 0 < p - Zzg such that A(y) = p°. If p = 2z,

then © = A(zo)=zo. Otherwise, © and p can be determined by solving the
simultaneous equations

A) =°p and A(p) = °: (11)

By using this lemma, Kijima was able to show the following result.

T heorem 2 (Kijima) For the transition matrix P of M=G=1 type without
boundaries (Dx = Ck for all k _ 0), if ° is the quantity determined in
Lemma 5, then the radius of convergence ® of P satis es ® =1=° and P is
®-transient.

Remark 4 In fact, u given in the above lemma is the maximal eigenvalue
of the G(®). Makimoto (1993) obtained two types of expressions for the
quasistationary distributions of the PH=P h=c queue in terms of p and °,
and Kijima (1998) generalized those results to the matrix of GI=M=1 type
without boundaries.
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Remark 5 Kijima (1993) also related u and ° to the mean drift. The fact
that the matrix of M=G=1 type without boundaries is always ®-transient is
independent of the mean drift. | owever, the matrix with boundaries can be
®-transient, ®-positive recurrent or ®-null recurrent.

For P of M=G=1 type in (1) with boundaries, we can perform the spec-
tral analysis on the censored matrix to level O, Ug( ), to obtain conditions
on dassi cations of the transient states and a determination of t he radius of
convergence. | owever, it seems more convenient toreach thisgoal by consid-
ering the relationship between the censored matrix Up( ) and its fundamental
matrix No( ).

Let up(' ) and ng( ) be the maximal eigenvalues of the censored matrix
Uo(' ) and its fundamental matrix No( ), respectively. It follows from re-
sults of linear algebra that the rst two statements are true, for example,
Seneta (1980), and the third one follows from the de nitions of the radius of
convergence and Ny(' ).

Lemma 6 Let ® and ® be the radii of convergence of Q and P respectively.
In i) and ii), assume 0 < - ®.

i) Both uy( ) and ng( ) are strictly increasing in , and
i) ug( )<1lifandonly if No( ) < 1.
i) No() <®if <®and No(") =1 if >0.
iv) ® - ®.
Theclassi cation of the statesis charact erized by thefollowing conditions.
T heorem 3

i) Ifforall0< - ®, up( ) <1, then No(®) < A and ® = ®. Therefore,
P is ®-transient;

i) If there existsa " withO< ° - ® such that up( ) =1, then ® = °
and No(®) = .. Therefore, P is ®-recurrent.

Proof: Since P( ) is assumed irreducible, the censored matrix Uy( ),
and therefore the fundamental matrix No( ), are irreducble. Let sx( ) be
the sum of the kth row in No(' ). Then, the Perron-Frobenius Theorem
implies (for example, Corollary 1 to Theorem 1.1 of Seneta (1981)):

minsi(7) - no(") - maxsi(); (12)
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or

. — 1 _
minsi(") - Tiul) maxsk(") (13)
according to Lemma 6. Since the size of Ny( ) is nite, the radius of conver-
gence ® for P equals

®=supf :No( )< 1g
= supf :minsc(7) < 1g = supf : maxsk(") < 1g

according to Theorem 1. There are two cases. i) there exists no solution to
lju()=0for0< - ®. Inthiscase ny(®) < 1. Therefore, ® _ ®.
This, together with iv) of Lemma 6, implies® = ®. { ence, P is®-transient.
i) There exists a solution "tol juy( )=0for0< ° - ®. In thiscase
N( )= 1 and®= " - ®. Therefore, P is ®-recurrent. This completes
the proof. ]

Remark 6 The above result provides a way to classify the transient states
and to determine the radius of convergence of P. For an ®-recurrent P,
it is possible for us to nd a condition to P_,y'ther determine when it is
snull or ®-positive For example, if bath k1=1 kD G(®)kil < 1 and
k1=1 KCkG(®)Kit < 1, then the ®-recurrent Markov chain is ®-positive;
otherwisg, it is®-null.

Remark 7 Theorem 3 is also a generalization of classifying an irreducible
stochastic matrix into either arecurrent or transient matrix based on censor-
ing. For example, P isrecurrent if and only if every censored matrix of P is
stochastic. Therefore, the maximal eigenvalue of the censored matrix is one,
or up(l) = 1. P istransient if and only if every censored nite matrix of P
isstrictly substochastic. Therefore, up(1) <land® _ 1. If we replace ug(1)
mentioned above by ug(®), we then havethe conditions for ®-recurrence and
®-transience.

4 RG-factorization
TheRG-factorization of (I j P), whereP isstochastic or strictly substochas
tic, isaversion of U L-factorization having probabilistic interpretations. This

factorization was discussed by { eyman (1995), Zhao, Li and Braun (1997,
2000), and Zhao (2000). f eyman showed how to use this factorization to
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determine the stationary probability vector of a pasitive recurrent Markov
chain. When studying the quasi behaviour of transition matrix P of M=G=1
type without boundaries, Li (1997) obtained a UL-factorization for (I j P)
without using the R-measure de ned in this paper.

TheRG-factorization of (I § P) can be proved for an arbitrary transition
matrix P, with or without a structure. t owever, in this paper, we only
concentrate on the transition matrix of M=G=1type de ned in (1). We rst
need to de nethe R-measure and the matrix Gy.o( ).

Conside the fundamental matrix @ of Q. Let the rst block-column
of @ be (012(7)7;0x1(7)7;:::)T. The R-measure for the matrix P in
(1) consists of two sequences of matrices Rok( ) and Ru( ), k = 1;2;:::,
de ned by

XK
Rok(1) = Disi®ia(0) (14)

i=1

and

X _
Re( ) = Crsi®i2(): (15)
i=1

The (r;s)th entry of Rox( ) can be interpreted as the total expected dis-
counted reward with rate — induced by all visitsto state (k; s) before hitting
any statein L ., ;, given that the processstartsin state (G; r). Similarly, the
(r;s)th entry of R () can be interpreted as the total expected discounted
reward with rate  induced by all visitsto state (i + k; s) before hitting any
satein L.j+k;1, given that the process starts in state (i;r), wherei _ 1.

The G-measure far P of M=G=1 type consists of two matrices, G(' ) as
de ned in (4) and Gio( ) de ned by

Gro(") = ©11(7) Do =N(7) Do (16)

The (r;s)th entry of Gio( ) can be interpreted as the total expected dis-
counted reward with rate  induced by hitting state (0;s) upon the process
entering level O for the rst time, given that the processstartsin state (1;r).

| sing Lemma 4 in (14) and (15), the R-measure can then be expressed
as

. X o
Rox( ) = Di+iG()'™N(7) (17)
i=1
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and
X y
R«() = CiriGO)'"N() (18)
i=1
fork=212:::.

Remark 8 | ptonow, we have obtained all components needed in the fac-
torization equation and expressed in terms of G(' ) only.

For the matrix P of M=G=1 type with boundaries, the RG-factorization
can be stated in the following theorem.

T heorem 4 For the matrix P of M=G=1type in (1), | § P can be factorized
as

i P=[iRuO)IiUoO)IN i GO (19
where
_ B B 3
I iRoa( ) iRo2() iRoa( ) ¢te¢
I iRi() iRx() et
i RuOI= ' iRi() et 7 (20)

I cee

Up( ) is the diagonal matrix in block form with the rst block-entry on the
diagonal equal to Uy( ) and all the other diagonal block-entries equal to U ( ),
or Up( ) = diag (Uo( ;U( );U( );:::), and

2 | 3

iGuo( ) I
iG.()l= ic() I L ()
iG() |

Proof: Weonly prove the factorization equation for the rst blodk row
and rgt block column entries. The remainder can be similarly proved.

The entry on (1;0) on the right-hand sideis [l § U( )], which is equal
to i Dy from the de nition of Gyo( ).
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The entry on (0; k) with k _ 1 on theright-hand side is
i Rox()[1 i U(C)I+ Roger2 ()N 1 U()IG()

x sk o
=j Di+kG( )" + Di+k+1G ()" G(")
i=1 i=1

wherethe rs equality isdueto Lemma 4.
Finally, to seethe entry on (1;1) on the right-hand side is equal to the
entry on the left-hand side, we have

[ Uo( )]+ Rox(I i U()IG10()

X -
=1 i U()l+  DissG()'"!N() Do
i=1

_ X _ _ o X_ I
=[l'i Dii Di+1G()*FIN(7) Dol + Di+1G(7)'T*N(7) Do
k=1 i=1

where the rst equality isdueto Lemma4 and the second one dueto (8). m

We will usethe RG-factorization to obtain expressionsfor the -invariant
measure. | s we mentioned earlier, the RG-factorization is valid for an ar-
bitrary transition matrix P. | s a special case, it is valid for the transition
matrix of level-dependent M=G=1 type Therefore, for the transition matrix
of level-dependent M=G=1 typeg expressions for the -invariant measure can
be obtained using the same approach as given in the next section. We only
provide the RG-factorization here and leave other details for the reader.

For the transition matrix P of level-dependent M=G=1 type given by

cO cO cl cO ¢ >
c? e e e e
P = cP c? cf e
c® c® e

15



3
C(k) C(k) C(k) 000

2
g C(k+1) C(k+1) C(k+1) 000 z
= C(k+2) C(k+2) 0 k. I

Let the st block-column of thefundamental matrix @l of Qi be( ﬁ?(_)T,
QN 1)1 e neRP(T) by

X
RPO) =" "cHEI0) k. 0]
i=1

=

and de ne G®(7) by
GO =80MOTCc¥; k. 1
We also de ne
U ="C?+RP(I ™ k. @

£

T heorem 5 For the matrix P of M=G=1type in (4), | § P can be factorized
as

i P =[1i RoOII i YoOI i GO (2
where
? R“”() iROC) iROC) e O
iRPO) iRP() e
liRu()]= l iRP() ¢t z; (23)
| (A

Up( ) is the diagonal matrix in block form with the diagonal entries equal to
U(), k=0;1;2;:::, or Up( ) = diag (Ug( );U1( );Us( );:::), and
3

2
|G(l)( ) I
iG. ()= iGO() I L (29
iGOC) |
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5 -invariant measures

In this section, we use the RG-fact orization to dbtain -invariant measures
for the transition matrix P of M=G=1 type with boundaries, where 0 <
~ - ®. Since the RG-factorization is a version of the UL-factorization for
a matrix of in nite size, the procedure of obtaining an expression for the
~ -invariant measure is similar to the Gaussian elimination for solvinga nite
linear system. For 0 < - ®, let ¥ be a -invariant measure of P. We
present two sets of expressions. One for an ®-recurrent matrix with = ®
and the other for al the other cases. Since for an ®-recurrent matrix, its
®-invariant measure is unique up to multiplication by a positive constant,
the solution given here is a unique solution up to multiplication by a positive
constant. When P is®-transient, the -invariant measuremay not beunique.
Examples and remarks will be given.

In the RG-factorization in (19), the three matrices, [I § Ru( )], [l i
Up( )] and [I j GL( )], are associative. We can also prove that they are
assodative with any nonnegative vector ¥, which will lead to solutions for
the -invariant measure.

Lemma 7 Let P be the transition matrix of M=G=1 type and let % be any
nonnegative row vector. Then,

Ry(Igf(l 1 Up(O)IN 1 GL()]g
Ry(IIN i Up()all 1 GLO)]:

Proof: Thisisclear, for example, fromthe su+ cient conditions provided
in Corollary 1-9 of Kemeny et al.. ]

vyl i ~P] =yl

i
=Tl i

5.1 ®-recurrent with =®
In this case, we solve %(l j ®P) =0 by two steps. In the rst step, we let
X =%l j Ru(®)]: (25)

If X = (Xo;X1;:::) and % = (Y;%1;:::) are partitioned according to levels,
then (25) is equivalent to

Xo=Yio;
it

Xk=i%0Rox(®) i YiRk;i(®) + Y, k _ 1
i=1

17



Expressing Y in terms of Xk, we have

Yio=Xo; (26)
it

1/4k:1/40R0;k(®) + 1/4iRkii(®) + Xk, k - 1 (27)
i=1

In the second step, we solve
X[I'i Up(@®)][1 i GL(®)]=0 (28)

for anontrivial nonnegative x. If such a solution exists, then % given in (26)
and (27) will be nonnegative and nonzero. | ccording to Lemma 7, the above
Y4 isan ®-invariant measure of P and it isunique up to multiplication by a
positive const ant.

Equation (28) is equivalent to

Xo[l i Uo(®)] i xa[l i U(®)]G1,0(®) =0
Xell i U@®)] i Xkra[l i U@®)IG(®) =0; k| L
SinceP is®-recurrent, it followsfrom Theorem 3that t he maximal eigenvalue

of Ug(®) isup(®) = 1. Therefore, for nonnegative and irreducibleUq( ), there
exists a positive Xo such that

Xo[l i Uo(®)] =0:
t ence, (Xo;0;0;:::) is a solution to (28).

T heorem 6 If P is ®-recurrent, then the unique, up to multiplication by a
positive constant, ®-invariant measure is given by

Yio=Xo; (29)
it
Y oRok(®) + 4R ;i(®); (30)
i=1
where Xo is the unique, up to multiplication by a positive constant, solution
to Xo[l i Uo(®)] =0.

We may notice that this form of solution is the same as that of the

invariant measure for a recurrent Markov chain as obtained using the same
procedure in! eyman (1995) or an equivalent method in Ramaswami (1988).

18



5.2 ®-recurrent with < ® or ®-transient with - ®

In this case, we also proceed in two steps, but the matrices are associated
di®erently. In the rst step, let

y="%[ i RuC)IN i Up()]: (31)
This is equivalent to

Yo=aoll i Uo( )I;

y1=[i YoRo1 () + Y]l § UC)I; 4

o= _ _
Y= i%Rok( ) i YiRw;i( ) +¥% [ TU(C)] k.2
i=1

Since both [I § Ug( )] and [I § U()] are invertible in this case, we can
express Y in terms of yy:

1/40:}/()“ i Uo(_)]il; (32)
Yy =hoRoa(7) +yall 1 UO)HIT (33)
ot

1/4k:1/4ORO;k(_) + 1/4iRkii(_) + 1/“k[l i U(_)]il; K - 2. (34)
i=1

In the second step, solve

y[I i GL()]=0 (35)

for nonnegative nonzero y. If such a solution exists, then % calculated by
(32), (33) and (34) is nonnegative and nonzero. | ccording to Lemma 7,
the above % is a -invariant measure of P. Though in many cases such a
~-invariant measure is unique up to multiplication by a positive constant, in
some other cases, it is simply not unique.

Equation (35) is equivalent to

Yo i YiGruo( ) =0;
Yk i Yk+1G( ) =0; k _ 1

Inthe following, weconstruct anonnegative nonzerosolution y to (35). First,
we need the following lemma.

Lemma 8 For every 0 < - ®, there exist a p— > 0 and a nonnegative
nonzero vector z such that

-z = zG("): (36)
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Proof: Since G( ) . 0, the maximal eigenvalue u— of G( ) is non-
negative. If p— > 0, then the lemma is proved by choosing z to be the left
eigenvector of G(' ) associated with p-.

It follows from | euts (1989), by using irreducibility of P, that y; > 0.
Therefore, |- > 0for all ~ _ 1since G( ) isincreasingin .

For 0< < 1, theproof also relies on the irreducibility of P. Suppose
that there was an s with 0 < s < 1 such that ygs = 0. Then, - = 0 for
all 0< - s. Therefore, all the eigenvalues of G( ) when 0 < - s are
zero according to t he Perron-Frobenius theorem for nonnegat ive matrices. It
follows from the Cayley-t amilton theorem that

G"()=0; forall0< ™ - s (37)

where m is the size of matrix G('). On the other hand, according to the
probabilistic interpretation of G™(") and the assumption of irreducibility on
P, G™( ) & 0, which contradicts (37). [

Remark 9 Fora nitestochastic matrix, the maximal eigenvalue isone, and
for a nite strictly substochastic matrix, the maximal eigenvalue is smaller
than one. Thisproperty isno longer trueif thesize of thematrix P isin nite.
For example, the maximal eigenvalue is ®, which can be strictly greater than
one if P is transient. When < 1, P is strictly substochastic, but 1 can
sill be an eigenvalue of P. Thisis true when there exists a -invariant
measure for P.

By usingLemma 8and lettingy, = zG;4( ), wecan easily check thaty =
(Yo; z; z=p—, z=p2; : : 1) is a nonnegative nonzero solution to (35). Substituting
y into (32), (33) and (34), a -invariant measure is found.

T heorem 7 For the following values of : < ® if P is ®-recurrent or
~ - ®if P is ®-transient, a nonnegative nonzero -invariant measure of P
IS given by

Yo=yoNo( ); (3B)
Ya=2[N (") + Ga:0()No()Ro1()]; (9)
1/42:“2—_ N(7) +G(ON(DR:() (40)

+G()G10()No(D[Ro1(IR1() + Roa (g (41)

©
1/43=% N() +GOINOR() +GOYNORu(*+R()] (42)

+G(7)?G1o(")No()[Ro()R2(") + Roa(T)R1()? (43)
+Ro2( )R1(") +Roa( )]g
ceeece
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or it can be written as one common expression for k _ 1:
8

:

z _ < x _ _
VAK:F N()+  G()'N() Rj,( DR ()R ()
i=1

0-jo-ttt-ji-i
= P i
! o
+G( )" G1;0( )No( )_ Roi( ) Rj. (IR ()R, ()
=1 0-ji-tt-jgi-Kii %
p
cJe=Kii b

(44)
where Ro( ) = I.

- xample 1 Consider the quasi-birth-and-death process, or consider the tran-
sition matrix P in (1) withD; = C; =0fori _ 3. In thiscase, R =Rg; =0
fori _ 2and

Uo(") = D1 +Roa( ) Do= D1+ D2Guo( );
where
Roa() = D2N(); Gaio( ) =N() Do
The -invariant measure is given as
Yo=yoNo;
=gt NO=  ONOROY
i=1 ;

+G()*1G10(Ng(HRoa (R ()<t -

Remark 10 For a xed value of , G( ) can be eRectively computed by
a similar computational scheme for the case of = 1, for example, Ra-
maswami (1988), Latouche (1994) and Meini (1997). When G( ) becomes
available, other matrices, including U( ), N( ), Uo( ), No(" ), and the R-
measure can be computed. Finally, the -invariant measure %, can be com-
puted up to a desired index value. | detailed analysis of computational
scheme has been carried out and computational complexity has been counted
out. We omit all the details here.
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Remark 11 To see why we need two di®erent sets of expressions for the
~-invariant measure, let us consider the scalar case. If P is ®-transient, one
is not an eigenvalue of Uy(®). Therefore X[l i Ug(®)] = 0 only provides
the trivial solution. This meansthat the method used for the case in 5.1 is
not valid. If P is ®-recurrent, y given in Section 5.2 is zero. In fact, thisy
cannot satisfy (31) unlessyp, = 0. For example, I j Up(®) =1 § 1= 0 for
the scalar case, which gives y, = 0.

While in many cases there exists a unique -invariant measure up to
multiplication by a positive constant, in some other cases, the -invariant
measure is simply not unique. One such example was provided by Gail,
t antler and Taylor (1998), which is given as below.

- xample 2 In this example, C; =0, Dy =Cx =0 for k _ 3, and

_lipiw 4 .~ _ .. _ 0p-°
D, = . Dy,=C, = :
! % 1ipia "7 po

Do =Cp =

where, 0<p<1,0<(0;<1,0<0, <1, 0<p+g;<landO<p+qg, <1l
Assume p > 1=2. In this case, the transition matrix is transient. Two 1-
invariant measures B and % have been found for this example, which are
given by B = VoR¥, k= 1;2; 111, with %o = [1;(p+01 § 1=2)=(p+q2 i 1=2)]
and

Fb_1'3/451374+1’,

T2 Y%+l %1

where % = p=(1 j p), and by %x = %oRX, k = 1,2 :::, with %o = (1;q1=02)
and

0%
R= 4 o °

where % = p=(1 j p).

6 Concluding remarks

In this paper, we considered the matrix of M=G=1 type with boundaries. We
generalized the censoring technique such that it can be used to deal with the
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nonnegative matrix P. Based on the generalized censoring technique, we
proposed a method for determining the radius of convergence, we obtained
conditions on classifying transient stat es, and proved a fact orization theorem
for thematrix | § P. Thisfactorization was then used to abtain expressions
for the -invariant measure.

The method developed here can also be used to study the radius of con-
vergence and -invariant measures for transition matrices with ot her type of
block-structure, such as, for the matrix of GI=M=1 type and even for the
matrix of GI=G=1 type.
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