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Ricardo Marcelı́n-Jiménez is with the E.E. Dept., UAM-I, Mexico City, Mexico, and Visiting the E.E. Dept. of the CINVESTAV,

under contract Marina-CONACyT 2002C013199A. calu@xanum.uam.mx

Sergio Rajsbaum and Jorge Urrutia are with the Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM),
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Abstract

This paper assumes a set of identical wireless hosts, each one aware of its location. The network is

described by aunit distance graph whose vertices are points on the plane two of which are connected if

their distance is at most one. The goal of this paper is to design local distributed solutions that require a

constant number of communication rounds, independently ofthe network size or diameter. This is achieved

through a combination of distributed computing and computational complexity tools.

Starting with a unit distance graph, the paper shows: (1) Howto extract a triangulated planar spanner.

(2) Several algorithms are proposed to construct spanning trees of the triangulation. Also, it is described

how to construct three spanning trees of the Delaunay triangulation having pairwise empty intersection,

with high probability. These algorithms are interesting intheir own right, since trees are a popular structure

used by many network algorithms. (3) Aload balanced distributed storage strategy on top of the trees is

presented, that spreads replicas of data stored in the hostsin a way that the difference between the number

of replicas stored by any two hosts is small.

Each of the algorithms presented is local, and hence so is thefinal distributed storage solution,

obtained by composing all of them. This implies that the solution adapts very quickly, in constant time,

to network topology changes. We present a thorough experimental evaluation of each of the algorithms

supporting our claims.

I. INTRODUCTION

The problem of storing multiple copies of files in different parts of a network has been widely

studied since the early 70’s, see [7] for a thorough survey. It provides a classic solution to reduce
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response time for data, increase availability, and improvegeneral fault-tolerance. The remarkable

growth of reliable and efficient networking over the past fewdecades has fostered the development

of distributed storage systems. A recent issue ofIEEE Internet Computing [25] devoted to this area

describes various approaches taken by distributed storagesystems, including storage virtualization,

peer-to-peer, and server-to-server.

A. Data storage in wireless networks

This paper develops distributed storage solutions for mobile wireless networks. It assumes a set

of n identical wireless hosts in the plane, each one aware of its location, either from a GPS system

or through other means, such as inertial sensors and acoustic range-finding devices. Two hosts can

communicate if they are within a fixed distance, say one unit.Thus in our paper, a wireless network

can be described as a geometric graph whose vertices are points on the plane (our wireless hosts)

two of which are connected if their distance is at most one, i.e. is aunit distance graph.

Since the topology of wireless networks is constantly changing, and the nodes have location

awareness, protocols for wireless networks differ significantly from standard solutions used in

wired networks. In addition, wireless devices have much lower bandwidth and limited power

supplies. Therefore, protocols for wireless networks should use as little communication as possible

and should run as fast as possible; even traditional solutions that have only a linear cost in the

diameter of the network may not be acceptable. The goal of this paper is to designlocal distributed
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solutions that require a constant number of communication rounds, independently of the network

size or diameter.

The absence of a central infrastructure, together with the highly dynamic nature of wireless

networks, imply that such networks do not have an associatedfixed topology. An important task is

to determine an appropriate topology over which high-levelprotocols are implemented; see [22] for

a survey of various topology control methods. Algorithms that allow to establish and maintain an

energy efficient connected constant degree overlay networkhave been described in e.g. [9], [13],

[14], [24]. Starting with a unit distance graph, this paper extracts a triangulated planar spanner

through the local algorithm of [14], and then proposes several algorithms inspired by the method

of [2] to construct a spanning tree of the triangulation. Both algorithms are local and hence adapt

in constant time to network topology changes.

B. Related results and applications of data storage

An interesting application of the storage protocols described in this paper is for the problem of

reliably storing globalsnapshots of the state of a distributed system (e.g. [6], [8]). Snapshots of a

distributed system can be used, for example, for system recovery after a problem (e.g. deadlock)

is detected. A strategy for reliably storing data such as snapshots can considerspatial redundancy,

temporal redundancy, or a combination of both. In spatial redundancyeach snapshot is replicated

and spread among a number of processors, in a way that if at most t processors fail, the snapshot can
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be recovered; e.g. storing several copies in different processors, or spreading each copy into several

pieces using coding based strategies; see [10], [21] and references herein. In temporal redundancy a

few, sayk, of the latest snapshots, are stored in different processors; for recovery the latest available

snapshot is used. Either way, since snapshots may be rather large (each one contains the local state

of every processor in the system), it is convenient to designbalanced strategies that distribute the

load evenly among the processors. This work improves upon the solutions to the snapshot storage

problem of [16], where static strategies are computed off-line using combinatorial design theory.

Papers such as [10], [11] have proposed coloring based solutions for mobile networks for a

different storage problem, that requires that every node has replicas nearby; these solutions are not

local.

C. Outline and results of the paper

The goal of this paper is to designlocal distributed storage solutions that require asmall number

of communication rounds, independently of the network sizeor diameter. This is achieved through

a combination of distributed computing and computational complexity tools, that make heavy use

of the fact that nodes know their locations, and the geometryof the plane. The solutions proposed

here are built up from two layers: a spanning tree maintenance protocol, and aload-balanced

storage backup protocol. Various spanning tree protocols are proposed, which are interesting in

their own right: trees are a popular form of network structure that are used by many network
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algorithms. We explore two types of constructions. 1)In thecase of a general planar spanner we use

simple edge elimination technique to subtract a tree spanner. 2)In the case where the planar spanner

is a Delaunay triangulation our construction of the tree spanner is distant based and leads to three

edge disjoint trees which is important in improving fault tolerance. These trees are subsequently

used to provide simple input collection algorithms that arethe basis of our backup protocols. The

backup protocols allow each node to replicate data to neighboring nodes for fault-tolerance, such

that the difference in the number of copies each node stores is small. A thorough experimental

study is presented, that analyzes the properties of the trees, and of the performance of the backup

protocols on top of the trees.

The protocols described in this paper also show how to construct locally three spanning trees

whose union is the Delaunay triangulation of the given pointset, with high probability. A virtual

ring can be maintained by traversing the tree in DFS order. This ring easily adapts to network

changes, deletions and additions of processors can be handled locally and on the average in con-

stant time.

The backup protocol that stores data in consecutive nodes onthe virtual ring, according to

various policies, is presented. Notice that once the tree isobtained, leader election can be performed

using only a linear number of messages.1 This is the first algorithm that matches theΩ(n log n)

1The algorithm works also in a planar graph that is not a triangulation, with complexityO(f log f) in the sizef of the largest

face of the network.
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lower bound of [23] for leader election in a geometric ring ofsizen.

Finally, we have simulated all our algorithms and in SectionIV we provide detailed results of our

simulations for a wireless network produced from200 nodes generated at random. Our simulations

indicate the effectiveness and adaptability of the algorithms proposed in this paper.

II. A LGORITHM FOR DISTRIBUTED DYNAMIC STORAGE

Assume a set ofn wireless hosts in the plane each of which is aware of its location. The

main feature of our algorithm is that dynamic storage is attained and subsequently maintained

by cooperating nodes that use only “local” knowledge, i.e.,information about themselves and their

distance one neighborhood nodes. In outline, our proposed distributed dynamic storage algorithm

itself is in two phases. In the first phase the input unit disc graph is processed in order to produce

first a triangulated planar spanner (using a Localized Delaunay Triangulation algorithm [14]) and

from there a tree spanner is obtained using the Entry-Edge Elimination criteria introduced in [2]. In

the second phase a cycle is embedded into the tree spanner andsubsequently our dynamic storage

procedure is applied.

A. Preprocessing procedures

In this section we review the techniques necessary to preprocess the wireless network. We need

two key components. The first one, a technique to extract a spanning tree of a planar geometric

graph, and a method to extract from a unit distance graph, thelocal Delaunay subgraph, which
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under the right conditions is the same as the Delaunay triangulation of the points of a unit distance

graph.

1) Delaunay and Localized Delaunay Triangulation: Let the hosts have identical radiusrn and

let G(P, rn) denote the unit disc graph on a setP of n nodes. The parameters we chose are guided

by the main result of Penrose [17], [18] which guaranteesk-connectivity. The result implies that

for any real numberc if rn ≥
√

lnn+c
nπ

then the probability the networkG(P, rn) is connected is at

leat≥ e−e−c
, asn → ∞. If we substituteec = s and recall thate−e−c ≈ 1 − e−c then we see that

Pr[NetworkG(P, rn) is connected] ≥ 1 − 1

s
, (1)

for rn ≥
√

lnn+ln s
nπ

.

The Delaunay triangulation cannot be computed “locally”. In the sequel, we will require that our

construction is based only on local operations by the hosts.It has been proved by Bern et al. [3]

(see also Li et al. [15]) that if the reachability radius of the hosts is chosen so as to satisfy the

condition of Inequality 1 then with high probability the Delaunay triangulation is the same as the

localized Delaunay triangulation. We review their argument in the sequel. The probability that a

regionR of area|R| has exactlyl nodes from the random poinset obeys the Poisson ditributionand

is equal to

(n|R|)l

l!
e−n|R|.

Let dn be the random variable that denotes the length of the longestedge of the Delaunay trian-

DRAFT



9

gulation of the random pointset. Ifdn ≥ d then there is a triangle in the triangulation at least one

of whose edges is≥ d and whose circumcircle contains no other points of the random poinset:

note that the area of this circumcircle is at leastπd2/4. Since the Delaunay triangulation of a

set ofn points has at most3n triangles we conclude thatPr[dn ≥ d] ≤ 3ne−nπd2/4. If we put

1/t = 3ne−nπd2/4, solve ford and substitute in the last inequality then we see that

Pr



dn <

√

4(ln n + ln t + ln 3)

nπ



 ≥ 1 − 1

t
. (2)

If we now puts = n8 in Inequality 1, andt = n in Inequality 2 then we see thatPr [dn < rn] ≥

1 − 1
n
, for rn ≥

√

9 lnn
nπ

, i.e., the longest edge of the Delaunay triangulation is smaller thanrn with

probability at least1 − 1
n
.

The Unit Delaunay triangulation (denoted byUDel(P, rn)) is the graph obtained by removing

all edges of the Delaunay triangulation which are longer than rn. Note that using only their

local information nodes of a given triangle alone can decidetogether whether or not they form

a triangle. A triangle isk-localized if all its edges have length at most1 and also the interior

of its circumcircle contains no point ofP that is ak-neighbor of its vertices. Thek-localized

Delaunay graph (denoted byLDel(k)(P, rn)) consists of exactly the Gabriel edges and edges of the

k-localized Delaunay triangles [15]. It has been shown [14] thatLDel(k)(P, rn) is planar fork ≥ 2,

while LDel(1)(P, rn) may not be planar. However, there is an algorithm that can remove intersec-

tions fromLDel(1)(P, rn) in order to produce the planarized Delaunay Triangulation (denoted by
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PLDel(P, rn)). The planarization ofLDel(1)(P, rn) essentially involves the following operations.

1) Each nodeu gathers the location information of its distance one neighborhood (includingu

itself) and computes its Delaunay Triangulation. 2) The node u computes all triangles with all

edges at most one unit and broadcasts a message to form a Delaunay triangle if the angle of the

triangle formed atu is at leastπ/3. 3) Nodeu accepts a proposal if the triangle proposed is in

its Delaunay triangulation and has been proposed by both neighbors of the proposed triangle. For

more details see Alzoubi et al. [1]. In view of our previous discussion we have the following result.

Proposition 2.1: If rn ≥
√

9 lnn
nπ

then the planarized Delaunay triangulation with radiusrn is the

same as the Delaunay triangulation ofP with probability at least1 − 1
n
.

Remark 2.1: The cost of constructing the localized Delaunay triangulation essentially involves

the exchange of the distance one neighborhood between nodes. According to Bern et al. [3] the

expected size of the maximum degree isΘ
(

log n
log log n

)

which in turn also gives the complexity of the

localized Delaunay triangulation. We also note that the cost of the localized Delaunay triangulation

is even less since in view of Proposition 2.5 the expected degree of a node (other than the leftmost

and rightmost is at most six. This is because when traversingthe graph left to right three spanning

trees arise each of which contributes one link to a node. Similarly, when traversing right to left

three spanning trees arise each of which contributes one link to a node. Since with high probability

the Delaunay triangulation is the disjoint union of these trees we obtain that the degree of every
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node is at most six.

2) Tree extraction in planar subdivisions: Let P be a simple polygon embedded on the plane,

and letl be the vertical line tangent toP such thatP lies to the left ofl. Then theentry edge ofP

is thelowest edge ofP that touchesl.

Let G be a plane geometric graph, that is a planar graph embedded onthe plane such that its

edges are represented by line segments joining pairs of points representing the vertices ofG. G

partitions the plane into a set of faces one of which is unbounded. Each facef of G, but the

external one defines a polygon. The entry edge off is the entry edge of its corresponding polygon.

Let TG be the graph obtained fromG by removing the entry edge of all its faces, albeit the external

one. The following result is proved in [2].

Proposition 2.2: TG is a plane spanning tree ofG.

This extraction technique is useful for general planar subdivisions. In the sequel we will develop

new and more efficient “localized” algorithms for extracting trees.

3) Tree extraction in convex subdivisions: Graphs all of whose faces, but the outer one are

convex, are calledconvex subdivisions. If in addition all the faces ofG with the exception of the

outer one are triangles,G is called atriangulation. The following observation is straightforward:

If G is a convex subdivision thenTG can be obtained as follows: For every vertexv of G consider

the set of edges to the left ofv whose rightmost vertex isv. Remove fromG all of them, but
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the topmost. We can refer to this as theleftmost-topmost elimination rule. Similarly, atopmost-

rightmost elimination rule can be obtained follows: for every vertexv of G consider the set of

edges whose bottom vertex isv. Remove fromG all of them, but the rightmost. In a similar way

we can define arightmost-bottommost andbottommost-leftmost elimination rules, each of which

defines a spanning tree ofG.

Our previous observation allows us to carry out the extraction of a spanning tree in a planar

subdivision in a fully distributed way, in fact ifv is a vertex of a convex subdivision all it has to do

is to eliminate all the edges incident to it, except the top edge to its left. Let G be a triangulation

whose vertex set is a point setP with n elements. Assume thatP hask of its elements on its

convex hull. LetTG andT ′
G be the spanning trees obtained by applying theleftmost-topmost and

thetopmost-rightmost elimination rules respectively toG. The following result is easy to prove.

Proposition 2.3: TG andT ′
G, have at mostk + n−k

2
edges in common.

As a direct consequence we also have.

Proposition 2.4: Let G be a wireless network (modeled as a unit distance graph). Then using

local operations at each node ofG, we can maintain a plane spanning tree ofG.

Proof. Using the algorithms presented in Alzoubi et al. [1] we first calculate the localized Delaunay

triangulation ofG. Then using theleftmost-topmost elimination rule obtain a plane spanning tree

TG of G. Since both steps can be achieved using only local operations at each node ofG, the
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extraction ofTG can be done in a local way.

Since for points placed on the plane at random with the uniform distribution the expected number

of points on the convex hull ofP is [20]:

1) Θ(ln n) for points chosen in a convex polygon, and

2) Θ(n1/3) for points chosen in a convex region with doubly differentiable boundary,

we can conclude that in generalTG andT ′
G will have, in the worst case, aproximatelyn

2
edges in

common.

Distance-based tree extraction: As we will see, it turns out that distance based tree extraction

is more efficient. Motivated from our experimental analyis in Section IV we will explore the

following new rules for tree extraction whereby all nodes (except the righmost one) are connected

to a neighbor to their right. In the sequel consider the convex subdivision formed by the Delaunay

triangualtion. In the Max distance left to right (MaxDLTR) tree each node is connected to a

max distance neighbor to its right; in the Min distance left to right (MinDLTR) tree each node

is connected to a min distance neighbor to its right; finally,in the Mid distance left to right

(MidDLTR) tree each node is connected to a neighbor other than a Max or Min neighbor to its

right (if it has one), else to the Max. It turns out that with high probability these three trees contain

all the edges of the Delaunay triangulation with high probability, asymptotically inn. To be more

precise we can prove the following result.
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Proposition 2.5: Assumern ≥
√

9 lnn
nπ

and consider the trees MinDLTR, MaxDLTR, and Mid-

DLTR. Then the probability that any pair among these trees has an edge in common is at most1/n,

asymptotically inn.

Proof. As in Proposition 2.1 the probability that a regionR of area|R| has exactlyl nodes from

the random poinset obeys the Poisson ditribution and is equal to (n|R|)l

l!
e−n|R|. Consider a given

edgee, saye := {u, v} that is common to both trees MaxDLTR and MinDLTR. It follows that

nodeu, say, has only one neighbor to its right, namelyv. Since the reachability radius of the nodes

is rn, it follows from the definition of the tree MaxDLTR thatv is the max distance neighbor

of u and therefore the region determined by the semicircle centered atu and radiusrn (call this

regionS) contains exactly one point from the given pointsetP . Hence,Pr[e occurs in both trees] =

n|S|e−n|S| = nπr2
n

2
e−nπr2

n/2 ≤ nπ
n9/2 = π

n7/2 . Since the Delaunay triangulation has at most3n edges it

follows that the probability the two trees have an edge in common is at most1/n2, asymptotically

in n.

A similar proof will work for any other pair of trees. For example, for the trees MaxDLTR

and MidDLTR if a given edgee := {u, v} is common to both then the semicircle centered at

u and radiusrn will have at most two points from the pointset. Threfore an upper bound on the

probability that an edge is common can be obtained easily as in the previous analysis using the

Poisson distribution. We leave the details to the reader. This completes the proof of Proposition 2.5.
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We will see later that having three edge disjoint trees we areable to run the backup protocol on

“edge disjoint backbones” of the original wireless networkwhich in turn improves fault tolerance.

We also note two other useful consequences of Proposition 2.5 for the three trees MaxDLTR,

MaxDLTR, and MidDLTR and under the assumption thatrn ≥
√

9 lnn
nπ

. First, the union of the trees

is the Delaunay triangulation of the pointsetP with probability at least1− 1/n, asymptotically in

n. Second, for any two among these trees, the expected number of common edges is constant. This

follows easily from the well-known identityE[X] =
∑

k Pr[X > k], whereX is the random vari-

able that counts the number of edges common to the two trees. We also note that as a consequence

of a result by Bose et al. [4], the diameter of a Delaunay triangulation on a random set ofn points

is O(
√

n).

Other rules for tree extraction: In distance-based tree extraction a node must search all its

neighbors and select the one that is furthest, nearest, etc.A simpler tree extraction algorithm is to

have each node select a neighbor to its right (respectively,left) at random, if it has one. Another one

is to have each node select its neighbor forming a slope that is minimal with the horizontal. This

gives rise to the trees RLTR, RRTL, and HorDLTR, respectively, that have also been considered in

our experimental results described in Section IV.

DRAFT



16

B. Distributed Dynamic Storage Algorithm

We proceed now to show how to solve the dynamic storage problem for wireless networks. We

remark again that our algorithms are local, in the sense thatany node in the network only knows

that it is a member of a unit distance wireless network, and atany time it communicates only with

its neighbors.

We observe first that the dynamic storage problem has an easy solution if G is an oriented

cycle, that is if the vertices ofG are labeled{v0, . . . , vm−1} such thatvi is adjacent tovi+1, i =

0, . . . , m − 1 (here addition ismodm). Since our goal is to store a predetermined numberk of

copies of a data setSi stored atvi, this can be accomplished by sendingSi to a predetermined

set of verticesvi+j1 , . . . , vi+jk
. However, extracting a hamiltonean cycle in a wireless network in

a fully distributed way, i.e. in such a way that a vertex can only communicate with its neighbors

seems to be an impossible task. Instead we use the following method: LetT be a geometric plane

tree. If wewalk around T as we would in a preorder traversal ofT , we define in a natural way a

cycle withm = 2n−1 vertices in which every edge ofT appears twice (thus traversing an Eulerian

tour), and each vertex appears as many times as its degree inT .

1) Storage bachup protocols: Now we can give two storage backup protocols. In the sequelTG

denotes any of the trees constructed in Section II-A. We choose an integer parameterk representing

the number of copies to be stored in various nodes of the network. The size ofk can vary but also
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depends on the desired fault tolerance for data recovery required. LetFk(u) be the set of nodes to

which nodeu forwards its data for storage. In general, the setFk(u) is generated locally by nodeu

and the generation procedure is part of the forwarding algorithm that is common to all participating

nodes. The forwarding set is of sizek.

Storage Backup Protocol (SBP (k))::

1) Embed a ring topology intoTG by performing a “geometric” DFS-based preorder traversal

that uses the geometric identities of the nodes.

2) Each nodeu forwards its data to the nodes of the setFk(u).

Observe that this embedding can be executed “locally” and the forwarding strategy does not

prevent non-leaf nodes from receiving multiple copies of a data file originating from the same

node.

It is easy to adapt the forwarding procedure so as to avoid repetitions by decrementing a counter

every time a copy is received by a “new” node. For example, we can consider the following

algorithm.

Non-Repetitive Storage Backup Protocol (NRSBP (k))::

1) Embed a ring topology intoTG by performing a “geometric” DFS-based preorder traversal

that uses the geometric identities of the nodes.

2) Each nodeu forwards its data to the nodes of the setFk(u). A given node accepts the data

forwarded to it only if it has not yet received other data fromthe same node. Else it forwards
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its data to its forward node in the ring.

There are two ways to affect the desired reliability of recovery. One is the size of the parameter

k: the more copies are stored to other nodes the higher the reliability. Second is the choice of nodes

to which nodeu forwards its data: this is determined by the setFk(u) and makes load balancing

possible. For example, one can choose to store the data tok consecutive forward positions either

“close” to u or “further away” fromu or move them tok forward random positions in order to

achieve higher load balance.

In the sequel we consider three possibilities for the forwarding setFk(u) at u: each nodeu

selects the setFk(u) of k nodes according to one of the following rules (note that all nodes select

the same rule).

Forwarding Rules:

1) Consecutive Forwarding (CF) Rule:

Fk(u) = {u + 1 mod n, u + 2 mod n, . . . , u + k mod n}, i.e., nodeu forwards its data to

its k “successive” neighbours in the oriented cycle.

2) Distant Consecutive Forwarding (DCF) Rule:

Fk(u) = {u + d + 1 mod n, u + d + 2 mod n, . . . , u + d + k mod n}, i.e., for some fixed

valued (signifying distanced away fromu) nodeu forwards its data tok “successive” nodes

at distanced away from itself in the oriented cycle.
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3) Random Forwarding (RF) Rule:

Fk(u) = {u + t1 mod n, u + t2 mod n, . . . , u + tk mod n}, wheret1, t2, . . . , tk are random

values in the range1..m generated by nodeu, i.e., nodeu forwards its data tok random

locations in the oriented cycle, where the integerm is chosen so thatk2 = o(m).

III. PROPERTIES OF THESTORAGE BACKUP PROTOCOL

In this section we discuss properties satisfied by our protocol, namely load balancing and failure

recovery.

A. Load balance

The load balancing attained by the algorithm depends not only on the forwarding algorithm but

also on the topology of the wireless network.

In general, experimental results indicate (see Table I) that the spanning treeTG obtained fromG

has small degree. Therefore on the average case the preordertraversal onTG will generate a ring

topology such that each node of the network isrepeated a small number of times.

Let us analyze the performance of the forwarding protocols.First consider the non-repetitive

storage backup protocol. Ifc is the max degree of the spanning tree every node of the resulting ring

will store at mostkc copies of other nodes’ data. In particular we have the following result.

Proposition 3.1: For each nodeu let S(u) be the number of data stored atu. The non-repetitive

Storage backup protocol achieves load balancing in the sense that for all nodesu, v, |S(u) −
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S(v)| ≤ ck.

A similar result also holds for repetitive loads. A trivial upper bound for the maximum absolute

difference between loads can be obtained by overestimatingthe load. Assume a nodev with degree

c. We can computeload(v) by adding the storage-requests ofc different directions. Notice that only

k nodes for each direction can request from nodev to store one unit of data. On the other hand,

the nodes of only one direction can upload to nodev up toc units of data each, the nodes of only

one direction can upload up toc − 1 units of data each, etc. By adding the uploads and since the

minimum load of a node might be zero, we have the following simple proposition.

Proposition 3.2: For each nodeu let S(u) be the number of data stored atu. The repetitive

Storage backup protocol guaranties that for all nodesu, v,

|S(u) − S(v)| ≤ kc(c + 1)

2
.

B. Repetitive versus non-repetitive loads

One may think that non-repetitive Storage backup protocolsshould guarantee lower maximum

difference between loads, but this is not always true. To seewhy, consider the family of trees on

n + 6 nodes depicted in Figure 1, and assumek = 2. The eulerian tour arising is

v1v2 . . . vn 1 2 3 4 3 2 5 6 5 2 1 vn . . . v2v1
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1v v v v1 2 3 n 2

3
4

5
6

Fig. 1. A family of trees onn + 6 nodes, wheren ≥ 1.

The minimum load over the nodes obtained by both protocols iszero. The repetitive Storage backup

protocol loads node 2 with 4 units of data, while the non-repetitive backup protocol loads the same

node with 6 units of data. Finally it is easy to see that these loads are the maximum that are obtained

by each protocol.

However, in most cases, non-repetitive Storage backup protocols outperform repetitive storage

backup protocols. This is also confirmed by our experimentalanalysis in Section IV.

C. Recovery from Failure

The resulting network failure recovery depends on the backup protocol used. In the sequel we

look at properties ofNRSBP (k).

1) Single node failure: For every node of the network there is a backup of its data in atleastk

other nodes of the network. Therefore our protocol isk− 1 fault tolerant. In particular we have the

following lemma.

Proposition 3.3: The Non-repetitive storage backup protocolNRSBP (k) isk−1 fault tolerant,
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i.e., if at mostk − 1 nodes fail then the data of every other node of the network is stored in at least

one non-failed node.

2) Random failures: The protocol is robust under random failures. Assume that all the nodes

of a random setS of sizem (wherem ≥ k) fail. A given node stores copies of its data intok

other nodes of the network. The probability that at least oneof these nodes is not inS is 1 minus

the probability that they are all inS. The probability that a given node is inS is m/n, and the

probability that allk nodes are inS is (m/n)k. In particular, we have the following result.

Proposition 3.4: Assume that all the nodes of a random setS of m (wherem ≥ k) nodes fail.

The probability that all the data of a given node are stored atsome non-failed node of the network

is at least1 − mk

nk .

3) Failures of geographical regions: Our protocol can easily be adapted so that it is robust to

geographic failures, that is failures created by events such as power failures that may affect the set

of nodes belonging to a connected region of the plane. Consider the case of a “civilized” unit disc

graph, i.e., any pair of nodes is at distance at leastλ from each other, whereλ > 0 is independent of

n, the size of the network. Assume that all the nodes in a geographic regionR of areaA fail. Since

the unit disc graph is civilized, the region can have at mostA/λ nodes. Therefore ifk ≥ A/λ then

every nodeu within the regionR has a backup of its data in at least one node outside the regionR.

In particular we have the following result.
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Proposition 3.5: Assume that the unit disc graph is civilized with parameterλ. If all the nodes

of a geographic region of area at mostkλ fail then the data of each node within the region have

been stored in at least one node outside the region.

IV. SIMULATIONS AND EXPERIMENTS

In this section we provide simulations of the algorithms proposed in the previous sections and

confirm experimentally the efficiency of our proposed techniques for a location aware wireless

network.

A. Random setting

First we discuss our choice of parameters in the experimental results.

1) Connectivity, Delaunay and planarized triangulations: Let the hosts have identical radiusrn

and letG(P, rn) denote the unit disc graph on a setP of n nodes. Starting from a random setP of

n points, we compute their Delaunay Triangulation. As indicated in Subsection II-A.1 if we select

rn ≥
√

9 lnn
nπ

then the longest edge of the Delaunay triangulation is smaller thanrn with probability

at least1 − 1
n
, i.e., with high probability the planarized Delaunay and Delaunay triangulations are

the same (see Proposition 2.1).

2) Spanning trees and forwarding rules: From the Delaunay triangulation we compute spanning

trees using the edge extraction algorithms in Subsection II-A.3. We then implement the storage
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backup protocol with three diffrent forwarding rules as in Subsection II-B. In the random forward-

ing rule the nodes will forward their data tok other processors. Ifk values are chosen randomly

and independently with the uniform distribution in the range 1..m then it is well-known from the

“birthday paradox” that the probability that no collision will occur is at least1 − k(k−1)
2m

. Note that

the sizen of the network is in general not known to the individual nodes. Givenk, the valuem must

be chosen so that there is low probability of collision amongthek random numberst1, t2, . . . , tk:

to achieve this it is enough to guarantee thatk2 = o(m).

B. Results of the simulations

Figure 2 depicts output of our experiments. From top-to-bottom and left-to-right, the first row

depicts a set of200 points chosen at random and the next picture their Delaunay.The trees

depicted are formed from the Delaunay triangulation using the edge elimination rules described

in Subsection II-A.3.

The statistics reported in Table I give the average frequency of degrees of nodes and diameter

of graphs in20 experiments with200 nodes chosen at random each for the Delaunay and the

MinDLTR, MaxDLTR, RLTR, RRTL trees, respectively.

Table II and Table III illustrate the load averages for the three storage backup algorithms pro-

posed for both the storage backup protocolSBP (k) and the non-repetitive storage backup protocol

NRSBP (k). Table II gives the average maximum absolute difference between loads and Table III
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Fig. 2. Delaunay triangulation and trees resulting from a random set of200 points.

the average difference between loads over all pairs of nodes. These tables depict the consecutive

(CF: k = 4), distant-consecutive (DCF:k = 4, d = n/2), and random distant (RDF:k =

4) forwarding rules for cycles generated from the MinDLTR, MaxDLTR, RLTR, RRTL trees,

respectively, in20 experiments with200 nodes each. Note that the CF forwarding rule outperforms

DCF and RDF, however it forwards data “near” the node initiating the forwarding. The tables

also indicate that the MinDLTR tree has best performance (the second best performing tree was

HorDLTR but we do not exhibit these results here).

Figure 3 depicts a histogram of the average performance of the SBP and NRSBP algorithms
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Degr DT Min Max RLTR RRTL

1 .000 .286 .432 .341 .336

2 .000 .500 .309 .406 .411

3 .018 .173 .150 .189 .192

4 .134 .026 .069 .053 .050

5 .275 .008 .027 .008 .008

6 .278 .004 .007 .002 .002

7 .189 .002 .002 .001 .002

8 .077 .000 .002 .000 .001

9 .006 .000 .000 .000 .000

Diam 5.83 57.85 35.10 41.85 41.50

TABLE I

AVERAGE FREQUENCY OF DEGREES OF NODES AND DIAMETER OF GRAPHS IN 20 EXPERIMENTS WITH200 NODES EACH

FOR THEDELAUNAY, AND THE M INDLTR, MAX DLTR, RLTR, RRTLTREES, RESPECTIVELY.

performed 20 times each in graphs of 100 to 200 random points in increments of 50, respectively.

The top picture shows the average difference among pairs of nodes while the bottom picture the

max absolute difference among pairs of nodes. Each pair of columns indicates the performance of

SBP (light-gray column) and NRSBP (heavy-gray column) for the CF, DCF and RCF forwarding

rules, respectively: note that in RCF we implemented only SBP. Observe that the max absolute

difference increases a little while the average absolute difference among pairs of nodes remains
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Min Max RLTR RRTL

CF: SBP 10.8 13.6 12.0 11.5

CF: NRSBP 09.9 12.8 10.6 11.4

DCF: SBP 12.8 17.3 14.7 13.8

DCF: NRSBP 13.0 15.6 13.6 13.5

RDF: SBP 13.6 16.8 14.8 14.2

TABLE II

AVERAGE MAXIMUM ABSOLUTE DIFFERENCE BETWEEN LOADS. TOP SUBROW IS FORSBP (k) AND BOTTOM SUBROW FOR

NRSBP (k) FOR20 RANDOM GRAPHS WITH200 NODES EACH.

Min Max RLTR RRTL

CF: SBP 2.43 2.92 2.67 2.62

CF: NRSBP 2.15 2.52 2.30 2.31

DCF: SBP 3.15 3.14 3.05 2.97

DCF: NRSBP 3.08 2.92 2.91 2.84

RDF: SBP 3.02 3.31 3.09 3.01

TABLE III

AVERAGE DIFFERENCE BETWEEN LOADS OVER ALL PAIRS OF NODES. TOP SUBROW IS FORSBP (k) AND BOTTOM SUBROW

FORNRSBP (k) FOR20 RANDOM GRAPHS WITH200 NODES EACH.
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Fig. 3. Performance of SBP (light-gray column) and NRSBP (heavy-gray column) for the CF, DCF and RCF forwarding rules.

almost unchanged.

V. CONCLUSION

In this paper we proposed efficient solutions to the distributed storage problem in wireless

networks and designed local distributed storage solutionsthat require a constant number of com-

munication rounds, independently of the network size or diameter. This is achieved through a com-

bination of distributed computing and computational complexity tools, that make use of location

awareness, i.e., that nodes know their locations, and the geometry of the plane.
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