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Abstract—This paper investigates the problem of optimal wave-
length allocation and fairness control in all-optical wavelength-
division-multiplexing networks. A fundamental network topology,
consisting of a two-hop path network, is studied for three classes
of traffic. Each class corresponds to a source-destination pair. For
each class, call interarrival and holding times are exponentially
distributed. The objective is to determine a wavelength allocation
policy in order to maximize the weighted sum of users of all classes
(i.e., class-based utilization). This method is able to provide dif-
ferentiated services and fairness management in the network. The
problem can be formulated as a Markov decision process (MDP)
to compute the optimal allocation policy. The policy iteration algo-
rithm is employed to numerically compute the optimal allocation
policy. It has been analytically and numerically shown that the op-
timal policy has the form of a monotonic nondecreasing switching
curve for each class. Since the implementation of an MDP-based
allocation scheme is practically infeasible for realistic networks,
we develop approximations and derive a heuristic algorithm for
ring networks. Simulation results compare the performance of the
optimal policy and the heuristic algorithm, with those of complete
sharing and complete partitioning policies.

Index Terms—Dynamic wavelength allocation, Markov decision
process (MDP), monotonic optimal policy, wavelength-division
multiplexing (WDM).

1. INTRODUCTION

AVELENGTH-DIVISION-MULTIPLEXING (WDM)

networks, using wavelength routing, is a promising
candidate to handle the huge bandwidth demand of future
backbone wide-area networks. In wavelength routing networks,
each optical path must be established with a specific wave-
length between each source-destination pair. This is known
as wavelength continuity constraint and can be relaxed by
using wavelength converters (WCs) at intermediate nodes [1].
The routing and wavelength assignment (RWA) problem is an
important issue in WDM networks to choose a suitable route
and wavelength among the possible selections. RWA is usually
divided into two separate problems: wavelength assignment
problem and routing problem.

Many heuristic algorithms such as Random, Least-Used,
Most-Used, and First-Fit wavelength assignments have been
already proposed to assign wavelengths in WDM networks
with dynamic traffic [1], [2]. The objective of these algorithms
is typically to minimize the overall call blocking probability
or maximize the overall utilization in a single-class network.
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Some analytical studies have been performed to calculate
the blocking probabilities or network utilization for different
assignment strategies [3]-[6]. In these studies, it can be seen
that all users have the same priority (class). As a result, the
differentiation among different users is not possible.

In this paper, we investigate the wavelength allocation
problem and fairness control issue for different classes of users
with dynamic traffic. With the objective of maximizing the
weighted sum of class-based utilization, we define a Markov
decision process (MDP) model, based on which the optimal
wavelength allocation policy is determined [7]. In many
admission control and resource allocation problems in telecom-
munications, it has been shown that under some conditions,
the optimal policy of a MDP exists and it is stationary and
monotone [8], [9]. In [10], the multimodularity, submodularity,
and convexity properties are investigated in queueing systems.
These properties imply the monotonicity of optimal policy in
the context of stochastic control. In this study, by using the
multimodularity of the cost function and the induction method,
we prove that the optimal policy is a nondecreasing switching
curve. Moreover, the policy iteration algorithm [7] is deployed
to determine numerically the optimal policy. Using the prop-
erties of the optimal policy, we develop a simple heuristic
algorithm to provide fairness in WDM ring networks.

The rest of the paper is organized as follows. In Section II, we
describe the problem and make some assumptions regarding the
network. In Section III, the problem is formulated in an MDP
framework with the discounted cost model. Section IV shows
the multimodularity of the value function and provides the struc-
ture of optimal policy. Section V introduces our heuristic allo-
cation algorithm and Section VI compares the performance of
our proposed allocation algorithms with other standard policies.
Conclusions are presented in Section VIIL.

II. PROBLEM DESCRIPTION

We first consider a two-hop path network topology for a
single fiber circuit-switched wavelength routing network, as
depicted in Fig. 1(a). This fundamental topology can represent
the link-load correlation model [5], [6]. The total number of
available wavelengths in the system is W. Traffic is divided into
three classes. Each class corresponds to a different source-des-
tination pair. Class 1 (respectively, Class 3) consists of the
users that use hop H; (respectively, Hs); Class 2 includes the
customers that use both hops H; and H,. If a WC is deployed
at node 2, then a Class 2 call is accepted whenever there is at
least one available wavelength in both hops. Without a WC at
this node, the same wavelength must be available in both hops
to accommodate a Class 2 call. Any arriving call is blocked
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Fig. 1. Two-hop network topology. (a) Three-class system. (b) Two-class

system.

when all wavelengths along its path are used. Blocked calls do
not interfere with the system. Arrivals of Class £ calls, / = 1, 2,
3, are distributed according to Poisson process with rate A¢. The
call holding time of a Class £ call is exponentially distributed
with mean 11, *.

Wavelength allocation policy is a particular problem related
to resource allocation policies. In general, current wavelength
allocation strategies are deploying heuristic algorithms such
as complete sharing (CS) and complete partitioning (CP) [12].
When implementing CS, no wavelength is reserved for any
class. In addition, an arriving call will be accepted if at least
one wavelength is available throughout all the hops along its
path. Although the global network utilization is high in this
case, this approach is greedy, and it is suboptimal if different
classes of users provide different rewards for the same grade
of service. When deploying CP policy, each class is assigned
a constant number of wavelengths that cannot be used by calls
from the other classes. Hence, it supports service differentiation
and controls class-based blocking probabilities. However, CP
policy may not maximize the overall utilization of the available
resources.

To improve the system performance in a dynamic environ-
ment, it would be essential to assign a certain number of wave-
lengths to each class as a function of the current number of cus-
tomers from different classes. This paper investigates a dynamic
wavelength allocation policy, which is called dynamic parti-
tioning (DP) hereafter. It consists of determining the appropriate
number of wavelengths allocated to each class taking into ac-
count the current state of the system, with the objective of max-
imizing the weighted sum of the number of calls for each class.
This approach can take advantage of both CP and CS policies.

III. MDP FORMULATION

In this section, we present an MDP approach to the problem
described in Section II. In order to model the system, we first
define the state of the system and then introduce the appropriate
cost function.

Let ny denote the number of Class £ calls in the system and
m be the number of wavelengths currently allocated to Class 2
calls and being used in both hops H; and H,. We first formu-
late the problem when there is a WC at node 2. Thus, for any
(n1,n2,n3), one canderive i = W —m —ny, j = m —no, and
k =W — m — ng as the numbers of available wavelengths re-
served for Class 1, Class 2, and Class 3 users, respectively [refer
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Fig. 2. Possible states after the departure of a Class 2 call. (a) Original state.
(b) Final state after taking action @ = 0. (c) Final state after taking action
a = —1.

to Fig. 2(a)]. Therefore, the four-component vector (4, j, k, m)
completely characterizes the system. Let

0<k<W—m, 0<m< W}

be the state space of the system and let s; denote the state of the
system at time ¢. Based on the statistical assumptions, {s;, ¢ >
0} is a continuous-time Markov chain whose transitions are ei-
ther the event of a call request arrival or call departure.

When removing the WC from node 2, the wavelength con-
tinuity constraint must be satisfied. Let A; and A5 denote the
sets of available wavelengths on H; and Hs, respectively. Let
q denote the number of wavelengths that are available on both
H; and H; (i.e., ¢ = |A1 N Ag|). Variable ¢ shows the number
of Class 2 calls that can be accepted in the system. In a system
without WC, if ¢ = 0, then a Class 2 call will be blocked. In
this case, the state space of the system is

Sl:{(i7j7k7m7Q)|0§i§W—m7 OSJS(L
0<SE<SW—m, 0<m<W,0<g<m} (1)

wherei =W —m —ni,j=m—ng,andk =W —m — ng.
One can note that for a given g, if (i, 7,k,m,q) € S’ then
(4,4, k, m) € S. Thus, both systems with and without WC have
similar structures. In the following, we only focus on a system
with WC.
To simplify the notation, we drop index ¢ from s; and intro-
duce the following operators.
e Dy:Sw— S,0=1,2,3; departure operator, describing
the change of the state of the system at a Class ¢ departure

time.
- D18 = (i+17j7k7m)’D25 = (L/./+1/k/m)’D33 =
(.4, k +1,m).

e A;: S+ S,4=1,2,3; arrival operator, describing the
change of the state of the system at a Class £ arrival time.
- Ais=((i—1)",45,k,m), Ass = (i, (5 — D), k,m),
Ass = (4,7, (k—1)T,m), where z7 = max(0, =) and
s = (Il:?j7 k7m>'

According to the above operators, we can define the set of pos-

sible events as £ = {A1, As, A3, D1, Do, D3}.
Investigating DP policy involves the determination of wave-
length allocation as a function of the current state of the system



1498

s = (4,4, k,m), and the event e € £. The objective, then, is to
maximize the usage of the optical resources. Equivalently, this
can be translated into maximizing weighted sum of the number
of call from different classes. This problem can be formulated
as an MDP [13]. Let us describe the model more accurately in
the following paragraphs.

Decision epochs take place only at departure times, when
one call terminates and one wavelength becomes available.
The released wavelength may be reserved for the same class
or switched to use by calls of other classes. This is shown in
Fig. 2, where the initial state is s(¢, 7, m). In Fig. 2(b), the final
state of the system is presented after a departure of Class 2 call,
when we decide to keep the wavelength for the same class.
Fig. 2(c) depicts the state of the system when the policy maker
decides to reserve the wavelength for Class 1 and Class 3 users.
Thus, the decision results in leaving m unmodified [Fig. 2(b)]
or decreasing it by 1 [Fig. 2(c)]. In a similar fashion, when
considering the termination of a Class 1 (or 3) call, the decision
will result in increasing the value of m by 1, or leaving it
unchanged.

When the system is in state s and the event e has just occurred,
the decision maker takes action a from a set of possible actions
A(s, e), where

if e = Aq or As or As
ife:D1 OI‘D3
ife = Dy

{0},
{0,+1},
{_170}7

A(s,e) =

Let P,, a € A(s,e) be the policy operator describing the
change of state of the system when applying action a after a
departure.

s DiPys = (i+ 1,5, k,m)
* D1P13: (Lv(J+1)_(k_1)+7(m+1)_)
° D2P03: (z,]—f—l,k,m)

° D2p—15: (L+1)77J7(k+1)77(m_1)+)

* D3Pys = (i,j,k+1,m).

* D3Pis = ((i = )™, (j + 1)7,k,(m + 1)7), where

rt = max(0,z), = = min(W, z), and s = (4, j, k, m).

This initial continuous-time MDP can be converted into an
equivalent discrete-time MDP by applying the uniformization
technique [13]. To do so, we introduce a random sampling rate
v defined as v := W(/Ll + M2 + /Lg) + A+ X+ A3. In
the original MDP, the system is observed at the times of actual
transitions. After applying uniformization technique, the system
may be observed between two consecutive actual transitions,
which are called “fictitious” or “dummy” transitions. When con-
sidering the discrete-time MDP, only one single transition can
occur during each time slot. Let s,, denote the state of the system
for the equivalent discrete-time MDP during time slot n. A tran-
sition can correspond to an event of: 1) Class 1 call arrival or
departure; 2) Class 2 call arrival or departure; 3) Class 3 call ar-
rival or departure; and 4) fictitious (or dummy) transition.

To complete the MDP description, we need to define the re-
ward (or cost) function [13]. As mentioned previously, our ob-
jective is to determine a wavelength allocation policy that maxi-
mizes the weighted sum of 721, 12, and n3. Therefore, we define
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the one-step reward function which expresses the instant reward
when the state of the system is s

R(s) =any + Bna + 6ns
=(a+6)W—(ai+pj+0k+(a+6—-F)m), s€S (2)

where a, (3, and ¢ are the weights assigned to Classes 1, 2, and
3 users, respectively. Note that one can maximize R(s) by min-
imizing ai + 37 + 6k + (e + § — 3)m. Consequently, instead
of maximizing reward function (2), we can minimize one-step
cost function defined by

C(s)=ai+fj+0k+(a+6—-Bm=B-s", s€S (3)

where vector B := («, 8,6, (a + 6§ — 3)).

The choice of the weights «, (3, and § has an impact on wave-
length occupancy by each class and on their respective blocking
probabilities. By assigning appropriate values to these weights,
we can provide service differentiation based on classes of traffic.

We also define policy 7 = (71,79, ...m,) for n-stage fi-
nite-horizon problem such that 7; is the action applied after the
ith event. Based on the one-step cost function, we can apply the
results of discounted finite-horizon model [7]. In order to esti-
mate the expected cost under a policy 7 and at the time step n,
we can define n-stage finite-horizon y-discounted value func-
tion as [7]

Vi(s)=E"

n

n—1
Z’le(sl) | so = 5] 4)

1=0

where 0 < v < 1 is the discount factor, 7 = (71, 7o, ..., m,) is
the allocation policy, and E™ denotes the conditional expected
cost given that the initial state is s, while the decision maker ap-
plies the policy 7. The optimal policy IL,, (s) and the minimum
value function V;,(s) are given by

II,,(s) = argmin V;7 (s) and V,(s) = min V] (s).

The optimal value function and the optimal policy can be
computed by using the following recursive scheme, known as
the relative value iteration algorithm [7]

Vit1(s) = min [C(s) + > PLVA(s) (5)

where P%, = P(sp11 = s' | sp = $,m, = a) is the transi-
tion probability to jump from state s to state s’ when applying
action a.

Using the uniform sampling rate v, introduced in the uni-
formization procedure, the transition probabilities can be
written [11]

( )\17 if 8/ = A13
/\27 if 8/ = AQS
)\3, if SI = Ags
nipy, ifs’=D1Pys,a=0
@ ), ifs’=DiPis,a=1
Pl xv= napa, if s’ = DoPys,a =0
nopa, if s’ = DyP_1s,a=—1
ngpus, if 8’ = D3Pys,a =0
naps, if SI = D3P18, a=1
\ F, ifs’ =s
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where F' = W (1 + po+ f13) — n1 11 — nafio —nspz. Replacing
P&, in (5) yields

SSs

Vir1(s) = O(s) + g [F Via(5) + A V(A1 s)
+ )\QVn(AQS) + )\3Vn(A38)
+ puiny min{Vn(Dngs)7 Vn(Dl.PlS)}
+ pono min{V,, (Do Pys), Vi (Do P_y5)}
+ panz min{V,, (D3 Fys), Vn(D3P13)}] . (6)

From (6), it can be noticed that at a Class 1 (respec-
tively, Class 3) call termination time, the optimal action
is a = 0, if Vo(D1Pys) < Vyp(D1Pis) (respectively,
Vi(D3sPys) < Vp(D3Pys)), and a = 1, otherwise. Simi-
larly, after a Class 2 departure, the policy maker takes action
a = 0if V,,(D2Pys) < V(Do P_15), and a = —1, otherwise.

IV. STRUCTURE OF THE OPTIMAL POLICY

In this section, we will prove that for the discounted cost
problem, the optimal allocation policy is a switching curve of
threshold type. We first show this property for two classes of
users, which is less complex and easier to present. In what fol-
lows, we use the term two-class system when system includes
Classes 1 and 2. Proposition 1, which is based on value iteration
and induction method, proves that the optimal value function for
a two-class system is multimodular. In Theorem 1, using multi-
modularity of value function, we show that optimal policy is a
monotonic nondecreasing switching curve. In Proposition 2 and
Theorem 2, we generalize the results of the two-class system for
the original problem with three classes.

Consider a two-class system shown in Fig. 1(b). Let m be
the number of wavelengths allocated to Class 2 calls. Therefore,
the state of the system can be expressed by s = (4, j,m). We
consider similar definition and operators for this system. The
optimal value function for this case can be shown by

(s) =B 8T + [ MV (Ars) + A2V, (Ass)
+ (W(p2 + p1) — napz — nipa) V' (s)
+ ping min{V(D1Pys), Vi (D1 P1s)}
+ pang min{V(DyPys), V(DaP-15)}] (7)

where vector B* := (a, 3, (a — 3)) and B* - 5™ is the one-step
cost.

If the value function has some properties such as convexity,
submodularity, or more generally multimodularity, then its
computation time will be remarkably decreased and we can
show that the associated optimal policy will have a simple
switching curve. To show the multimodularity of the value
function, we first introduce a class of multimodular functions
F as follows [10].

Definition 1: A function f € F such that f : N3 — R is
multimodular, if for all (i, j,m) € N?

F(ijom) + (i +1m+1)

<SPG+ gm)+ fi—Li+1m+1) (8
i jom) + f(i = 1,4,m+1)

<flig—1m)+ fli=1,j+1Lm+1) (9
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Fig. 3. Illustrative example. Optimal policy for a two-class system, W = 10,
k=5 A =X=5,a«=1,and 3 = 0.5.(a) e = D;. (b) e = D5. Actions
a = +1,0, and —1 are depicted by “4,” “0,” and “—,” respectively.

<f(i,jm—=1)+fGi—1,5+1,m+1). (10)

To interpret the multimodularity of f, as an example. we rewrite
(8) as follows:

fG—1,+1,m+1)— f(i,j+1,m+1)

This equivalent inequality shows that function f has monotonic
increasing differences. In the following, we show that the value
function is multimodular and satisfies inequalities (8)—(10). This
leads us to show that the optimal policy is a monotonic switching
curve.

Proposition 1: The value function for a two-class system
Vi1 1(3,5,m), is multimodular in ¢, j, and m.

Proof: The proof of this proposition, which is based on

induction, is given in Appendix A. ]

We now derive the structure of the optimal policy and show
that it is nondecreasing switching curve. More specifically, we
will prove that after a termination of Class £ call, there is a non-
decreasing switching curve which partitions the state space into
two regions. One is transferring region (i.e., for all states be-
longing to this region, the optimal policy transfers the released
wavelength to the other class), whereas the other is keeping re-
gion (i.e., in all states within this region, the optimal policy
keeps the released wavelength to Class £ calls). As an illustrative
example, the structure of the optimal policy is shown in Fig. 3.

Theorem 1: For each class of users in a two-class system,
the optimal wavelength allocation policy is a monotonic nonde-
creasing switching curve.

Proof: To prove this theory, we consider the two following
cases.

Case 1: Optimal policy after a Class 1 departure: Suppose
that the state of the system is s = (4,7, m) and a Class 1 call
terminates. We first claim that if the optimal action is to keep the
released wavelength for Class 1 (i.e., a = 0), then for all states
s’ = (¢, 4,m) with i’ < i, the optimal action will be equal to
zero, as well, which is in agreement with intuition. Because of
taking action a = 0 as optimal action in state s, it can be seen
that: V.*(i + 1,5,m) — V(4,7 + 1, + 1) < 0. By using
multimodularity of V,*(s), inequality (8), one can show that

Y

V:(Z/]m) _Vn*(i_ Lj+1m+ 1)

<Vy(i4+1,5,m)=Vy(,5+1L,m+1)<0. (12)
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The above inequality shows that if a Class 1 call departs while
system state is (7 — 1, j, m), then the policy maker again selects
action a = 0.

Now, suppose that the system’s state is s” = (7, j',m) with
j' > j (i.e., the number Class 2 users in state s” is smaller than
the one in state s = (7,7, m)). In this case, we can use (9) to
show that

Vili+1,+1,m) = Vi, +2.m+1)

<Vy@E+1,5,m)—V (i, 7+1,m+1)<0. (13)

Therefore, we prove that if the state of the system is s = (4, j, k)
and the controller takes action a = 0 after a Class 1 termination
as the optimal action, then for all states s' = (4,7, m) and
s = (1,5',m) with / < 7 and j° > j, action a = 0 will
be taken as the optimal action.

Case 2: Optimal policy after a Class 2 departure: An anal-
ogous result can be proved for Class 2. ]

As an example, one can consider Fig. 3(a). Suppose that the
state of the system is s = (3,4, 5) and action a = 0 is taken in
this state, then for all states with i’ < 3 and j’ > 4, the optimal
action is ¢ = 0.

We now add Class 3 users to the problem and determine an-
alytically the properties of the optimal policy. The problem for-
mulation can be extended for a three-class system by general-
izing Definition 1, Theorem 1, and Proposition 1.

Definition 2: A function f € F such that f : N* = R is
multimodular, if for all (i, j, k,m) € N*

<fGE+1,5,km)+ fG—1j+1L,k=1,m+1) (14
fli,jk,m) + f(i— 1,5,k —1,m+1)

<fl,j-1km)+ fi-1,j4+1,k—1,m+1) (15)
fG,5.k,m)+ fGi— 1,5+ 1,k,m+1)

<fG,5k+1,m)+ fG—1,j+1L,k=1,m+1) (16)

Proposition 2: The value function, V,, 11 (i, 7, k, m), is mul-
timodular in ¢, j, k, and m.
Proof: The proof is quite similar to that of Proposition 1.
It is given in Appendix B. ]
Using the result of Proposition 2, we prove that the optimal
policy is monotonic.
Theorem 2: The optimal policy for a three-class system is a
monotonic nondecreasing switching curve.

Proof: The major contribution of this section will be
proved in this part. Suppose that the state of the system is
(i,j,k,m) and a Class 2 call departs from the net-
work and the optimal action is a = 0, then we can see that:
Vali,j+1,k,m) = V,(i+1,7,k+1,m—1) < 0. According
to multimodularity of V,,(s), inequality (15), one can derive

S =

Vn(L7J7k7m> - Vn(L+ 1,J - 17k+ 17m - 1)

<Vi(ij+1,km)=Vo(i+1,5,k+1,m—1)<0. (I8)

This illustrates that if a Class 2 call departs while the state of the
systemis (¢, 7 — 1, k, m), then the optimal action is again a = 0.
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As aresult, the optimal action remains the same (i.e., a = 0) for
all states s’ = (4,7, k, m) with j* < j. Now, suppose that the
state of the system is (¢ + 1, j, k, ), then by using (14), we get
the following inequality

Vali+ 1,7+ 1,k,m) = V(i +2,5,k+1,m—1)

which confirms that the controller takes action a = 0 as the
optimal action in state s” = (¢, 4, k,m) with ¢/ > 4. Using
(16), it can be shown that for all states "' = (4, j, k', m) with
k' > k, action a = 0 will be taken as the optimal action. An
analogous proof can be provided for Classes 1 and 3 calls. This
property shows that for each class of users, the optimal policy
is nondecreasing switching curve. ]

Hence, the optimal policy is described by three switching
curves; each switching curve corresponds to one of the classes.
For Class 1 users, we can show that for each (4, k, m), there
exists a minimum value for 7, such that V,,(i + 1,7, k,m) <
Vo(i,j+ 1,k — 1,m + 1). This value is the boundary between
transferring and keeping regions.

Formally, we define ®;, ®5, and @3 as the switching curves
for Classes 1, 2, and 3, respectively

(Dl(j7k7m) = IIlin{(i,j,k:,m) €5: Vn(‘ + 17j7k7m)

< Vn(LvJ + 17k - 1m+ 1)}
Dy (i, k,m) = min{(i,j,k,m) € S: V,(i,5+ 1,k,m)
j

D3(i,5,m) = m]jn{(z',j,k‘,m) €S :V,(i,4,k+1,m)

<Vali—=1,j41,k,m+1)}

Recursively, we can determine the sequence of n-stage value
functions {Vi(s), Va(s),...V,(s)}, and the limit of this se-
quence when 7 goes to infinity. Lippman in [14] shows that
V(s) := limp_o Va(s) exists and it is the solution of the
infinite horizon discounted cost problem. Besides, V (s) is the
unique solution to the dynamic programming equation given
by (6). Note that the switching curve structure of the optimal
policy holds for the infinite horizon discounted case.

The optimal policy can be derived numerically by imple-
menting policy iteration algorithm [7]. This algorithm has two
phases.

1) Policy determination phase which returns the structure
of the optimal policy in O(|S|*) steps, where |S] is the
total number of states of the system [16]. It can be shown
that for a three-class system with W wavelengths |S| =
O(W?).

2) Policy improvement phase which optimizes the de-
termined policy from the previous phase in few itera-
tions. For instance, the policy improvement phase of a
three-class 20-wavelength network with v = 0.9 con-
verges in five iterations.

Without loss of generality, we assume that 13 = o = p3 =
1, unless otherwise stated. In this part, we will show the structure
of the optimal policy for a three-class system which is derived
from policy iteration algorithm.
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Fig. 4. Optimal policy for three classes of traffic, W = 10,k = 4, A\; =
A=A3=5,0a=1,8=0.1,6 =0.1,ande = D;.
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Fig. 5. Optimal policy for three classes of traffic, W = 10,k = 4, A, =
Ao=A3=5,a=1,8=0.5,6§ =0.1,and e = D;.

Fig. 4 depicts the optimal policy for W = 10, k = 4,
AM =X =A3=5a=1,0=0.1,6 = 0.1, at a Class 1
call termination time. In this figure, each cube represents action
a = 1. Note that the policy is a monotonic three-dimensional
(3-D) switching curve, dividing the state space into two subsets.
The structure of the policy reflects the fact that the three classes
of calls are competing for the available wavelengths. In Fig. 5,
we only change the value of 8 from 0.1 to 0.5, and calculate
the optimal policy for the same parameters, as in Fig. 4. Com-
parison of Figs. 4 and 5 show that by increasing 3, the decision
maker gives more resources to Class 2 users (i.e., more cubes
are represented).

V. MULTITHRESHOLD (MT) HEURISTIC ALGORITHM
FOR WDM RING NETWORKS

Since implementation of an MDP-based DP allocation policy
requires polynomial time, it is infeasible to use it for realistic

networks. Hence, we use the properties of DP policy to devise
a simpler heuristic allocation algorithm. In Section III when DP
policy is used, we observe the following.

1) Optimal actions are taken based on available wavelengths
for each class.

2) Wavelengths are shared as much as possible. By adjusting
threshold m, they are dynamically partitioned between
classes.

We consider these two facts and propose a multithreshold (MT)
allocation scheme.

We introduce our heuristic algorithm for a symmetric uni-
directional WDM ring network with N nodes with or without
WCs. We assume that each link carries one fiber with W
wavelengths. The network includes N (NN — 1) classes of traffic
streams characterized by their source-destination. We modify
the definition of classes as follows. A call from Class cj,
r=12,...,N,and h = 1,2,..., N — 1 originates at node
r and passes through h hops from origin to destination. In
addition to the assumptions stated in Section II, we assume that
classes with the same hop count (i.e., the number of hops used
from origin to destination) are assigned the same weighting
factor, and the same arrival rate (i.e., )‘Ci = )‘Ci =...= )\cﬂv ,
h = 1,2,...,N — 1, where h is the hop count). Therefore,
we can merge classes with the same hop count into a single
class. In the following, we refer to classes with hop count h as
Class C},.

In such a network when CS policy is deployed, the system is
unfair because classes of calls with smaller hop counts experi-
ence lower blocking rates than the ones with greater hop counts.
To improve fairness, MT allocation will be deployed. When we
use this allocation policy, similar to DP policy, while all classes
share the wavelengths as much as possible, classes with higher
hop counts are protected from the ones with lower hop counts
based on available wavelengths on each link of the ring network.

To do so, we define 7 = (71,72,...,7n—1) a vector rep-
resenting the thresholds of MT allocation. Threshold 7, h =
1,2,...,N—1, is associated with Class C}, traffic. In general,
MT allocation scheme is capable to control blocking perfor-
mance and threshold vector 7 can take any value. In particular,
for solving fairness problem in a ring network we have to ensure
that calls with higher hop counts are protected from the ones
with lower hop counts. Therefore, we assume that 71 > 7 >
-« > 1n_1.Since calls from class Cy_; experience the highest
blocking probability in the ring, they are always accepted in the
system. As a result, we set Ty 1 = 0. Letl,,n =1,2,..., N,
be the link between node n and node n+ 1 and w,, denote the
number of available wavelengths on link /,,. An arriving call of
class C;, will be assigned an available wavelength if w,, on all
the links along its path is greater than or equal to 7.

As an example, consider a four-node unidirectional ring net-
work shown in Fig. 6. One can note that on each link, the total
number of available wavelengths W' is partitioned into three
sets. As shown in Fig. 6, available wavelengths on links /; and
lo are greater than 71. Thus, all C1, Cs, and C'5 calls which pass
through /; and l» can occupy free wavelengths of these links.
Since 75 < wg < 71, Class C calls that use link /3 will be
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blocked. On links /4, we have wy < 79 and as a result, only C5
calls are allowed to occupy an idle wavelength on this link.

The next step toward MT allocation implementation is to de-
termine the threshold vector T, so that all classes of calls ex-
perience the same blocking probability. In [17], we defined an
objective function to be minimized. It can be observed that this
objective function inherits some type of pseudoconvexity prop-
erties from the value function expressed by (5). Using the prop-
erties of the objective function, we proposed and implemented
a fast simulation-based algorithm to find the optimal thresh-
olds. Due to space limitation, details of threshold determination
will not be presented in this paper. Refer to [17] for complete
implementation.

VI. PERFORMANCE COMPARISON

In this section, we compare the performance of our proposed
DP and heuristic allocation policies, with those of CS and CP
policies. In order to implement CP policy for the two-hop net-
work shown in Fig. 1, one can divide the total number of wave-
lengths W into two parts. Let M be the number of wavelengths
dedicated to Class 2 and W — M be the number of wavelengths
reserved for Classes 1 and 3. Note that M is a constant value.
Using Erlang’s B formula, we can compute p’,, the probability
of having u users of Class £ in the system

1 (a ) b
0w\

Pu =, L\

£
where T} is the total number of wavelengths reserved for Class
£. One can notice that pl}[ is the probability that all dedicated
wavelengths to Class / are busy (i.e., p, is the blocking proba-
bility of Class £ calls). Using p%,V_ > Pass and p:{’,V_ > We can
derive the expected number of calls of each class in the system

A
Nn) = (36) (-3
e
We also define M* as

M* .= arg max

are alNy (M) + BN2(M) + 6N3(M).
(19)

To compare the performance of DP, CP, and CS policies,
we simulate the system by deploying the optimal policy im-
plemented in Section IV to evaluate the performance metric of
DP policy. For CP, the simulation result is carried out for two
independent M/M/(W — M™*)/(W — M™*) queues associated
with Class 1 and Class 3 and one M/M/M*/M* queue related
to Class 2. Finally, we simulate the system without any alloca-
tion policy to evaluate the performance of CS policy.

We first study a two-class system. Figs. 7 and 8 depict the
average-time reward function (an; + [Bns) versus the total of-
fered load p, where p = A1/p1 + A2/ pe. In both examples, the
parameters are set as follows: W = 10, A\; = A, @ = 1, and
6 < p < 40. The difference between the two examples lies in
the value of 3. In Fig. 7, we set 3 = 0.1 which is significantly
smaller than «. It shows that for low load, all the policies have
similar performance. As the load increases, DP policy shows
much better performance, in particular when compared with CS
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Fig. 7. Performance comparison of DP, CP, and CS policies. Performance
metric is the time-average of an, + Bn., W = 10, A1 = X5, 6 < p < 40,
«=1,and 3 = 0.1.

policy. Fig. 8 illustrates the performance of the system when
(8 = 0.5. Comparison of Figs. 7 and 8 show that DP policy out-
performs CP policy and in particular CS policy as the difference
between « and (3 increases.

Another important performance metric is the weighted sum of
blocking rates. Applying DP and CS policies, we simulate and
determine this quantity for a system with W = 10, Ay = Ao,
a=1,6=0.1,and 6 < p < 80. To determine the relative
performance improvement of DP policy when compared with
CS policy, we calculate the relative performance ratio (DP,, —
CS,)/CS,, where DP,, and CS,, represent the blocking per-
formance of DP and CS policies, respectively. This quantity is
plotted versus the offered load in Fig. 9. One can see that DP
policy have higher performance, up to 45% for intermediate of-
fered load (e.g., p ~ 15), which is a fact observed in networks
and is in agreement with intuition.
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Fig. 8. Performance comparison of DP, CP, and CS policies. Performance
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Fig. 9. Relative performance comparison between DP and CS policies.
Performance metric is the weighted sum of blocked calls, W = 10, A\; = Ao,
6 <p<8),a=1and 3 =0.1.

As mentioned in Section V, one potential problem in wave-
length-routed WDM networks is fairness. We implemented a
CS policy for a two-hop three-class system with a WC at node
2 and with the following parameters: W = 10, A\ = Ay = A3,
p = A/p1 + Ao/ua + Asz/ps, and 9 < p < 45. The simula-
tion result depicted in Fig. 10 shows that Class 2 calls experi-
ence more blocking than Class 1 and Class 3 calls. We apply
the DP policy to improve the unfairness problem in the net-
work. Through the simulation, we observe that fora = § = 1
and 8 = 1.95, all the classes can experience the same blocking
probabilities. Another approach to equalize the blocking prob-
abilities is to use CP policy to partition the wavelengths among
the users of different classes. In this particular example, we ded-
icate half of the wavelengths to Class 2 calls and the other half to
Classes 1 and 3. Fig. 10 shows the blocking probabilities when
we deploy CS, CP, and DP policies.
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Fig. 10. Performance comparison of DP, CP, and CS policies for three classes
of users. Performance metric is blocking probabilities of different classes, W =
10, A1 = A =25,9<p <45, a=06=1,and § = 1.95.

‘We now evaluate the performance of our heuristic wavelength
allocation scheme. The simulation results are carried out for a
four-node unidirectional ring network with and without WCs.
The performance metric used in the numerical comparison deals
with fairness and blocking probabilities.

Suppose that Class Chign and Cloy calls experience the
highest and lowest blocking probabilities in the network,
respectively. We define fairness ratio as f, := Bhigh/Blow,
where B, is the blocking rates of Class C,. The closer the f,
to 1, the better the fairness is. In our simulations, the arrival
rate of each class is set inversely proportional to its hop count
(e, A, = 2A¢, = -+ = (N — 1)Acy_,)- As aresult, on
each link the expected wavelength request rate of each class is
the same. To achieve fairness, by using MT allocation scheme
each class experiences the same blocking probability.

In order to employ CP policy, one can partition the total
number of available wavelengths into separate sets, each of
which is dedicated to one of the origin-destination pairs. Note
that nonoverlapping origin-destination pairs can share the same
set of wavelengths. For example, consider the four-node ring
network depicted in Fig. 6. Since class C calls do not share
any link, they can use the same set of wavelengths. Class C
calls passing through {I1,l5} (i.e., c3) and also C; calls using
{l3,14} (i.e., c3) can share the same set of wavelengths. Sim-
ilarly, ¢3 and cj calls can use one set of wavelengths. Four
different sets are required for overlapping Cs calls. As a result,
the total wavelengths is partitioned into seven sets; set Sy is
dedicated to class C calls, set Sy is assigned to ¢} and c3 calls
and S; is to classes c3 and cj. Four sets, S;~S7, are needed
for class C5 calls. Let wy, denote the number of wavelengths
in set Sy,. Note that all sets associated with class C}, have the
same number of wavelengths. Therefore, we have w, = w3,
wy = Wy = wg = wy, and W = 2}7_1 wy,. Using Erlang’s
B formula, we can compute the blocking probability of a call
which uses wavelengths of set S,. We can find appropriate
values for wy, in a way that all seven classes of calls experience
the same blocking rate.
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TABLE 1
CLASS-BASED BLOCKING PROBABILITIES AND FAIRNESS RATIOS
FOR A FOUR-NODE 40-WAVELENGTH RING NETWORK WITHOUT
WCS. p, 1S THE TOTAL OFFER LOAD PER LINK

pr, | Policy By B Bs fr T
20 CS .000008  0.00021 0.00064 | 80.0 -
20 MT 0.00049  0.00045 0.00043 | 1.14 | (4,1,0)
25 CS 0.00033 0.00795 0.02473 | 75.0 -
25 MT 0.01410 0.01561 0.01505 | 1.10 | (5,1,0)
30 CS 0.00201 0.04344 0.13807 | 67.7 -
30 MT 0.07360 0.07063 0.07750 | 1.10 | (6,1,0)
35 CS 0.00502 0.10198 0.29933 | 59.6 -
35 MT 0.13509  0.15496 0.17947 | 1.32 | (6,1,0)
40 CS 0.00859 0.13096 0.37806 | 44.0 -
40 MT 0.16722 0.16821 0.19403 | 1.16 (6,1,0)
TABLE 1II

CLASS-BASED BLOCKING PROBABILITIES AND FAIRNESS RATIOS
FOR A FOUR-NODE 40-WAVELENGTH RING NETWORK WITH
WCs IN ALL NODES. p/, IS THE TOTAL OFFER LOAD PER LINK

pr | Policy By By B3 fr T
25 CS 0.00137 0.00257 0.00400 | 2.91 -
25 MT | 0.00280 0.00156 0.00259 | 1.79 | (1,0,0)
30 (6] 0.01245 0.02361 0.03522 | 2.82 -
30 | MT | 0.02547 0.01609 0.02425 | 1.58 | (1,0,0)
35 CS 0.03990 0.07491 0.10968 | 2.74 -
35 MT | 0.07935 0.05349 0.07911 | 1.48 | (1,0,0)
40 CS 0.07695 0.14370 0.20794 | 2.70 -
40 MT 0.15311 0.10807 0.15417 | 1.42 | (1,0,0)
45 Cs 0.11677 0.21677 0.30387 | 2.60 -
45 MT 0.22698 0.16142 0.23046 | 1.42 | (1,0,0)

We study the fairness objective in the ring network shown in
Fig. 6, when MT, CP, and CS policies are used. Table I shows
the class-based blocking probabilities for a 40-wavelength ring
network without WCs. As Table I reports, deploying MT policy
results in a fairness ratio close to 1. As expected, when CS policy
is used the fairness ratio is high, f, € [44, 80]. For low-traffic
load, the blocking rates are relatively small and the competition
for access to the network is low. Conversely, when the offered
load is high, calls from different classes compete for utilizing
resources. As a result, by increasing traffic load, the optimal 73
increases in order to block more C; calls and protect Cs and C's
calls.

Now, we compare MT and CP policies. This comparison is
based on the number of wavelengths required to provide a cer-
tain grade-of-service (GoS) in terms of blocking probabilities.
For instance, when p =30 and CP is used, using Erlang’s B for-
mula, we computed wy =13, we =w3 = 8, and wy = w5 =wg =
wy = 6. Therefore, 53 wavelengths (W = 1342 x 8+4 x 6) is
required for CP implementation, which shows 32.5% growth in
terms of network resource cost. In this case, we have f,. = 1.2
and B; = 0.084, B, = 0.070, and B3s = 0.072.

We also investigate the impact of using WCs on fairness.
Table II presents the performance of MT and CS policies for
the above example when all nodes are equipped by WCs. As re-
ported in Table II, even if MT policy is not used, utilizing WCs
considerably improves the fairness ratio.

Comparison of Tables I and II illustrate the following.

1) For systems without WCs, using MT allocation policy re-
sults in a very good fairness ratio (i.e., f,. = 1).
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2) Deploying WCs not only decreases the overall blocking
probabilities but also improves the fairness ratio. For ex-
ample, the overall blocking rate of the system using MT
allocation without WCs is equal to 0.0733 for p = 30,
whereas this metric for the network with WCs is 0.0226.

3) In both cases, with and without WCs, MT allocation
mechanism is able to improve the fairness ratio. One can
see that f, € [1.10,1.16] and f, € [1.42,1.78] for the
networks with and without WCs, respectively.

4) The optimal thresholds in the network with WCs are
smaller than the ones in the network without WCs.

VII. CONCLUSION AND FUTURE WORKS

We have described an approach to the problem of dynamic
wavelength allocation in all-optical WDM networks. First, the
problem has been formulated for a two-hop path in an MDP
framework and the optimal policy is obtained using the policy
iteration method. It is proved that the optimal policy which
maximizes the reward function is a monotonic nondecreasing
switching curve. Properties of the optimal policy enabled us
to propose a simple heuristic allocation algorithm to pro-
vide fairness in WDM ring networks with and without WCs.
The simulation results, carried out for two-hop tandem and
four-node ring networks, show that both DP and heuristic al-
gorithms yield significant performance improvement compared
with CP and CS policies.

APPENDIX A
PROOF OF PROPOSITION 1: MULTIMODULARITY OF V,*(s)

To simplify the notation, the following intermediate operators
are introduced:

J¥(i, 3,m) = min{V, (i + 1,5,m), V5 (4,5 + 1,m + 1)}
(20)

T i, 3,m) = min{V, (4,5 + 1,m), V¥ (i + 1,5,m — 1)}.
1)

One can interpret J7! and J; ! as the costs just after event e
and exactly before taking action a. Using these operators, the
dynamic programming (7) can be rewritten as

() =BT+ LV (As) + AaVi (Ass)
+ (W (p1 + p2) = nipa — n2p2)V,y(s)

+ mna I (s) + panadyt (s))- (22)

We will prove that V7, ; € F by induction in three steps.
In Step 1, we show that Vi € F. Assuming V¥(s) € F, we
establish in Step 2, that both J;F I and Jr LeF. Finally, in
Step 3, we conclude that V7, ; € F.

A. Step 1

One can easily verify that Vi = B* - sT satisfies inequalities
(8)—(10) and as a result Vj € F.
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B. Step 2

Assuming that V,*(s) € F, one can show that both .J;F! and
J1 € F. Letus first prove that J;F' € F. In doing so, we first
show that /7! satisfies (8) and

T g,m) + I+ Lom+ 1)

< TP+ Ljm)+ JH G -1+ 1Lm+1) (23)

is valid for all four possible values of JF'(i + 1,j,m) and
JFi— 1,5+ 1,m+ 1) as follows.

Case 1: Assumethat V*(i42,5,m) < V*(i+1,j+1,m+
Dand Vi(i,7+1,m+1) < V¥(i—1,j4+2,m+2). According
to Jt operator, it can can be noticed that

T i1, 5,m)

=V*(i+2,5,m)

=min{V, (i +2,5,m), V. (i+ 1,5+ 1,m+1)} (24
JHG-1,5+1,m+1)

=V (i,j+1,m+1)

=min{V,(z,74+1,m+1), V. (i—1,74+2,m+2)}. (25)

Using (20), we can deduce

T, g,m) + T, 5+ 1,m + 1)

<VIGE+1,5,m)+Vy(GEi+1,j+1,m+1). (26)

On the other hand, the multimodularity of V,*(s) implies that

Vi(i+1,5,m)+Vy(i+1,74+1,m+1)

SVi(it+2,5,m) +Vy(i,j+1,m+1). (27)

According to the assumption of this case, the right-hand side of
inequality (27) is equal to

Ve@i+2,5,m)+Vy(i,7+1,m+1)

=Ji+1,5,m)+ JF(i— 1,5+ 1,m+1). (28)
By combining (26)—(28), we get
i, gom) + TG+ Lm+ 1)

ST+ 1,4,m)+ G- 1,5+ 1,m+1). (29)

Case 2: The assumption for this case is

Tt i+ 1,5,m) =V (i + 2,7,m)
JHGE-1,74+1,m+1) =V (i—-1,5—2,m+2).30)

n

Using (20), we derive the following inequality:

TN G,m) + TG+ Lom+ 1)

SVi(i4+1,5,m)+ V(4,5 +2,m+2). (3l)
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Similar to the previous case, the multimodularity of the value
function implies that

Vi+1,5,m)+Vi(i+1,7+1,m+1)
<VI(E+2,5,m)+Vi(,j+1,m+1)

Vij+1lm+1)+V: (i,j+2,m+2)
<VX(i41,j41,m4+1)+V (i—1,742,m+2).

(32)
(33)
After summing (32) and (33), we obtain

Vii+1,5,m)+Vri(i,7+2,m+2)
<VI(i+2,5,m)+ V(i —1,7+2,m+2)
Vii+2,5,m)+Vi(i—1,7+2,m+2)
=J i+ 1 jom) + JEH i = 1, )+ 1,m + 1),

(34)
(35)

Combining (31), (34), and (35) implies (23).
Case 3: The assumption is

TG+ 1,5,m)=Vr(G+ 1,5+ 1,m+1)
TG —1,74+1,m+1) =V (i-1,7+2,m+2).

n

(36)
Using (20), we can show that

JEG,g,m) + T35+ 1,m + 1)
<V, j+1,m+ 1)+ Vi, 5+2,m+2). (37)

From multimodularity of V,*(s) and the assumption of this case,
it can be concluded that

Vi, j+1,m+1)+V, (i,j+2,m+2)
<Vy(i+1,5+1m+1)+ VS (i—1,74+2,m+2)
Vii+1,7+1m+1)+Vy(i—1,7+2,m+2)
=JH i+ 1,5m)+ G- 1,5+ 1,m+1). (38)

By combining (37) and (38), it can be shown that inequality (23)
is satisfied.
Case 4: The assumption for this case is

Tt i+ 1,5,m) =Vy(i+1,j+1,m+1)
JHG-1,74+1,m+1) =V (6,5 +1,m+1).

n

(39)
Using (20) and the assumption of Case 4, we can obtain

T, g,m) + I+ 1,m 4+ 1)

<V, j+1,m+1)+Vi(i+1,7+1,m+1)
Vi, j+1,m+ 1)+ Vi(i+ 1,5+ 1,m+1)

=JH i+ 1L,5m)+ I - 1,5+ 1,m+1). (40)
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So far, we have proved that for all possible cases, inequality (23)
is satisfied. An analogous proof can be applied (by induction
with respect to n) to get the following inequalities:

T, gim) + S (i = 1,5,m + 1)

< TP, - 1,m) + I - 1,5+ 1,m+ 1)
T, gm) + T — 1,54+ 1,m)

<TG jm =)+ I -1, 5+ 1,m+1). @1)

Hence, we established that .JF1(s) and similarly J;!(s) are
multimodular.

C. Step 3

Since V;,4+1(s) is a linear combination of J;F1(s), J1(s),
and V,,(s) with positive coefficients, then V,i(s) is also
multimodular.

APPENDIX B
PROOF OF PROPOSITION 2: MULTIMODULARITY OF V, ($)

Let us generalize the intermediate operators as

Ty, km)
=min{V,,(i+1,5,k+1,m), V,(i,j+1,k,m+1)} (42)
0,5,k m)

By substituting these operators in the dynamic programming
equation given in (6), we can see that

Vaosa(s) =Cs) + L [MaVa(Ars)
+ X2V, (Azs) + A3V, (Ass)
+ pana JH(s) 4 pang J7H(s)

Fuang L) A FVa(s)]. @)

Similar to the proof of Proposition I, it can be shown
by induction that V,,;; € F. We can easily show that
Vo = C(s) € F. Assume V,,(s) € F and one can establish
that both J;F1, J-1 € F. As a result, it can be shown that
V.11 € F. Let us prove that J ! satisfies (14)—(17). We first
show that

TG g kym) + TG, 5+ 1,k — 1,m + 1)
ST+ LG km) + PG -1+ Lk —1,m+1) 45)
is valid for all four possible values of JF'(i + 1,7, k,m) and
JF(i—1,5+1,k—1,m+1). Let us provide more details for
one of these four cases.

Case 1: Assumethat: V,,(14+ 2,7, k+1,m) < V,(i+ 1,7+
Lk,m+1)and V,, (i, j+1,k,m+1) < V,,(i—1,5+2,m+2),
then

T+ 1,5, k,m) = V(i + 2,4,k +1,m)
JHG =15+ 1,k—1,m+1)=V,(i,j+ 1, k,m+1).
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Using (42), we can derive

Tt iy g kym) + J5 (65 + 1k — Lom + 1)

n

<Vo(@+1,75k+1,m)+V,i+1,j+ 1L, kkm+1). (46)
V. (s) € F implies that
Voi+1,5,k+1,m)+V,(i+1,j+1,k,m+1)

SVal(i+2,5.k+1,m)+ Voul(i,j+ Lkm+1). (47)

According to the assumption of this case, the right-hand side of
inequality (47) is equal to

Vali+2,75,k+1,m)+ V(4,5 + 1, k,m+ 1)
=JM i+ 1L,5,Em)+ I (i 1,54+ 1,E—1,m+1). (48)

By combining (46)—(48), it can be shown that

TP, g, k,m) + 0,5+ 1,k —1,m + 1)
<TG+ 1,k m)+ I =1, 5+ 1, k—1,m~+1). (49)

The proof of Cases 2, 3, and 4 are similar to Cases 2, 3, and 4
of Proposition 1, respectively.

Correspondingly, it can be shown that .J.F L satisfies (15)-(17)
as well. To this end, we established that J;F1(s) € F. In much
the same way, we can show that J,, ' (s) € F. Since V,,41(s) isa
linear combination of .J;F*(s), J1(s), and V,,(s) with positive
coefficients, then V,,1(s) is also multimodular.
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