Satellite Transport Protocol
Handling Bit Corruption,

Handoff and Limited
Connectivity

MAGED E. ELAASAR
IBM Rational Software

MICHEL BARBEAU, Member, IEEE

EVANGELOS KRANAKIS
Carleton University
Canada

ZHEYIN LI
Nortel Networks

Being both wireless and mobile, low Earth obiting (LEO)
satellite access networks have a unique set of link errors
including bit corruption, handoff, and limited connectivity.
Unfortunately, most transport protocols are only designed to
handle congestion-related errors common in wired networks.
This inability to handle multiple kinds of errors results in severe
degradation in effective throughput and energy saving, which are
relevant metrics for a wireless and mobile environment. A recent
study proposed a new transport protocol for satellites called
STP that addresses many of the unique problems of satellite
networks. There was, however, no explicit attempt to implement a
differentiating error control strategy in that protocol. This paper
proposes grafting a new probing mechanism in STP to make it
more responsive to the prevailing error conditions in the network.
The mechanism works by investing some time and transmission
effort to determine the cause of error. This overhead is, however,
recouped by handsome gains in both the connection’s effective
throughput and its energy efficiency.

Manuscript received January 16, 2004; revised September 27, 2004;
released for publication November 18, 2004.

IEEE Log No. T-AES/41/2/845780.
Refereeing of this contribution was handled by T. F. Roome.

This work was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) and Mathematics of
Information Technology and Complex Systems (MITACS).

Authors’ current addresses: M. E. Elassar, IBM Rational Software,
770 Palladium, Kanata, Ontario, Canada K2V 1C6; M. Barbcau
and E. Kranakis, School of Computer Science, Carleton University,
5302 Herzberg Labs, 1125 Colonel By Drive, Ottawa, Ontario,
K1S 5B6; Z. Li, Amazon.com, 1200 12th Ave. S., Suite 1200,
Seattle, WA 98144-2734.

0018-9251/05/$17.00 © 2005 IEEE

I. INTRODUCTION

The work presented here focuses on enhancing
the behavior of transport protocols over networks
containing low Earth orbiting (LEO) satellite links.
Although wireless and satellite links certainly share
a lot of common characteristics, like high bit-error
rates (BERs) and intermittent connectivity, they also
have enough distinct properties to be taken as different
environments for data transport. As surveyed by space
communication protocol standards (SCPS) [1], these
properties include highly variable round trip times,
asymmetric up and down link capacities, limited
computing resources (power, memory and speed), and
relatively higher throughput.

Katz and Henderson [2] proposed the satellite
transport protocol (STP) for satellite networks.

This paper proposes a new error control strategy

for STP that makes it more adaptive to the unique
error conditions in satellite access networks. The

new strategy is based on an end-to-end probing
mechanism that uses the persistence of the error
condition as an indication to the kind of prevailing
error in the network. Whenever an error is detected,
data transmission is suspended. Time and transmission
effort are invested to sense the current delays in the
network. Error conditions accompanied by noticeable
delays are associated with network congestion.
Otherwise, errors are associated with different link
error events. The strategy proposed here is based

on an earlier one proposed by Tsaoussidis and

Badr in the context of transmission control protocol
(TCP) called TCP-probing [3]. However, the new
strategy leverages many unique features of STP

to enhance the quality of error control. It reuses
STP’s acknowledgment polling cycle as a probing
mechanism as well as for early error detection. It also
uses STP’s selective negative acknowledgement as an
explicit error indication and a way to detect premature
activation. Finally, it makes use of STP’s lack of
reliance on timeouts to finish faster. The new probing
mechanism preserves the end-to-end semantics of STP
and is a configurable option of the sender only.

Using simulation, the work presented here shows
that the new probing mechanism for STP indeed
improves the effective throughput and increases
the energy efficiency of the protocol under various
network error conditions. The simulation is carried
in PIX (Protocol Implementation Framework for
Linux) [4]. The main component of the simulation
is the extended STP (XSTP). XSTP is the STP
protocol extended with our probing mechanism, called
XSTP-probing.

The rest of the paper is organized as follows.
Section II reviews the satellite link properties and
literature about the available transport protocols
and some proposed extensions for improving them
in satellite access networks. Section III describes

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005 489

the design of the new XSTP protocol. Section IV
details the new XSTP-probing mechanism. Section V
explains the simulation framework. Section VI
presents and reflects on the simulation results.
Integration testing and performance over packet radio
are discussed in Section VII. Section VIII concludes
with a summary.

II. TRANSPORT PROTOCOLS OVER LEO SATELLITES

A. Link Properties

Since a satellite link is a special kind of wireless
link, it naturally inherits all of a wireless link’s
characteristics. Satellite links are described as having a
natural broadcast capability and an inherent ability to
reach mobile users [5, 6, 1].

Satellite links also cover large areas, resulting in
reduced switching and forwarding overhead. Being
radio-based, satellite links can have limited bandwidth
due to the natural restrictions and international
agreements that control the allocation of the radio
spectrum.

Satellite networks are characterized by having
asymmetric links, usually due to the high cost of the
needed technology to support both directions. This
asymmetry is typically manifested in the links’ speeds,
bandwidth, or both. It impacts the performance of
transport protocols that use acknowledgements in
the reverse direction as a self-clocking mechanism.
Having slower arriving acknowledgments hinders
transmission speeds in the forward direction. Another
restricting feature of LEO satellites is their limited
computing resources largely due to power and size
limitations. Power restrictions in particular can affect
the stability of a connection and the frequency of
errors, putting a damper on the overall performance
of a transport protocol.

Similar to other wireless links, satellite links are
lossy with potentially high BERs, resulting in frequent
packet drops. This effect is mainly due to several
environmental factors (rain, pollution) that cause
noise, multi-path distortion and shadowing of radio
channels. However, advanced error control coding
is sometimes used in the link layer to mitigate such
problems. It is still challenging though to hide the
side effect of those solutions from unaware transport
protocols. In fact, most reliable transport protocols
have an inherent assumption that any loss is due to
network congestion. Therefore, when a segment loss
is detected, these transport protocols switch to a more
conservative stance, effectively underutilizing the link.

Another problem for LEO satellites is their
intermittent connectivity due to their constant
movement in their orbits. The window of connectivity
to a given satellite is around 10% of the time [1].

A handoff occurs when one LEO satellite goes
out of range and another one goes in range. It

490

can also happen when a LEO satellite leaves the
range of some base-station and enters the range of
another. The connectivity can also be lost for more
extended periods due to a physical obstruction of
the satellite signal or an inefficient distribution of
the LEO satellites by the service provider. Both
handoff and limited connectivity can lead to periods
of blackout, during which all packets get dropped.
As mentioned by Allman et al. [5], these periods are
usually confusing for unaware transport protocols
and may lead them to take wrong decisions (like
invoking congestion control) that severely affect their
performance.

B. Unique Challenges

All data networks, including satellite access
networks, are run by communication protocol
stacks. The performance of any data connection is
a direct reflection of the aggregate performance of
all protocols in the stack. The transport protocol is
crucial. The work presented here explores transport
protocols that provide end-to-end reliable (complete,
correct, in-sequence and without duplication)
transmission service. Many standard transport
protocols (like TCP) are generally unaware of
the specific characteristics of their underlying
networks. According to Tsaoussidis and Matta [7],
these protocols are originally designed to address
the problems and satisfy the transport goals of
wired networks. Therefore, such protocols assume
continuous connectivity, data loss resulting from
network congestion and balanced bidirectional links.
These protocols are also calibrated to overcome the
problems of stability and heterogeneity in terms
of receiver buffers, network bandwidth, and delay.

In addition, such protocols strive for fairness in
bandwidth consumption and efficiency in link
utilization by adopting proper congestion control
mechanisms.

These features perform well for wired, high-speed
networks. However, they fail miserably for satellite
data networks, rendering their performance
unacceptable. As explained by researchers at
SCPS [1], transport protocols targeted for satellite
data networks should strive to provide fair link access,
high aggregate throughput and high reliability through
differentiating between unique error conditions.
Transport protocols should also base bandwidth
utilization on a precedence policy, maximize link
utilization and provide an optional semi-reliable
service when needed. The foregoing is in addition
to providing new or updated algorithms to handle
the unique properties of satellite networks mentioned
earlier. These objectives call for revisiting the standard
transport protocols and possibly proposing new ones.
Specifically, Tsauoussidis and Matta [7] outlined
major features that transport protocol designers

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

have to work on: correct detection of the nature of
error (sojourn time, frequency, etc.), implementation
of different error-recovery strategies (aggressive,
conservative or more fine tuned) which are sensitive
to the nature of error detected, optimization of
energy expenditure and connection time utilization
and bypassing the problems of asymmetric links or
having different mechanisms handling problems in
each direction. Tsauoussidis and Matta added new
performance metrics, other than traditional effective
throughput and total expended time, to fairly judge
the protocol’s performance. They proposed the use of
energy efficiency and transmission overhead as more
appropriate metrics. These metrics address the nature
of the battery-powered devices that typically empower
wireless and satellite networks.

C. Error Control Strategies

Many studies showed that the ability of a protocol
to correctly classify the nature of the detected error
can make all the difference for the performance
[3, 8-14]. Not less important is the ability to take
the right action in light of the perceived loss and to
predict future losses. Protocols that lack the ability to
distinguish errors run the risk of taking an aggressive
stance in response to deteriorating link conditions or
wasting bandwidth resources in response to infrequent
transient errors. Both situations lead to inefficient
energy utilization by the protocol.

In the absence of explicit network feedback,
transport protocols need to rely on other methods to
distinguish the different error conditions. Congestion
errors, common in wired networks, occur when one
or more intermediate routers overflow as a result
of being overwhelmed by the incoming traffic.

These errors are usually accompanied by noticeable
increase in delays. All reliable transport protocols
should respond to this event by slowing down their
transmission rate, or in other words shrinking their
sending window. Failure to do so can affect the fair
sharing of bandwidth between competing connections.
A more catastrophic result can happen when the
network reaches congestive collapse, a situation
where large numbers of packets get dumped from the
routers.

On the other hand, link errors can vary in nature.
According to Tsaoussidis and Matta [7], link errors
are usually characterized by both their sojourn
time and frequency. Generally, the more frequent
the link errors, the worse the throughput gets. As
standard transport protocols mistake these errors
for congestion, they slow down their transmission,
and hence become unnecessarily overconservative.
Transport protocols with better error control strategies
expend some transmission overhead investigating the
error condition. Determining the exact cause of a link
error is quite intriguing. However, it is usually enough

to conclude on the burstiness and frequency of such
an error.

D. State of the Art

The TCP has become the defacto standard for the
Internet today. More than twenty years of research
have produced a protocol that is perfect for today’s
high performance networks. Naturally, TCP was
one of the first chosen transport protocols for the
new wireless, satellite, and heterogeneous networks.
Quickly, it became obvious that the protocol needs
some improvements to perform as well in these new
environments. Many researchers took the approach of
proposing extensions to TCP to make it more efficient
in these networks. The availability of current test-beds
and the strong user base are definite advantages
to this approach. Akyildiz, Morabito, and Palazzo
proposed TCP-Peach [15]. TCP-Peach addresses
satellite networks with long propagation delays and
high link error rates. Two new algorithms embedded
into TCP are introduced, namely, sudden start and
rapid recovery. Both the sender and receiver need to
be modified to support the new algorithms. Sudden
start addresses the problem of long propagation delays
that lengthens significantly the duration of the TCP
slow start. Rapid recovery addresses the problem
where TCP interprets segment losses as congestion
whereas on satellite links it is more probably due to
transmission errors. Because of the misinterpretation,
TCP helplessly decreases the transmission rate.

They integrate an algorithm that can distinguish
between congestion situations and transmission error
conditions. The availability of network resources is
probed with dummy segments (i.e., segment without
data traffic) and ACKs for dummy segments. These
are distinguished from other segments using control
bits that were unused. Prioritization of segments is
required by the routers. Dummy segments are given
low priority, and therefore are the first to be discarded
by routers in case of congestion. Dummy segments
are sent and their successful acknowledgements are
interpreted as an indication of available bandwidth.
The transmission rate can be augmented. Casetti,
Gerla, Mascolo, Sanadidi, and Wang have introduced
TCP Westwood [16]. TCP Westwood also consists of
an improvement to TCP. It doesn’t, however, require
new messages. Modifications are required on the
sender side only. The central idea in TCP Westwood
is the continuous measurement of the bandwidth

of the channel by monitoring the arrival rate of
acknowledgements. An estimate of the bandwidth

is obtained by dividing the amount of data, which
delivery is confirmed by an acknowledgement;

by the acknowledgement interarrival time. This

value is smoothed over time using a low-pass filter.
Congestion is detected by the reception of three
duplicate acknowledgements. Instead of dividing

ELAASAR ET AL.: SATELLITE TRANSPORT PROTOCOL HANDLING BIT CORRUPTION 491

the congestion window by two, as done in normal
TCP, the bandwidth estimate is used. Duplicate
acknowledgements indicate also an out-of-sequence
segment delivery. There is an ambiguity, though, about
which segment is exactly delivered. This ambiguity

is resolved by taking the average size of the sent
segments. More work in that direction can be found

in two recent special issues of the IEEE Journal on
Selected Areas in Communications [17, 18].

Other researchers took the approach of developing
new transport protocols that are more tailored to the
characteristics of their network environment. Unlike
the first approach, this approach does not involve the
painful process of retrofitting proposed extensions
into TCP, but rather involves incorporating a lot
of them in the original design of the new protocol.
This approach usually adds more integrity and less
complication to the protocol. However, it runs the risk
of not complying to the standards. This approach also
lacks a rigorous and comprehensive testing schema,
usually defined and available for TCP.

One of those protocols, proposed by Katz and
Henderson [2], is the STP. This protocol is designed
exclusively for satellite networks. The authors try
to keep interface and feature parity with TCP, while
designing their protocol from the ground up with
satellite networks in mind. Specifically, they address
the problems of asymmetry, variable round trip times,
and degraded performance in the presence of multiple
errors per round trip. These features among others
make this protocol better suited than TCP for use in
satellite environments. However, the STP protocol
is lacking one fundamental feature that is essential
to any transport protocol targeted for heterogeneous
networks. This missing feature is a discriminating
error control mechanism. Unfortunately, STP inherits
the assumption that any error results from network
congestion. When any error occurs, congestion
control measures are applied. This inability to classify
and properly handle different error types usually
compromises both the protocol’s throughput and
expended energy.

IlI. XSTP: EXTENDED SATELLITE TRANSPORT
PROTOCOL

XSTP is an extension of the STP protocol. XSTP
is typically deployed on top of the Internet protocol.
XSTP provides a connection-oriented reliable byte
streaming service to application level protocols. This
section explains data transfer in the XSTP protocol.
Descriptions of other aspects, such as connection
establishment can be found in [19].

When it is neither sending nor receiving, an XSTP
connection maintains a keep-alive timer to periodically
check (by sending a POLL message) whether its peer
session is still alive. A connection maintains smoothed
round trip time and variance estimates.

492

When a data segment arrives, it is ignored
(if invalid), presented to upper protocols (if next
expected) or cached. The cache is a sorted list of
segments, received out-of-sequence, and creating
gaps in the byte stream. A gap is defined as two
consecutive cached segments having nonconsecutive
sequence numbers. Cached segments are delivered
in-sequence to the application protocols as gaps are
filled.

An XSTP receiver sends a USTAT message to the
sender when a segment gap is discovered. A reported
segment gap is described by a start sequence number
and an end sequence number. XSTP is configured
to delay this notification until a number of missing
segments. If meanwhile a new gap is discovered,
then the first gap is reported at once and tracking of
the new one is started. Unlike STP, XSTP does not
require a reported gap to consist solely of absent
segments. Instead, XSTP may report gaps that are
partially filled. This process ensures that whatever is
missing from a gap, it is promptly reported.

Periodically sent POLL messages are time-stamped
to eliminate duplicates. Upon the arrival of a POLL
message, the receiver returns a STAT message, with
the received timestamp, acknowledging received
segments and containing a gap list constructed by
traversing the cache. The polling rate is a parameter.
The higher the rate, the faster the segments get
acknowledged, but also the more acknowledgment
overhead is incurred. To minimize overhead, POLL
messages are piggybacked with data segments if
they happen to be scheduled at the same time for
transmission. USTAT messages, similar in content
to STAT messages, provide unsolicited feedback to
a sender. Upon receiving feedback, a sender opens its
congestion window either exponentially or linearly
depending on whether it is in the slow start or in the
congestion avoidance phase.

Messages pushed down from the application are
not transmitted right away. The data is put in a send
buffer. Lack of buffer space momentarily suspends
application message processing. At any point in time,
an XSTP sender is transmitting, persisting, or sitting
idle. XSTP enters the transmission state when there
is enough data to transmit and there is room in the
transmission window. The transmission window
controls the number of segments that are allowed
to be transmitted. This window is calculated as the
minimum of the receiver’s advertised window size and
the sender’s congestion window size. The sender’s
transmission rate is based on a send timer. This timer
paces the transmission uniformly across the round trip
to minimize the risk of creating huge bursts into the
network. An XSTP sender is not able to transmit if a
receiver advertises a zero window size. In that case,
the sender exits the transmission state and goes into
the persistence state. It suspends transmission and
periodically sends POLL segments to request window

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

updates. Only after receiving a nonzero window size
does the sender return to the transmission state. When
the sender is neither transmitting nor persisting, it is in
the idle state.

IV. XSTP-PROBING MECHANISM

The new mechanism is called XSTP-probing.
Upon detecting a segment loss, the level of congestion
in the network is assessed. If congestion is detected,
then XSTP-probing responds by invoking congestion
control; otherwise it resumes with immediate recovery,
which restores the congestion window to the same
level as before probing [3]. XSTP-probing also adapts
to the level of error in the network by suspending
new data transmission and by striving to send only
in error-free intervals. XSTP-probing is modeled after
TCP-probing, proposed by Tsaoussidis and Badr [3].

The goal is to adapt the sender’s transmission rate
to the varying network error conditions. It is usually
accomplished by taking an aggressive stance when
an error is found to be transient and a conservative
one when it is found to be persistent. XSTP-probing
goes further by probing the connection for possible
error-free conditions and only transmitting in those
intervals. Upon detecting a loss, data transmission is
suspended. A probing phase is initiated to collect RTT
statistics. These RTT statistics are compared with the
RTT estimate available when the loss was discovered.
Interestingly, the duration of the probing cycle is
proportional to the level of error in the network This
excludes a sender from the error conditions. After
the probing phase is finished and if congestion is
detected by proliferating RTTs, congestion control is
immediately invoked. Otherwise, transmission levels
are restored without taking any action.

TCP-probing introduces several new message
types and changes to both the sender and receiver.
XSTP-probing does not introduce new message types
and is a sender-only mechanism. This simplifies
the implementation. XSTP-probing reuses the
polling cycle of XSTP, which is the protocol’s low
frequency acknowledgement mechanism, as its
probing mechanism. The POLL segment is the probe
and the STAT segment is the probe acknowledgment.
An XSTP receiver is kept unaware of whether the
received POLL is a probe or just a normal POLL.

The behavior of XSTP-probing is pictured by a
state diagram in Fig. 1. XSTP-probing is triggered
when a loss is discovered either implicitly or
explicitly. The implicit method is called early timeout.
It consists of a break in the POLL/STAT segment
interleaf. XSTP transmits a configurable number
of POLL segments every round trip. After the first
round trip, STAT segments start to arrive. The rate of
arriving STAT segments becomes similar to the rate
of leaving POLL segments, producing an interleaved
pattern of a sent POLL followed by a received

ELAASAR ET AL.: SATELLITE TRANSPORT PROTOCOL HANDLING BIT CORRUPTION

POLL-STAT
Interleaf Break/

Send POLL Send POLL

Data Transfer

Probed
RTT
-

loss.RTT
Congestion
Control

Fig. 1.

Receive
STA

Probing Started
Probing
In Progress

Send POLL
Probed RTT >

Probing
Completed
loss.RTT

State diagram of XSTP.

Receive
STAT

Early time out/
Send POLL

Receive
STAT

STAT. If either a POLL or a STAT is dropped, then
the session detects a break in the interleaf pattern
within a maximum of one RTT and a minimum of
RTT/POLLS_PER_RTT. The explicit loss detection
method relies on receiving feedback from the receiver
in the form of either a STAT message or a USTAT
message. It is after finding at least one segment
worthy of retransmission that XSTP-probing is
triggered. This condition avoids premature triggering
due to a false alarm. This method can be contrasted
to TCP-probing’s three DUPACK heuristic, which is
only a best effort and may lead to premature probing.
When XSTP-probing starts, new data transmission is
suspended, the current timestamp and RTT estimate
(loss. TS and loss.RTT) are recorded.

Probing is conducted in order to obtain two RTT
measurements. A POLL message is sent every RTT.
The timestamp of every POLL message is entered in
a table (finite number of entries is assumed and old
entries are deleted to make room for new entries).
Whenever a STAT is received, the RTT measurement
is associated to the corresponding timestamp in the
table. A STAT message reporting a gap is interpreted
as an indication that probing was started prematurely
due to packet reordering or a false early timeout.

In this case, probing immediately terminates. Data
transmission is restored at the previous level. A STAT
message not related to a timestamp in the table is
received if it took too long to arrive (corresponding
timestamp entry got deleted) or it corresponds to a
POLL segment that had been sent before probing
was started (timestamp is smaller than loss. TS). In
the former case, the STAT is ignored. In the latter
case, it is associated to the timestamp value loss. TS
in the table. In other words, the STAT is considered
close in time to the error (sent during the same
RTT containing the error). Since XSTP normally
sends multiple POLL segments per RTT, several

493

preloss STATs can be received. The loss. TS entry is
overridden with every arriving such preloss STAT.
Interestingly, preloss STATs can allow the probing
cycle to finish quickly (in around one RTT) if the
first probe STAT also made it on time (since two
measurements are required). The RTT may get a little
extended (a common phenomenon in LEO satellite
links where the RTT experiences moderate variations).
USTAT messages, which explicitly trigger probing,
are however ignored while probing is in progress.
Gap reports are processed only after probing is done.
Probing ends when there are two consecutive entries
in the table.

At the end of a probing phase, the two probes’
RTT measurements are compared with the loss.RTT.
If both RTT measurements are less than or equal
to the loss.RTT, congestion is not assumed and the
error is considered to be link related. Otherwise,
congestion control is applied. In some cases, the
RTT can moderately vary (for example due to LEO
satellite mobility). The extended RTTs can wrongly be
interpreted as an effect of congestion. A configurable
RTT tolerance parameter mitigates the effect of that
phenomenon.

The congestion control measure depends on how
long the probing procedure takes to finish. If it is
long enough to reach an XSTP’s threshold for idle
transmission, then the sender goes back to slow
start; otherwise the congestion window is reduced by
the congestion avoidance algorithm (the window is
halved). This congestion control logic is in contrast
to TCP-probing where the sender goes back to slow
start if probing is triggered by a timeout event. If
the timeout later turns out to be inaccurate, then the
connection becomes needlessly over conservative.
After probing is done, the missing segments reported
by the last STAT message are retransmitted and the
normal polling rate is restored.

V. SIMULATION ENVIRONMENT

This section describes the simulation
environment, performance metrics and test cases.
An implementation of the XSTP protocol has been
realized using the PIX framework [4] and C++ over
Linux. In addition to XSTP, three other protocols are
implemented: an application protocol, a link protocol
and a protocol encompassing an error-generating
model, see Fig. 2. The application protocol (APP)
is a bulk data protocol streaming large files. The
continuous flow of bulk data allows demonstrating the
capabilities of the error control strategy. The queue
link protocol (QLP) is based on POSIX message
queues. The extended delay and drop protocol
(XDELDROP) models delays and drops of packets. It
is similar to VDELDROP of x-Kernel [20]. The model
is a continuous time Markov chain with two states.
Each state has three parameters: a mean sojourn time

494

ATR AFP
XDELDROF
XSTE XSTE
Qe . QLr N QLY
Source Router Destination
Node Node Node

Fig. 2. Simulation configuration.

t; to model the persistence of the state, a dropping
rate r; to model the severity of the error condition

and a delay range d™" to d™ (i = 1,2) to model the
prevailing end-to-end delay. When a state is entered,
the duration of the stay is exponentially distributed
with mean #;. During that time, incoming packets

are received and either dropped, with a probability

r;, or forwarded, after applying the minimum delay
d™" or maximum delay d™*. The choice of either
delay is random with a uniform distribution, but is
invariant during each stay in a state. The minimum
delay aims to correspond to the one way delay across
a noncongested network. The maximum delay aims to
correspond to some level of network congestion delay.

A LEO satellite access network is simulated (see
Fig. 2). There are three nodes: a source, a router,
and a destination. In the source and destination,

APP, XSTP, and QLP are installed. In the router,
XDELDROP over QLP are installed.

The application in the source node is configured
to stream a large (10,000,000 byte) file in chunks
of 1000 bytes each. This configuration is chosen to
avoid any buffering delays and to neutralize Nagle’s
algorithm, which delays sending small segments. A
single connection from the source to the destination
is run in each test. Error conditions are simulated: bit
corruption, handoff, and limited connectivity.

XDELDRORP is in either one of four states: no
error, moderate congestion, link error, and severe
congestion. The packet forwarding minimum delay is
100 ms and maximum delay is 150 ms. The minimum
represents a delay under no congestion. The maximum
represents a delay under congestion. The no error
state models forwarding all packets after applying the
minimum forwarding delay. The moderate congestion
state models forwarding all packets after applying
the maximum forwarding delay. The link error state
models dropping packets while applying the minimum
delay to the forwarded ones. The severe congestion
state models dropping packets and applying the
maximum delays to forwarded ones.

The sender and receiver buffer sizes are set to
64000 bytes, while the maximum segment size (MSS)
is set to 1000 bytes, which leads to maximum window
size of 64 segments. The polling frequency is also
set to three per RTT and sending a POLL with the
first burst is enabled. In addition, the USTAT sending
threshold is configured to be three out-of-order
segments. The initial congestion window is set to one

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

segment size and maximum burst size is set to eight
segments. The probing option is configured the same
way for all tests in the simulation. The maximum
number of traceable probes is set to four (i.e., the size
of the table).

The performance metrics are the effective
throughput, transmission overhead and throughput/
overhead ratio. The effective throughput is defined as
the average data rate (in bit/s) from the point of view
of the receiver. It is calculated using the following
formula:

effect. through. = orig. size/conn. time.

The transmission overhead is defined as the
percentage of extra bytes expended in the transmission
of the data bytes. The transmission overhead is
calculated as a percentage using the following
formula:

trans. over. = ((tot. size — orig. size)/orig. size) x 100.

The throughput/overhead ratio is defined as the
effective throughput achieved per one percent of
expended transmission overhead and is calculated
using the following formula:

through./over. = effect. through./tot. trans. over.

It measures the protocol’s ability to manage the
tradeoff between throughput and overhead.

Tests are conducted to represent three different
error conditions: bit corruption, handoff, and limited
connectivity. In the bit corruption tests, the nonpacket
dropping states (no error or moderate congestion)
and packet dropping states (link error or severe
congestion) have the same mean sojourn time. In the
dropping states, the drop rate is varied from zero to
50%. In the handoff tests, the nondropping states have
a larger mean sojourn time than the mean sojourn
time of the dropping states. In the dropping states,
the drop rate is 100%. Different levels of handoff rates
and duration (rendezvous) are tested by varying the
mean sojourn time of both the nondropping states and
dropping states. To simulate a required handoff rate
and rendezvous combination, the mean sojourn time
of the dropping state is set to the handoff rendezvous
time and the mean sojourn time of the nondropping
states is calculated as

((rendezvous/rate) *« 100) — rendezvous.

In the limited connectivity tests, the dropping states
have a 100% drop rate. The mean sojourn time

of the dropping states is larger than the sojourn

time of the nondropping states. Different levels of
connectivity rate and duration (rendezvous) are tested
by varying the mean sojourn time of the nondropping
states and dropping states. To simulate the required
connectivity rate and rendezvous combination, the
mean sojourn time of the nondropping states is set

to the connectivity rendezvous and the mean sojourn
time of the dropping states is calculated as

((rendezvous/rate) x 100) — rendezvous.

VI. SIMULATION RESULTS

The highlights of results of a simulation are
discussed in this section. The complete measurement
data along with their standard deviation and 95%
confidence interval are reported in [19]. XSTP with
the probing option turned off/on is referred to as
XSTP-OFF/ON. For each test, the total connection
time and three kinds of transmission overhead are
tracked: the retransmission overhead, forward control
overhead, and reverse control overhead.

A. Bit Corruption Tests

In this category of tests, an XSTP-OFF sender
usually detects a loss upon the reception of a STAT
or a USTAT message reporting gap(s). The sender
retransmits the lost segments according to the
following conditions. In the case of a USTAT report,
the segments should not have been retransmitted
before. For a STAT report, enough time (usually one
RTT subject to backoff) must have passed since each
segment was last transmitted. Should at least one
segment need retransmission, the sender performs the
required retransmissions before closing its congestion
window using the congestion avoidance algorithm.
The sender then continues its normal transmission
of new data segments only if there is still room in its
send window. Although the USTAT acknowledgment
mechanism is somehow resilient to premature
reporting of gaps due to packet reordering, both the
USTAT and STAT mechanisms are not totally immune
from reporting bogus gaps. This bogus reporting
can occur in the case of unexpected levels of packet
reordering in the network.

When an XSTP-ON sender receives a STAT
or USTAT gap report, if segments pass the
aforementioned retransmission criteria, then it does
not perform the retransmission but rather activates
the probing. An increase in the RTT compared with
the RTT before the probing is taken as a sign of
congestion. Measures similar to those applied by
XSTP-OFF are applied. If no increase in the RTT is
detected, data transmission with immediate recovery is
applied.

Fig. 3 shows results of experiments with a mean
sojourn time of 10 s. The tests are repeated with
different error intensities ranging from 0 to 50%.
XSTP-ON achieves consistently higher effective
throughput than XSTP-OFF (from 3 to 150%).

The total overhead is plotted against the various bit
corruption rates in Fig. 4. The probing reduces the
overhead by a significant ratio (44% to 50%) at error
rates of 20% and above. As XSTP activates probing,

ELAASAR ET AL.: SATELLITE TRANSPORT PROTOCOL HANDLING BIT CORRUPTION 495

900000

Probing OFF —+—
Probing ON —=—

A

600000

500000

Effective Throughput bit/sec

400000

| S

\

300000

S~

——

200000
0 10 20

30 40 50

Eror Rates %

Fig. 3. Effective throughput under bit corruption with 10 s mean sojourn time.

10

Probing OFF —e—
Probing ON —=—

: S

; pd
. S
[~ —
L0

L/

Fig. 4. Overhead under bit corruption with 10 s mean sojourn time.

it suspends new data transmission to protect new
packets from getting dropped. Through that probing
cycle, the mechanism effectively waits until the error
condition clears away before committing to new data
transmission. The throughput/overhead ratio is a
metric to measure the amount of throughput achieved
per one percent of overhead. In Fig. 5 it is shown

that this metric is inversely proportional to the error
rate. As error deteriorates the amount of throughput
achievable as a percentage of overhead decreases. The
figures also show that XSTP-probing helps the session
achieve more effective throughput with a lower level
of overhead expenditure.

B. Handoff Tests

A handoff occurs due to the mobility of both the
user terminal and satellite. The event takes place when

496

either a satellite or a base station is switched over. In
these tests, packets are dropped in both directions in
the link error state with a 100% probability, marking
periods of blackouts. Fig. 6 plots results of tests
performed with handoff rendezvous of 1 s (suspension
of connection) and handoff rates ranging from one to
15%. Reference [19] also presents tests with a handoff
rendezvous of other durations.

In the no error state, packets are forwarded after
being subjected to one of the two configured delays.
If the error condition occurs with noticeable increases
in RTT, it is indicative of congestion. The sojourn
time and frequency of that condition depends on
the competing traffic in the network. However, if
that period occurs without any RTT extensions, it is
indicative of a handoff event.

XSTP-ON achieves consistently higher effective
throughput than XSTP-OFF (from 4 to 86% gain).

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

1e+008

Probing OFF —e—
Probing ON —=—
:
o
°
g 100000 \
s
2
4
2
£
SN ——
10000
0 10 20 30 40 50

Error Rates %

Fig. 5. Throughput/overhead ratio under bit corruption with 10 s mean sojourn time.

850000 T T
Probing OFF —e—
800000 |- ~ Propilg ON ===
o ~—
750000 N\ P~
oo \\ T
N <K
g 650000 ™ \\
§ s \~\ ~
550000 NG
i 500000 \
- \\
NG
400000
son \\
300000
0 2 4 6 8 10 12 14 16

Handoff %

Fig. 6. Effective throughput under handoff with 1 s rendezvous.

An XSTP-OFF sender does not detect the blackout
period, hence the loss, until the period is over

and either a STAT or a USTAT segment brings

back a nonempty gap report. This inability to

sense the loss in connectivity makes the session
susceptible to draining some or all of the segments
in its send window. Also, as a result of applying
congestion control measures, the session slows
down its transmission speed before retransmitting
the reportedly lost segments. On the other hand, an
XSTP-ON session can detect the blackout period
much quicker by detecting a break in the POLL/STAT
interleaf. This ability allows the session to only
dump a fraction (1/POLLS_PER_RTT) of its current
send window rather than the whole window, which
translates into gains in both effective throughput and
energy efficiency. As soon as the session detects

ELAASAR ET AL.: SATELLITE TRANSPORT PROTOCOL HANDLING BIT CORRUPTION

the loss, it activates the probing mechanism. In a
LEO satellite environment, the RTT can moderately
fluctuate with the mobility of the satellite, relative

to the terminal user. The RTT can also increase

due to a congestion condition starting to build up.

In these cases, XSTP-ON can prematurely go into
probing mode, as a result of the early timeout feature.
However, as soon as the presumably lost STAT
segment arrives containing an empty gap report, the
probing mode is immediately terminated with virtually
little if any loss in throughput.

C. Limited Connectivity Tests

In the limited connectivity tests, connectivity
(rendezvous) is available during limited periods of
time. Tests are performed with a rendezvous of 5 s

497

240000

" Probing OFF ——
Probing ON

200000

180000

yd
-

160000

140000

120000

Effective Throughput bit/sec

100000

/)
//

10 16

20 25 30

Connectivity %

Fig. 7. Effective throughput under limited connectivity with 5 s rendezvous.

and with various connectivity rates ranging from

1 to 30%, as shown in Fig. 7. Reference [19] also
presents tests with a connectivity rendezvous of other
durations.

In the link error state, packets are dropped in both
directions with a 100% probability. In the no error
state, packets are forwarded after being subjected
to one of the two configured delays. This setup
exemplifies extended physical obstruction of satellite
signals or unavailability of an in range satellite due
to coverage limitations. This condition can occur due
to the relative mobility of satellites and mobility of
user terminals. When the connection is restored,
the RTT can be similar to the one before the
interruption.

An XSTP-OFF sender does not detect the loss
of connectivity until it is over and either a STAT
or a USTAT segment brings back a gap report.

This inability to sense the loss in connectivity
makes the sender susceptible to drain some or

all of the data segments from its send window.
While connectivity is lost, the session maintains
polling to sense return of connectivity. However,
due to the extended connectivity loss periods, the
polling gets extensively backed off to a level that
compromises the ability of the sender to detect the
mainly short connectivity windows. In this case, the
session either misses or detects late one or more
connectivity windows. As soon as a sender detects
the connectivity loss, it slows down its transmission

before retransmitting the reportedly missing segments.

On the other hand, the XSTP-ON sender can detect
the connectivity loss period much quicker as a break
in the POLL/STAT interleaf. The sender dumps a
fraction (1/POLLS_PER_RTT) of its current send
window rather than the whole window, which
translates into gains in both throughput and energy
efficiency. As soon as a sender detects the loss, it

FTP

XSTP

IPv4 with DSR

AX.25 (KISS)
PAD

Fig. 8. Protocol stack for packet radio.

activates the probing. Connectivity windows are
quickly detected within one RTT. XSTP-ON achieves
consistently higher throughput than XSTP-OFF (from
13 to 77% gain).

VIl. PERFORMANCE OVER PACKET RADIO

Packet radio refers to breaking up large blocks of
data into small units called packets and sending them
using radio signals. Characteristics of packet radio are
multi hop networks, wide range, slow speed, short
frames, and high latency.

In this section, we explore the performance of a
protocol stack integrating the following protocols: a
file transfer protocol, the XSTP, IPv4 with dynamic
source routing (DSR), AX.25, and a packet assembler
dissembler (PAD) protocol depicted in Fig. 8.

AX.25 [21] and PAD provide the packet radio
services. Experiments were conducted at data rates
of 1.2 Kbit/ss and 9.6 Kbit/s, frame size 255 bytes,
using the carrier sense multiple access (CSMA)
medium access control protocol. We first briefly
review communications architectures related to the
one investigated in this work. Then we present and
discuss our performance results. More details about
this aspect of our work can also be found in [22].

498 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

A. Packet Communications in Space

In space communications, packet radio is used
for CubeSat at data rates ranging from 1.2 Kbit/s to
9.6 Kbit/s [23]. PACSATSs are also users of packet
radio [24]. A PACSAT is a LEO satellite that carries
on-board memory for the purpose of data storage
and retrieval by ground stations. Its protocol suite
is composed of two APPs, namely, a file transfer
level O (FTLO) protocol and a PACSAT broadcast
protocol (PBP) that both operate above the AX.25
protocol. CHIPSat [25], a satellite launched on
January 2003, uses TCP/IP and FTP for end-to-end
satellite operation. The idea of end-to-end operation
on spacecraft over TCP/IP has been demonstrated
by the UoSat-12, however, CHIPSat is the first
attempt to implement the concept as the primary
means of satellite communications. The SCPS [1]
provide a suite of protocols to communicate with
space vehicles. The stack includes a file protocol
(FP), a transport protocol (TP), addressing issues in
space, a security protocol (SP), ensuring integrity
and security, and a network protocol (NP), both
connectionless and connection-oriented. Point-to-point
UHF 9600 bit/s data radio was used for the Lander to
Rover communications link of the Mars Pathfinder
mission. Although it was not packet radio per se,

e.g. there were neither encapsulation of data with
headers nor addressing or routing, it had some of

the transmission characteristics that we find in packet
radio such as slow speed.

B. Experimental Environment and Performance Results

For this experiment, two PCs are used to
simulate a satellite and a ground station. Each of
them is connected to a Kenwood TM-D700A/E
FM transceiver, which contains a built-in terminal
node controller (implementing framing and the
CSMA). Tests were performed in a naturally noisy
environment.

Each test involves retrieving a file of certain size
from the satellite to the ground station. The average is
reported, but results that are dramatically affected by
noise are discarded.

We observed that when transferring files of
small size (under 1 KB), bandwidth is the primary
determinant of the latency, as file transfers at
9.6 Kbit/s are much faster than in 1.2 Kbit/s. The
maximum PAD frame size is 255 bytes, an AX.25
header is 17 bytes, an IP header is 60 bytes (including
source routing options), an XSTP header is 16 bytes,
and an FTP header is 5 bytes, therefore each frame
could only carry 157 bytes of FTP data at the
most. A 10 KB file need to be fragmented into and
transmitted in 66 frames. In this case, the processing
time is dominant over transmission time because of

TABLE I
Throughput in bit/s

File Size
Data Rate 1B 100 B 1 KB 10 KB
1200 bit/s 334.07 37521 212.38 220.26
9600 bit/s 758.86 768.16 24992 248.42
TABLE II
Normalized Throughput
File Size
Data Rate 1B 100 B 1 KB 10 KB
1200 bit/s 0.28 0.31 0.18 0.18
9600 bit/s 0.08 0.08 0.03 0.03

the high number of small packets. The throughput
results, in bit/s, of transferring files under 10 KB

are presented in Table I. It is interesting to find that
better throughput is achieved when transferring files
of small size, which is the opposite of transferring
files in wired communications. This is due to the
high processing time of large files as illustrated
above. We also express throughput as a fraction

of the available bit rate, referred to as normalized
throughput. The result is shown as Table II. The
average normalized throughput achieved in 1.2 Kbit/s
is around 0.24, while as to 9.6 Kbit/s, the normalized
throughput is pretty low. AX.25 uses p-persistent
CSMA for medium access control (MAC), where p
is the probability of the transmission when medium is
idle. According to analytic models [26], the global
throughput can theoretically be pushed very high

by increasing the global offered channel traffic.

We believe that a normalized CSMA throughput of
0.24 observed locally by a client under real
conditions and light load (two nodes only: ground
station and satellite) is consistent with theoretical
estimations.

VIIl. CONCLUSION

In this paper, a new error control strategy for STP
that adapts to the error conditions in the network is
presented. The strategy is based on an end-to-end
probing mechanism installed at the STP sender and
activated when a segment loss is detected. A loss is
detected by either an early timeout event or an explicit
feedback from an STP receiver. Probing suspends data
transmission while waiting until the error situation
improves before adjusting the transmission rate. It
measures the connection’s RTT both before and
after probing, to determine if the error condition is
congestion or link related. After this comparison, the
mechanism retransmits the lost segments and resumes
transmission of new data. The new protocol with the
probing option is called the XSTP.

ELAASAR ET AL.: SATELLITE TRANSPORT PROTOCOL HANDLING BIT CORRUPTION 499

In the simulation tests, XSTP-probing consistently
achieves higher levels of throughput while maintaining
lower levels of overhead. Throughout our experiments
conducted over packet radio, we found that the link
peak throughput is comparable to the theoretical
estimations. We know, however, that the overhead
introduced by each protocol layer occupies a big
portion of the frame, which impedes the performance.
So an option to be considered, to improve the
performance, is compression of headers.

REFERENCES

[1] C.C. for Space Data Systems
Space communication protocol specification (SCPS):
Rationale, requirements and application notes.
National Aeronautics and Space Administration, CCSDS
Secretariat, Program Integration Division (Code OI),
Washington, D.C., 20546, Green Book Draft CCSDS
710.0-G-0.4, Aug. 1998.

[2] Henderson, T., and Katz, R.
Satellite transport protocol (STP): An SSCOP-based
transport protocol for datagram satellite networks.
In Proceedings of the 2nd International Workshop on
Satellite-Based Information Services (WOSBIS), Budapest,
Hungary, Oct. 1997, 23-34.

[3] Tsaoussidis, V., and Badr, H.
TCP-probing: Towards an error control schema with
energy and throughput performance gains.
In Proceedings of the IEEE 8th International Conference
on Network Protocols, Osaka, Japan, Nov. 2000, 12-21.

[4] Barbeau, M., and Bordeleau, F.
A protocol stack development tool using generative
programming.
In Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component
Engineering, Pittsburgh, PA, Oct. 2002, 93-109.

[5]1 Allman, M., Glover, D., and Sanchez, L.
Enhancing TCP over satellite channels using standard
mechanisms.
The Internet Engineering Task Force (IETF), RFC 2488,
Jan. 1999.

[6] Allman, M., Dawkins, S., Glover, D., Griner, J., Tran,
D., Henderson, T., Heidemann, J., Touch, J., Kruse, H.,
Ostermann, S., Scott, K., and Semke, J.
Ongoing TCP research related to satellites.
The Internet Engineering Task Force (IETF), RFC 2760,
Feb. 2000.

[71 Tsaoussidis, V., and Matta, 1.
Open issues on TCP for mobile computing.
The Journal of Wireless Communications and Mobile
Computing, 2, 1 (Feb. 2002), 3-20.

[8] Tsaoussidis, V., Badr, H., Ge, X., and Pentikousis, K.
Energy/throughput tradeoffs of TCP error control
strategies.

In Proceedings of the Fifth IEEE Symposium on Computers
and Communications (ISCC 2000), Antibes, France: July
2000, 106-112.

[9] Biaz, S., and Vaidya, N.
Sender-based heuristics for distinguishing congestion
losses from wireless transmission losses.
Technical Report TR98-013, Texas A & M University,
June 1998.

(10]

(11]

(12]

[13]

(14]

[15]

(16]

[17]

(18]

[19]

[20]

(21]

(22]

Samaraweera, N.
Non-congestion packet loss detection for TCP error
recovery using wireless links.
IEE Proceedings of Communications, 146, 4 (Aug. 1999),
222-230.

Kim, T., Lu, S., and Bharghavan, V.
Improving congestion control performance through loss
differentiation.
In Proceedings of the 8th International Conference on
Computer Communications and Networks, Boston, MA,
Oct. 1999, 412-418.

Tsaoussidis, V., Badr, H., and Verma, R.
Wave and wait protocol (WWP): An energy-saving
transport protocol for mobile IP-devices.
In Proceedings of the Seventh Annual International
Conference on Network Protocols, Toronto, Canada, Nov.
1999, 301-310.

Balakrishnan, H., Padmanabhan, V., Seshan, S., and Katz, R.
A comparison of mechanisms for improving TCP
performance over wireless links.

ACM SIGCOMM Computer Communication Review, 26, 4
(Oct. 1996), 256-269.

Holland, G., and Vaidya, N.
Analysis of TCP performance over mobile ad hoc
networks.
Wireless Networks, 8, 2/3 (Mar.—May 2002), 275-288.

Akyildiz, I. F., Morabito, G., and Palazzo, S.
TCP-peach: A new congestion control scheme for satellite
IP networks.
IEEE/ACM Transactions on Networking (TON), 9, 3 (June
2001), 307-321.

Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M., and
Wang, R.
TCP Westwood: End-to-end congestion control for
wired/wireless networks.
Wireless Networks, 8, 5 (Sept. 2002), 467-479.

Jamalipour, A., Marchese, M., Cruickshank, H., Neale, J.,
Verma, S., and Bush, A.
Guest editorial broadband IP networks via satellites—
Part 1.
IEEE Journal on Selected Areas in Communications, 22, 2
(Feb. 2004), 213-217.

Jamalipour, A., Marchese, M., Cruickshank, H., Neale, J.,
Verma, S., and Bush, A.
Guest editorial broadband IP networks via satellites—
Part II.
IEEE Journal on Selected Areas in Communications, 22, 3
(Apr. 2004), 433-437.

Elaasar, M.
XSTP: Extended satellite transport protocol.
Master’s thesis, School of Computer Science, Carleton
University, Ontario, Canada, Jan. 2003.

Hutchinson, N., and Peterson, L.
The x-kernel: An architecture for implementing network
protocols.
IEEE Transactions on Software Engineering, 17, 1 (Jan.
1991), 64-76.

Karn, P, Price, H., and Diersing, R.
Packet radio in the amateur service.
IEEE Journal on Selected Areas in Communications, 3, 3
(May 1985), 431-439.

Li, Z.
Performance of generative programming protocol
implementation.
Master’s thesis, School of Computer Science, Carleton
University, Ontario, Canada, May 2003.

500 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

[23] Heidt, H., Puig-Sauri, J., Moore, A., Nakasuka, S., and
Twiggs, R.
CubeSat: A new generation of picosatellite for education
and industry low-cost space experimentation.
In Proceedings of the 14th Annual AIAA/USU Conference
on Small Satellites, SSC00-V-5, Logan, UT, Aug. 2000.
[24] Price, H., and Ward, J.

PACSat protocol suite—An overview.
In Proceedings of the 9th Computer Networking
Conference, London, Canada, Aug. 1990, 232-238.

[25]

[26]

Rubio, K., Janicik, J., and Szielenski, J.
CHIPSat’s TCP/IP mission operations
architecture—Elegantly simple.
In Proceedings of the 16th Annual AIAA/USU Conference
on Small Satellites, SSC02-1V-4, Logan, UT, Aug. 2002.
Kleinrock, L., and Tobagi, F. A.
Packet switching in radio channels: Part I—Carrier
sense multiple-access modes and their throughput-delay
characteristics.
IEEE Transactions on Communications, 23, 12 (Dec.
1975), 1400-1416.

ELAASAR ET AL.: SATELLITE TRANSPORT PROTOCOL HANDLING BIT CORRUPTION

501

Maged E. Elaasar received his B.Sc. in computer science from The American
University in Cairo (1996) and his M.C.S. from Carleton University, Ontario,
e Canada (2003).
i 58 He is a senior software developer at IBM Rational Software. His research
interests include mobile and wireless networks, satellite communications and
software engineering.

re-1

o 2

Michel Barbeau has a B.Sc. from Université de Sherbrooke (1985), an M.Sc.
from Université de Montréal (1987) and a Ph.D. from Universite de Montréal
(1991), all in computer science.

He is a professor at the School of Computer Science at Carleton University,
Ontario, Canada.

Evangelos Kranakis has a B.Sc. from the University of Athens (1973), and a
Ph.D. from the University of Minnesota, Minneapolis (1980), all in mathematics.

He is a professor at the School of Computer Science at Carleton University,
Ontario, Canada. His current research interests include data and communication
networks, distributed computing and network security.

Zheyin Li received her B.Economics in international trade and in computer
applications from Shandong Institute of Economics in 1998. She received her
M.Sc. in information and system science from the School of Computer Science,
Carleton University, Ontario, Canada, in 2003.

Currently she is working at Amazon.com as a software development engineer,
focusing on multiservice switch crash analysis. Her areas of interest include
mobile and wireless communications and performance evaluation of network
protocols.

502 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 41, NO. 2 APRIL 2005

