IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO.7, JULY 2005

873

An On-Chip IP Address Lookup Algorithm

Xuehong Sun and Yigiang Q. Zhao, Member, IEEE

Abstract—This paper proposes a new data compression algorithm to store the routing table in a tree structure using very little
memory. This data structure is tailored to a hardware design reference model presented in this paper. By exploiting the low memory
access latency and high bandwidth of on-chip memory, high-speed packet forwarding can be achieved using this data structure. With
the addition of pipeline in the hardware, IP address lookup can only be limited by the memory access speed. The algorithm is also
flexible for different implementation. Experimental analysis shows that, given the memory width of 144 bits, our algorithm needs only
400kb memory for storing a 20k entries IPv4 routing table and five memory accesses for a search. For a 1M entries IPv4 routing table,
9Mb memory and seven memory accesses are needed. With memory width of 1,068 bits, we estimate that we need 100Mb memory
and six memory accesses for a routing table with 1M IPv6 prefixes.

Index Terms—Algorithms, hardware, tree data structures, range search, IP address lookup, on-chip memory.

1 INTRODUCTION

THE Internet system consists of Internet nodes and
transmission media which connect Internet nodes to
form networks. Transmission media are responsible for
transferring data and Internet nodes are responsible for
processing data. In today’s networks, optical fibers are used
as transmission media. Optical transmission systems
provide high bandwidth. It can transmit data in several
gigabits (OC48=2.4Gb/s and OC192=10Gb/s are common
and OC768c=40Gb/s is the goal of the near future) per
second per fiber channel. Dense Wavelength Division
Multiplexing (DWDM) [11] technology can accommodate
about 100 channels (2004) and possibly more in the future in
one strand of fiber. This amounts to terabits per second
transmission speed on optical fiber. In order to keep pace
with this speed, the Internet nodes need to achieve the same
speed of processing packets. The Internet nodes implement
the functions incurred by the Internet system. The four
main tasks of the Internet nodes are IP address lookup
(and/or packet classification), packet modification, queue/
policy management, and packet switching.

Given the smallest packet size of 40 bytes (worst case), in
order to achieve 40 Gigabits per second (OC768) wire speed,
the router needs to lookup packets at a speed of 125 million
packets per second. This, together with other needs in
processing, amounts to less than 8ns per packet lookup.
Nowadays, one access to on-chip memory takes 1-5ns for
SRAM and about 10ns for DRAM. One access to off-chip
memory takes 10-20ns for SRAM and 60-100ns for DRAM.
This figure shows that the development of high-speed IP
lookup algorithms which can be implemented on chip is in
great demand. It also shows that it is very difficult for serial

o X. Sun is with the Canadian Space Agency and can be reached at 311 200
De Gaspe, Verdun, Quebec Canada H3E 1E6.
E-mail: xsun@math.carleton.ca.

e Y.Q. Zhao is with the School of Mathematics and Statistics, Carleton
University, 1125 Colonel By Drive, Ottawa, Ontario Canada K1S 5B6.
E-mail: zhao@math.carleton.ca.

Manuscript received 5 Mar. 2004; revised 3 Dec. 2004; accepted 26 Jan. 2005;
published online 16 May 2005.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0075-0304.

0018-9340/05/$20.00 © 2005 IEEE

algorithms to achieve the ideal wire speed. Developing
algorithms that integrate parallel or pipeline mechanisms
into hardware seems a must for future Internet Protocol (IP)
address lookup.

Industry responded to the aforementioned demand by
offloading the processing tasks to coprocessors [20]. A
coprocessor is a system on a single chip to perform a single
task. Previously, the general purpose processor was used in
the Internet nodes. Recently, Network Processors [23] are
gaining popularity in processing Internet data. The trend is
to use a chip to exclusively perform the IP lookup task. As
mentioned above, one of the advantages of an on-chip
system is that the on-chip memory access latency is very
low. Another advantages of on-chip systems is larger bus
width to on-chip memory than that to off-chip memory. The
number of pins of the chip is smaller if the memory goes on
chip rather than off chip. The memos width to on-DRAM
can be more than 1,000. The number of pins for off-chip
memory would increase a lot with the same memory width.

The restriction of an on-chip system is that the memory
cannot be large. Reference [19] shows that, for the
embedded DRAM, the maximum macro capacity/size is
72.95 Mb/31.80mm? with random access time of 9.0ns using
the Cu-08 process; for the embedded SRAM, the maximum
macro capacity is 1 Mb with random access time of 1.25ns
using the Cu-11 process.

We develop an IP address lookup algorithm which uses
a small amount of memory. With this merit, the algorithm
can be implemented in one single chip. Our approach is to
convert the longest prefix match problem into a range
search problem [9], [16], [10] and use a tree structure to do
the search. Our main contribution is the development of a
novel prefix compression algorithm for compactly storing
IP address lookup table. The following techniques are used
in the compression algorithm: 1) We compress the keys in a
tree node, 2) we use a shared pointer in a tree node, and
3) we use a bottom-up process from the leaf to the root
scheme to build the tree.

The rest of the paper is organized as follows: In Section 2,
IPv4 and IPv6 address architectures are introduced.
Section 3 gives a hardware design reference model for our
analysis. In Section 4, we give the concepts and definitions

Published by the IEEE Computer Society

874

related to the range search problem. Details of our new
algorithm are presented in Section 5. Results from an
experimental study are presented in Section 6. In Section 7,
we highlight comparison results with some existing algo-
rithms. Concluding remarks are made in Section 8.

2 |IP ADDRESS LOOKUP PROBLEM

Internet Protocol (IP) defines a mechanism to forward
Internet packets. Each packet has an IP destination address.
In an Internet node (Internet router), there is an IP address
lookup table (forwarding table) which associates any
IP destination address with an output port number (or next-
hop address). When a packet comes in, the router extracts the
IP destination field and uses the IP destination address to look
up the table to get the output port number for this packet. The
IP address lookup problem is to study how to construct a data
structure to accommodate the routing table so that we can
find the output port number quickly.

Since the IP addresses in a lookup table have special
structures, the IP address lookup problem can use
techniques that are different from that used to solve general
table lookup problems by exploiting the special structures
of the IP addresses. Nowadays, IPv4 address is used. IPv6
address could be adopted in the future. We next introduce
these two address architectures.

2.1 IPv4 Address

An IPv4 address is 32 bits long. It can be represented in
dotted-decimal notation: 32 bits are divided into four
groups of 8 bits with each group represented as decimal
and separated by a dot. For example, 134.117.87.15 is the
IP address for a computer at Carleton University, Canada.
(Sometimes we use a binary or decimal representation of an
IP address for other purposes.) An IP address is partitioned
into two parts: a constituent network prefix (hereafter we
call it prefix) and a host number on that network. The
Classless Inter-Domain Routing (CIDR) [12] uses a notation
to explicitly mention the bit length for the prefix. Its form is
“IP address/prefix length.” For example, 134.117.87.15/24
represents that 134.117.87 is for the network and 15 is for
the host. 134.117.87.15/22 represents that 134.117.84 is the
network and 3.15 is the host. (We need some calculation
here. Essentially, we have 22 bits as prefix and 10 bits as
host. So, 134.117.87.15 (10000110 01110101 01010111
00001111) is divided into two parts: 10000110 01110101
010101* (134.117.84) and 11 00001111(3.15)). Sometimes, we
use a mask to represent the network part. For example,
134.117.87.15/255.255.255 is equal to 134.117.87.15/24 since
the binary form of 255.255.255 is 24 bits of 1s (note that the
binary form of 255 is 11111111). 134.117.87.15/255.255.253 is
equal to 134.117.87.15/22 since the binary form of
255.255.253 is 22 bits of 1s.

We can look at the prefix from another perspective. The
IPv4 address space is the set of integers from 0 to 2%% — 1
inclusive. The prefix represents a subset in the IPv4 address
space. For example, 10000110 01110101 010101* (134.117.84)
represents the integers between 2255836160 and 2255837183
inclusive. We will define the conversion in a later section.
The longer the prefix is, the smaller the subset is. For
example, 10000110 01110101 010101* (length 22) has 210 =
1,024 IP addresses in it; 10000110 01110101 01010111*
(length 24) has only 2% =256 IP addresses in it. We can
also see that, if an address is in 10000110 01110101

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

01010111%, it is also in 10000110 01110101 010101*. We say
10000110 01110101 01010111* is more specific than 10000110
01110101 010101*. IP address lookup is to find the most
specific prefix that matches an IP address. It is also called
longest prefix match (because the longer the prefix is, the
more specific it is).

2.2 |Pv6 Address

The research of next-generation Internet protocol (IP) IPv6
[2] was triggered by solving the IPv4 address space
exhaustion problem, among other things. In IPv6, the IPv6
addressing architecture [6] is used.

An IPv6 address is 128 bits long. An IPv6 address is
represented as text strings in the form of x:x:x:x:mxx:x:x,
where the xs are the hexadecimal values of the eight
16-bit pieces of the address. For example, “FE0C:
BC98:7654:A210:FEDC:B098:7054:3A10.” Another example
is “2070:0:0:0:8:80:200C:17A.” Note that it is not necessary
to write the leading zeros in an individual field. We can
use “:” to indicate multiple groups of 16-bits of zeros and
to compress the leading and/or trailing zeros in an
address, but it can only appear once in an address. For
example, “2070:0:0:0:8:80:200C:17A” may be represented as
#2070::8:80:200C:17A.” “0:0:0:0:1:0:0:0” as “::1:0:0:0” or

environment of IPv4 and IPv6 nodes, the form of
xaxaxaxax:x:d.d.d.d is used, where the xs are the hexadeci-
mal values of the six high-order 16-bit pieces of the
address and the ds are the decimal values of the four low-
order 8-bit pieces of the address (standard IPv4 repre-
sentation). For example, “0:0:0:0:0:ABCD:129.140.50.38” or,
in compressed form, “::ABCD:129.140.50.38.”

A form similar to the CIDR notation for IPv4 addresses is
used to indicate the network part of an IPv6 address. For
example, “1200:0:0:CD30:1A3:4567:8 AAB:CDEF/60” repre-
sents the first 60 bits are network part and the other 68 bits
are host part. It also represents a 60 bits length prefix.

In the following sections, we use IPv4 addresses as an
example to explain the concept for purpose of simplicity.

3 A HArRDWARE DESIGN REFERENCE MODEL

Fig. 1 is a reference model for the hardware design. The left
part is a chip and the right part is external SRAM memory.
The IP destination address enters the chip as a key for
looking up the next hop information. The output of the chip
is an index to the external SRAM where the port
information can be found. The chip is an ASIC that consists
of a memory system and an ALU part. The memory system
uses on-chip SRAM. Using an IBM blue logic Cu-08 ASIC
process, the I/O width of the SRAM to the control logic unit
can be as wide as 144 bits. The memory access time can be
as low as 1.25ns. The size of the on-chip memory is about
1 Mbits. Assuming there are 144 bits in each row, the chip
has less than 2'3 rows altogether. This means 13 bits is
enough to index into any row of the memory. The ALU
receives keys from outside and produces outputs to the
outside. It may access the memory system and performs
some simple logic and arithmetic operations. According to
different design goals, the chip can be configured or
programmed. In fact, this reference model can be modified
to be tailored to different situations.

SUN AND ZHAO: AN ON-CHIP IP ADDRESS LOOKUP ALGORITHM

875

Y 1
: :
I
: Fe——144bits — |

1
! I
: |
! On-Chip |
! SRAM |
! less i
: than !
! . 13 |
y 1 Mbits |

I
|

1
|

1
|

I

1
1

1
: :
1
! N |
: | Port

|
1
i Indgx Data E Information
I

1
|
! | SRAM

1

Destination jAddress Next Hop Index

. ALU ;
! 1
|

I
I

1
1

1
1

I
1

1

Fig. 1. Hardware design reference model.

The reason to choose SRAM instead of DRAM as the on-
chip memory is that the SRAM access time is several times
faster than the DRAM. The on-chip SRAM memory size can
be made more than 100M bits large, which is well suitable
for any IP lookup task.

4 CONVERT LONGEST PREFIX MATCH TO RANGE
SEARCH PROBLEM

In this section, we will give some more definitions related to
converting a prefix to a range of addresses. We use a small
artificial routing table in Table 1 as an example. We first
give the following definition.

Definition. A prefix P represents address(es) in a range. When
an address is expressed as an integer, the prefix P can be
represented as a set of consecutive integer(s), expressed as
[b, €), where b and e are integers and [b,e) ={z:b<z <e,x
is an integer}. [b, e) is defined as the range of the prefix P. b
and e are defined as the left endpoint and right endpoint of
the prefix P, respectively, or endpoints of the prefix P.

For example, for the 6-bit-length addresses, the prefix
001* represents the addresses between 001000 and 001111

TABLE 1
A Mini Routing (Maximum Prefix Length = 6)
prefix port || prefix port
0% A 10% C
00010* | B 10001* | A
001* C 1001%* A
01* C 1011* | D
011000 | D 11* D
O111* A 110%* A
1* B 1101%* B

inclusive (in decimal form, between 8 and 15 inclusive).
[8,16) is the range of the prefix 001*. 8 and 16 are the left
endpoint and right endpoint of the prefix 001*, respectively.
Readers may notice that the definition of right endpoint is
different from that in the literature (e.g., [13]). With our
definition, each endpoint can have at least as many trailing
zeros as the length of the host part of the IP address. As in
the example given above, 16 has four trailing zeros in its
binary form, while 15 has no trailing zeros in its binary
form. In real-life forwarding tables, most of the prefixes
have a length of 24 bits. Thus, most of the endpoints have at
least 8 bits of trailing zeros. We will exploit this property
using the tree structure in the following section.

Two distinct prefixes may share at most one endpoint.
For example, in Table 1, prefix 001* has endpoints 8 and 16
and prefix 01* has endpoints 16 and 32. They share the same
endpoint 16. Since each prefix can be converted to two
endpoints, N prefixes can be converted to at most
2N different endpoints. Fig. 2 is the mapping of prefixes
in Table 1 to endpoints and ranges. Notice that 14 prefixes
produce 17 endpoints in this example.

If two consecutive ranges have the same port, the shared
endpoint can be eliminated. Hence, the two ranges can be
merged into one range. For example, since range [34,36)
and range [36,40) both map to port A, we can merge them
into the range [34,40). We can assign a unique port to each
range according to the rule of longest prefix match. We can
use an endpoint to represent the range to its right and, thus,
assign the port of the range to the left endpoint. For
example, let a be an endpoint and b its successor. If port A is
assigned to a, it means any address that is in [a,b) is
mapped to port A. The algorithm to convert the routing
table into (endpoint, port) tuples is given in the Appendix.
Notice that, for simplicity, this algorithm does not do the
possible merge of endpoints mentioned above. In fact, this
can be easily done by using a variable to record the port
assigned to the previous endpoint. Whenever there is a port
assignment, we check the port with the recorded port. If
they are equal, this endpoint will be eliminated; otherwise,
assign the port as usual. Fig. 3 is the result of the conversion

876

L L LI
L ILLiertetetrl |

0 4 16 2425 28 323436 40 4 48 52 56 64

Fig. 2. Endpoints converted from prefixes and the corresponding ranges
and ports.

of the routing table in Table 1 into (endpoint, port) tuples.
With the merging of ports, the number of endpoints is
reduced from 17 to 15.

The set of endpoints from Fig. 3 is {0, 4, 6, 8, 16, 24, 25, 28,
32,34, 36,40, 44, 48, 52, 56, 64}. Usually, 0 and the maximum
value 64 can be eliminated. With the above process, the IP
address lookup problem is converted into the predecessor
finding problem in a priority queue [4]. The predecessor
finding problem is defined as follows: Given a set of sorted
integers S and an integer 4, find an integer e in S such that e
is the biggest one which is less than or equal to i. One of the
solutions is to use a tree structure to tackle the predecessor
finding problem. Fig. 4 is an example of the tree structure
created from Fig. 3. We start the search from the root, then
go through internal nodes until we reach a leaf. The leaf has
a pointer which leads to the corresponding port informa-
tion. For example, in order to look up 39, we search in the
root and find that 34 is the the biggest one which is less than
or equal to 39. Following the pointer, we search the third
node in the next stage. We find 39 is less than all the stored
values. It points to port A.

The data structure we propose is essentially a tree
structure, too. However, the details and the techniques are
different from that in the literature (e.g., [9], [16], [10]). In
order to be convenient for explanation, we divide the tree
into levels. The root is level one. The next stage nodes are
defined as level two and so on. The leaves are the last level.
There are two levels in Fig. 4.

5 PuT THE TREE IN MEMORY

In this section, we will explain how to put the range tree
structure into memory. This is considered the main
contribution in this algorithm. We will discuss how to
compress the endpoints, how to use the shared pointer in a

A B A C

il
T

0 468

DCACA C D A B D

]
e

425 183234 4 4 4

5256 64

Fig. 3. Endpoints with the corresponding ports obtained by the longest-
prefix match rule.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

4 % 8

|!52I56I‘

Fig. 4. A tree structure.

node, and how to use a bottom up approach to build a
range tree in the memory.

5.1 Compressed Endpoints and Shared Pointers

Let us take a close look at the endpoints of IPv4 addresses
from Table 2. This is a set of consecutive endpoints that are
taken from a routing table. We can find that all the
endpoints have the same head bits “110000001110110”
(15 bits) and each has at least eight trailing zeros. This is
the source of compression. We can compress the common
leading bits and trailing zeros. The more common leading
bits and trailing zeros there are, the better the endpoints are
compressed. The number of common leading bits is related
to the number of endpoints in a forwarding table.
Intuitively, the larger the number of endpoints is in a fixed
address space, the larger the number of common leading
bits tends to be since the endpoint space is fixed and the
endpoints tend to cluster together when the number of
endpoints is large. Human being assigned numbers such as
IP prefixes tend to be correlated. For example, consecutive
numbers tend to be assigned. So, endpoints from real-life
IP tables tend to have a large number of common leading
bits. We will verify this by experimental study.

Assume the endpoints in Table 2 are all the endpoints
stored in a same node of the tree structure. We create a data
structure, shown in Fig. 5, to represent the node. In this data
structure, we use two fields to indicate the number of
common bits to skip and the number of trailing zeros that
each endpoint at least has. So, we only need to store the
middle bits of each endpoint as a key for the endpoint. In
this example, we only need to store a nine-bit key for each
endpoint instead of an endpoint of 32 bits. Referring to the
hardware design model in Fig. 1, there are 144 bits in each
memory row. Each row is used to store a node of the tree.
With the endpoints compressed, more endpoints can be
stored in a node using 144 bits. Fig. 5 is the data structure
for the 144 bits. We explain it in detail in the following: The

TABLE 2
Real-Life IPv4 Endpoints

11000000 11101100 01000000 00000000
11000000 11101101 00100000 00000000
11000000 11101101 01000000 00000000
11000000 11101101 01110010 00000000
11000000 11101101 01110011 00000000
11000000 11101101 01110100 00000000

SUN AND ZHAO: AN ON-CHIP IP ADDRESS LOOKUP ALGORITHM

877

number of
skip bits

number of
keys

internal node
or leaf bit

number of
trailing zeros

next tree

keyl key2 keyd ... | pointer

Fig. 5. The row data structure for a node of the tree.

data structure has six fields. The first field is a one-bit field
to indicate whether the node is an internal node or a leaf
node. The second field is the number of endpoints stored in
this node. If the number of endpoints stored in any node
does not exceed 16, then 4 bits are needed for this field. The
third field records the number of head bits to skip in the
IP address (endpoint) and the fourth field is the number of
zeros to ignore at the trail of the IP address (endpoint). In
general, for IPv4 addresses, these two fields need at most
five bits each. For IPv6 addresses, these two fields need at
most seven bits each. We will further discuss how to reduce
the number of bits for these fields in later sections. The next
field is for the keys. The last field is the pointer indexing to
nextlevel node of the tree structure. We use 20 bits in this field
for supporting 500k entry forwarding tables. This is because
each entry can produce at most two endpoints and each
endpoint has its corresponding port information. Thus, the
external SRAM which stores port information can have as
many as 1M entries in the worst case, which can be indexed by
20 bits. To sum up, for IPv4, the first four fields and the last
field use 1 + 4 + 5 + 5 + 20 = 35 bits. The leftover 109 bits are
used to store as many keys as possible. For IPv6, the first four
fields and the last field use 1 + 4 + 7 + 7 + 20 = 39 bits. The
leftover 105 bits are used to store as many keys as possible.
The order of the fields is not important. This is the basic
structure, but it can be modified for different variants. For
example, the first field may be removed if possible. The
pointer field mustbe at least 22 bits long if we want to support
2M entry forwarding tables. We will mention later that the
pointer field in a different level node may have different bits.
The 144 bits can be varied.

We may notice that each node has only one pointer
rather than many pointers, as in the case shown in Fig. 4.
This is where our shared pointer goes. This scheme saves
memory tremendously. As defined in the previous section,
the tree is divided into levels. The nodes in each level are
stored in ordered consecutive rows, such as in Fig. 6. In this
way, all the endpoints in a node can share one pointer. The
exact pointer of a subtree can be determined by the position
of the corresponding endpoint. For example, assume a node
with sorted endpoints pi, ps, p3, ps. Traditionally, we would
need five pointers. Here, we only need the pointer that
points to the node whose endpoints are smaller than p.
Since other nodes are stored in ordered consecutive rows,
we can find the node of a search by knowing the position of
the destination address in the searched node. For example,
if the searched destination address is greater than or equal
to ps but less than ps, we can find the node by adding 3 to
the stored pointer.

The search of the keys in a node is carried out in the
registers (or using logic circuit). It is very fast compared to
memory access. Also, the time can be overlapped with
memory access. We can also use a binary search in the keys
of a node to speed up the search in the registers.

Two functions are needed for endpoints compression:
One is for calculating the number of the common leading
bits of a group of endpoints and another is for calculating

the common trailing zeros of the group. For calculating the
number of common leading bits of the group, we only need
to calculate the number of common leading bits of the
smallest and the biggest endpoints in the group. The
number of common trailing zeros can be calculated
iteratively as follows: The trailing zeros of the first endpoint
are counted and recorded as the candidate number of
common trailing zeros. Then, the trailing zeros of the next
endpoint are counted. If the number of the trailing zeros of
the next endpoint is smaller than the candidate number, the
candidate number is changed to the smaller one; otherwise,
the candidate number is unchanged. This operation is
performed for the left endpoints until we exhaust all the
endpoints. Using this approach to find the number of
common trailing zeros of n endpoints, O(n) operations are
needed. O(2) operations are needed to find the number of
common leading bits of any sorted group. This can also be
done by ORing together all the bits of the endpoint and then
counting trailing zeros (which is probably more efficient,
both in hardware and software).

5.2 Build the Tree from the Bottom Up

Given a set of sorted endpoints, we next discuss how to
create a tree structure from it. We adopt a bottom-up
approach. First, we assign endpoints to leaf nodes and then
to the next highest level until the root level. Beginning with
the smallest value endpoint, we try to store as many
endpoints to a node as possible. We use IPv4 for the
explanation in the following. From the analysis of the
previous subsection, we know that there are 109 bits to store
the compressed keys. Since each endpoint is 32 bits long, we
can store at least three endpoints (3 * 32 = 96 < 109) even
without key compression. Therefore, we initially select the
first four endpoints as a group and calculate the total bits of
the compressed keys. If the total bits is bigger than 109, then
we cannot store these four keys. Instead, we store the first

Level one

Level two

Fig. 6. Tree in memory.

878

three keys. If the total bits is equal to 109, we store these
four keys. Otherwise, if the total bits is smaller than 109, we
have the potential to store more keys. Thus, we need to
probe further. We add the next endpoint to the group and
repeat the above procedure. In this way, we can learn how
many keys can be stored in the 109 bits.

Several variants are proposed in the following to
describe the details of the tree creation. Specifically, they
differ in how to calculate the compressed keys and select
endpoints to store in the higher level nodes. They represent
some trade-offs between the memory size and the number
of memory accesses.

5.2.1 Variant One

Let {e1,e0,e3,- -+, e,} be the set of endpoints to be stored in
a tree structure. Assume that the first four endpoints,
{e1,e9,€3,€4}, are stored in the first leaf node, then the
endpoint {es} will be stored in the next higher level node.
Assume the next five endpoints, {eg, e7,es,€9,€10}, are
stored in the second leaf node, then the endpoint {e;;} will
be stored in the next higher level node and so on.

For this scheme, the endpoint(s) in the next higher level
node must be involved in the leaf nodes to calculate the
compressed keys. Specifically, in the aforementioned
example, two endpoints, {e;} and {e;}, are involved to
find the the common leading bits of the first leaf node;
{e1,e2,€3,e4} are used to find the common trailing zeros of
the first leaf node. Two endpoints, {e;} and {ei;}, are
involved to find the common leading bits of the second leaf
node; {eg,er,es,€9,€10} are used to find the common
trailing zeros of the second leaf node; and so on. Next,
we will explain why the higher level endpoints will be
involved in the calculation of compressed keys using a
concrete example.

For example, in Table 3 (the blank between bits is for
convenience of reading), the first seven endpoints are stored
in the first leaf node. The next endpoint, “10000110
11101111 00001101 10000000,” will be stored in a higher
level node. The next four endpoints following “10000110
11101111 00001101 10000000” will be stored in the next leaf
node. “11111000 11110000 00010000 11000000” will be
stored in a higher level node and so on.

The common leading bits of the first leaf node are
“10000” instead of “1000000011.” The number of common
trailing zeros is eight. The common leading bits of the
second leaf node are “1” (because “10000110 11101111
00001101 10000000” and “11111000 11110000 00010000
11000000” are involved to calculate the common leading
bits) instead of “1101.” The number of common trailing
zeros is eight.

The reason is as follows: Let us assume that we are
searching endpoint “10011111 11111111 11111111
00000000.” This endpoint is greater than the endpoint
“10000110 11101111 00001101 10000000” and less than the
first endpoint in the second group. If we took “1101” as the
leading bits of the second group, i.e., we skipped four bits,
we would mistake “10011111 11111111 11111111 00000000”
as greater than the last endpoint in the second group.

After constructing the leaf nodes, we proceed to the next
level using the same method. The number of endpoints in
this level are reduced to approximately N/k, where N is the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

TABLE 3
Calculating the “Common Leading Bits”

10000000 11001000 01000000 00000000
10000000 11001001 00100000 00000000
10000000 11101101 01000000 00000000
10000000 11101101 01110010 00000000
10000000 11101101 01110011 00000000
10000000 11101101 01110100 00000000
10000000 11101101 01111101 00000000

10000110 11101111 00001101 10000000

11010110 11101111 00001110 00000000

11010110 11101111 00100111 00000000

11011000 11101111 00101000 00000000

11011000 11101111 00110000 00000000

11111000 11110000 00010000 11000000

number of endpoints in the leaf level and & is the average
number of endpoints in a leaf node.

As we can see, the cost for constructing the tree structure
is not high. Let N be the total number of endpoints. Sorting
the endpoints may take O(N log N) time. However, after the
first sorting, we can incrementally add or delete an
endpoint, which takes only O(V) time using binary search.
Assigning ports to endpoints takes O(N) time. Creating the
nodes takes O(N) time. Putting them together, we need
O(N) time to create the tree structure.

The preferred architecture for a router is to use two
banks of memory for IP packet forwarding. One bank is for
updating and the other is for searching. One advantage of
this architecture is that the updating will not interfere with
the searching. With this architecture, an update can be
performed in less than one second. This architecture is even
comparable to some dynamic data structures in terms of
memory utilization. For example, the memory utilization of
a basic B-tree [1] is 50 percent in the worst case, which is the
same as the two-banks-of-memory architecture. For a very
fast update, say more than 10k updates per second, we need
new techniques. This will be studied in our future work.

A word for IPv6: If the endpoints of an IPv6 address
cannot be compressed, we cannot store even one address in
a row. This is because an IPv6 address is 128 bits long and
the key field of our data structure is only 105 bits. In this
case, we may allow two rows to store the key with a minor
modification of the data structure. IPv6 addresses may have
consecutive zeros in the middle rather than in the trail. We
may compress these zeros. However, we do not have
enough IPv6 routing tables for the experiment, and we will
not go into details. Nonetheless, experiments on small IPv6
routing tables are presented in this paper for the unmodi-
fied data structure.

5.2.2 Variant Two

The essential difference between variants one and two is
that a new endpoint is created to store in the higher level
node rather than an existing endpoint. We describe the
algorithm first, then explain the reason to do so.

SUN AND ZHAO: AN ON-CHIP IP ADDRESS LOOKUP ALGORITHM

We first explain how to create the new endpoints for the
highlevels. Let {e1, €2, €3, - - -, €, } be the set of endpoints to be
stored in a tree structure. Assume the first four endpoints,
{e1,e9,€3,€4}, are stored in the first leaf node and the next
five endpoints, {es, g, €7, €s,e9}, are stored in the second
leaf node and the next four endpoints, {ei, e11, €12, €13}, are
stored in the third leaf node and so on. The first endpoint to
be stored in the higher level node is simply the common
leading bits of {e;,es, €3, ¢4} padded with trailing zeros to
form a 32 bit endpoint €. This new endpoint will be stored
in the higher level node. The second endpoint is created
according to ey, e5, and the number of common leading bits
of {es, eq,€7,es,€9}. Let ny be the number of common
leading bits of e4 and e5; let ns be the number of common
leading bits of {es, e, e7,es,e9}. Let ng = maz{n; + 1,ns}.
Truncate the ng most significant bits of e; and padded with
trailing zeros to form a 32 bit endpoint, €. This procedure
continues for all the leaf nodes left. When the endpoints for
the higher level nodes are created, we can use the procedure
recursively to create the tree structure.

We may notice that, when creating a new endpoint,
essentially we make all the unneeded trailing bits zero. By
unneeded trailing bits, we mean that these bits are not needed
for a search. For example, assume that we need to search a
key k with the two endpoints 10010101 and 11110001. In this
case, we can compare the key £ with anewly created endpoint
11000000. If £ > 11000000, we search the 11110001 branch;
otherwise, we search the 10010101 branch. The benefit is that
11000000 has more trailing zeros. The closer the endpoints are
to the root, the more trailing zeros they have. We know that
the trailing zeros help to compact more endpoints in the same
memory. However, this does not mean that the total memory
is reduced (explained later). This can help when the table is
sparse or the prefix is long, such as IPv6. For dense IPv4, this
gain does not compensate for the price of creating new
endpoints.

With this scheme, the search procedure needs to be
modified. For searching an endpoint ej in a node, the number
of skip bits in the data structure is used to truncate the most
significant bits of) to form a search key %, which is padded
with trailing zeros. The biggest key, k;, in the node which is
less than or equal to k is found. This leads us to search in the
next lower level node (root node) in subtree ¢;. If ky = k;, a
search of the keys in the root node of this subtree is needed as
usual. If ky > k;, the endpoint ¢ is bigger than all the keys in
this root node, thus a search is not needed.

In general, variant one uses less memory than variant two
and variant two tends to need less memory accesses than
variant one. We can explain this intuitively. Since the
memory usage is dominated by the number of leaf nodes,
assuming a leaf node can store five endpoints on average,
variant one uses about 1/6 less nodes than variant two. On
the other hand, for variant two, when we approach the root,
the endpoints in the nodes tends to have a larger number of
trailing zeros and, therefore, the number of endpoints
stored in a node tends to be larger. Thus, fewer memory
accesses are needed. We believe that, for an IP table
dominated by long prefixes, such as 32 length for IPv4 or
128 for IPv6, variant two is a better choice. If an IP table is
dominated by short prefixes, variant one is a better choice.

879

5.2.3 Variant Three

To compromise between variant one and two, we may
combine them to form a new variant. We may use
variant one first. When we are in a level of the tree
approaching the root, we may change to variant two. An
experimental study shows that this is a good compromise of
the two variants. In the experiment, variant one is used for
leaf nodes. Variant two is applied to all higher level nodes.

5.2.4 Variant Four

Variant four is to use the front end array similarly to [9]. This
essentially divides the endpoints into groups according to
their leading bits. In each group, a respective tree structure is
created using techniques described in this paper. The number
of bits to choose to divide the table is a parameter to be
optimized by the particular table. On one hand, the longer the
number of bits is, potentially, the smaller the number of
memory accesses is needed; on the other hand, the longer the
number of bits is, the more groups will have empty or a small
number of endpoints initand, therefore, waste the memory. It
is a trade-off between memory size and the number of
memory accesses. The memory size is the largest among the
four variants and the number of memory accesses is the
smallest among the four variants.

As mentioned above, when the number of empty groups
is large, a large amount of memory is wasted. To remedy
the drawback in this situation, we can modify the
algorithm. Instead of using the front end array, we may
use a tree structure. The idea is that we truncate a number
of leading bits of all the endpoints to form a set of new
endpoints (with duplicates removed). With the set of new
endpoints, variant one or two is used to create a search tree.
The search result is a pointer to a subtree instead of a port
entry. The subtree is created using variant one or two. In
fact, this is a layered approach which can be applied
recursively. It is effective for long bit endpoints such as IPv6
and sparse tables. In general, the cost of this is a bit of
memory inefficiency.

For an extreme example, in Table 4, we are better off to
divide the table into two obvious new tables and use
10000000 and 11111111 for a front search to lead to one of
the tables.

5.3 Optimizations

Several suggestions for optimization for the data structure
are provided in this section.

From Fig. 6, we can see the level one (root) always occupies
one row of memory. The level two always starts from the next
row. So, the pointer in the root always points to its next row
and, therefore, is not necessary. This saves 20 bits for the root
so that we can store potentially more endpoints in the root.
Provided that the maximum number of keys stored in a node
is 16, the number of nodes in the third level will be less than
17 = 289, hence the pointer field in the level two needs 9 bits
instead of 20 bits, and so on.

The next optimization step is to put the root in the
registers. In practice, the number of endpoints in the root
could be small. In that case, we can store these endpoints in
the registers, thus saving one memory access.

Another optimization factor is for the skip bits field. We
can define this field as the additional bits to skip relative to
the previous level. For example, if we skip 2 bits in the first
level and 7 bits in the second level, we only need to store

880

TABLE 4
An Example

10000000 00001000 01000000 00000000

10000000 10001001
10000000 11101101
10000000 11101101
10000000 11101101
10000000 11101101
10000000 11101101

11111111 00001111

00100000 00000000
01000000 00000000
01110010 00000000
01110011 00000000
01110100 00000000
01111101 00000000

00001101 10000000

11111111 00101111 00001110 00000000
11111111 10001111 00100111 00000000
11111111 10101111 00101000 00000000

I1111111 11101111

00110000 00000000

I1111111 11110000 00010000 11000000

7 —2 =5 as additional bits to skip. From the experiments,
3 bits is enough for IPv4.

6 EXPERIMENTAL STUDY

We download IPv4 routing tables from [21], [18] and IPv6
routing tables from [22] for the experiments. They are the
basis for our experiments study. We plan three groups of
the experiments. One is to use the original tables. Another is
to create new tables by expanding original tables. The third
one is to generate random tables. Results are analyzed in the
following subsections.

6.1 Port Merge

If two consecutive intervals have the same port, the two
consecutive intervals can be merged into one interval. This
reduces the number of endpoints. Table 5 shows the port
merge effect for IPv4 addresses. The nonmerge rate is equal
to the number of endpoints with merge divided by the
number of endpoints without merge. From the table, we can
see that the merge effect is very significant. For example, for
pacbell, the nonmerge rate is 57 percent. This implies that
we can save about 43 percent memory if the merge effect is
taken into account. We also conduct experiments by
randomly assigning port numbers to prefix. The merge
effect is not significant. This indicates that, in real-life tables,
the port assignment has some correlation between neigh-
boring intervals. By observing the port numbers in a real-
life forwarding table, we can see the port numbers tend to
be clustered. For IPv6, due to the lack of large real-life
tables, we cannot analyze the effect. In the following
experiments, we will not perform port merge for the set
of endpoints.

6.2 Comparisons on Variants

Table 6 gives a general picture of the performance of the
four variants. It shows the memory requirement and the
number of memory accesses for the original tables under
different variants. Columns with headings one, two, and
three correspond to variants one, two, and three. The
column with heading four is the result of variant four with 6
as the number of the front end bits. The column with

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

TABLE 5
Port Merge Effect

name entries endpoints endpoints | non-merge
without merge | with merge rate
aads 17,487 27,250 16,807 62%
mae-east | 18,601 29,871 19,410 65%
mae-west | 29,608 45,826 27,7192 61%
pacbell | 24,193 37,771 21,389 57%
paix 15,332 24,126 16,836 70%

heading five is the result of variant four with 14 as the
number of the front end bits. We can see variant one uses
the smallest amount of memory, but the number of memory
accesses is the highest. Variant three is well balanced. Other
experiments we conducted show similar results with one
exception, that, when a table is dominated by short prefixes,
variant one shows the best performance for both memory
size and accesses. In order to avoid swamping pages due to
huge experimental results, we choose variant three for the
following experiments.

6.3 Results Using Real-Life Tables

This section shows the results using real-life tables. We first
describe the characteristics of the forwarding tables. The
seven IPv4 tables are dominated by 24 bit prefixes of more
than 50 percent. The next largest number of prefixes are 23,
22,19, 32, and 16 bits. The IPv6 tables are dominated by 48,
35, 28, and 24 bits of length. Some tables have as high as
70 percent 48 bit prefixes.

Table 7 is the result of IPv4 using variant three. The first
column is the name for network access points (NAPs). The
second column is the number of entries (prefixes) in the
routing tables. The third column is the ME ratio. The
ME ratio is defined as the number from dividing the
memory requirement in bits by the number of prefixes. It
measures the average number of bits needed for one prefix.
The table shows that about 22 bits are needed for a prefix.
Note that, if the port merge is taken into account, fewer bits
are needed.

The Arity of a node is defined as the number of subtrees
of the node. The average arity measures the average
number of subtrees of all the nodes in the tree. The last
column is the average arity from each routing table. From
the average arity, we can roughly estimate the performance
of a routing table with a different size. For example,
assuming the average arity of 8, a routing table with
1M prefixes will need roughly logg 1000000 ~ 7 memory
accesses.

The above results are obtained without using any
optimizations mentioned in the previous section. We
should mention that our data structure is also suitable for
a pipeline implementation. In that case, the lookup speed is
only restricted by the memory access latency.

Table 8 is the result of IPv6 using variant three. We use
168 bits memory width so that the key field is 128 bits long,
which can accommodate at least one IPv6 endpoint. The
low ME ratio (about 30) for t3 and t4 is probably due to a
high percentage (above 70 percent) of length 48 prefixes. For
other tables, no prefix has a percentage above 40 percent.

SUN AND ZHAO: AN ON-CHIP IP ADDRESS LOOKUP ALGORITHM

881

TABLE 6
Experiments with IPv4 Using 144 Bits Memory Width
name memory (bits) number of accesses
one two three four/6 four/14 one | two | three | four/6 | four/14

aads 400,896 423,360 403,776 435,744 2,677,248 6 5 5 4 3
mae-east | 421,344 440,064 423,792 454,752 2,707,776 6 5 5 5 3
mae-west | 644,256 672,912 648,864 690,768 2,929,824 6 5 5 5 3
pacbell 541,872 565,632 545,760 580,176 2,818,224 6 5 5 4 3

paix 359,712 379,152 362,016 391,824 2,649,600 6 5 5 5 3
Telstra 3,362,503 | 3,600,621 | 3,398,598 | 3,722,562 | 18,335,588 | 6 5 5 5 3
Reach 2,858,721 | 3,021,362 | 2,888,647 | 3,129,345 | 13,578,174 | 6 5 5 5 3

6.4 Results Using the Expanded IPv4 Tables

This section provides results for tables expanded from real-
life tables. The six real-life IPv4 tables are combined and the
duplicates are removed to form a large table as a basis. The
size of the resulting table is 50,449. We can expand the basis
table to a larger size table. The method of expanding the
table is to pick a prefix of length 24 and expand it to 2% =
256 prefixes of length 32. Given a size of a table we want to
expand and the total number of prefixes of length 24, we
can roughly figure what percentage of the prefixes of
length 24 needs to be expanded. Then, we randomly select
this percentage of prefixes of length 24 to expand. Using
this method, we generated five tables of sizes of 66,004,
128,479, 258,784, 591,050, and 939,889. We have done
experiments with different memory widths. We make the
length of the key field in a node 32, 64, 128, 256, 512, or
1,024 bits. Assuming that the total length of the other fields
is 36 bits for IPv4, the memory width comes to 68, 100, 164,
292, 548, or 1,060 bits, respectively. Table 9 shows the
memory size as a function of table size and memory width.
The resultis also plotted in Fig. 7. From the results, we can see
that 164 bits and 292 bits memory width are better choices
than other memory widths for this set of tables. We can also
see that the memory requirement increases proportionally to
the increase of the number of prefixes, but at a small speed.
For example, using a 164 bit memory width, the ME ratio is
about 19.4 for tables of size around 50k; the ME ratio is only
about 9.5 for tables of size around 1M.

TABLE 7
Results of IPv4 Using 144 Bits Memory Width

name entries ME | average
ratio arity
aads 17,487 | 23.09 9.7
mae-east 18,661 22.71 10.2
mae-west 29,608 21.92 10.2
pacbell 24,193 | 22.56 10.0
paix 15,332 | 23.61 9.6
Telstra 161,684 | 21.02 10.7
Reach 132,446 | 21.81 10.2

The number of memory accesses is shown in Table 10.
We can see it is not sensitive to the size of the tables. It
indicates that our algorithm scales well to the size of the
forwarding table.

6.5 Results Using the Expanded IPv6 Tables

Since we do not have large IPv6 tables, we randomly
generate the tables and then expand them. The method is as
follows: First, we randomly generate a table of size 10k with
about 80 percent of prefix length 48 and lengths from 12 to
64 are uniformly distributed. A second table of size 10k is
generated in the same way with about 80 percent of prefix
length 64 instead of 48. Then, the two tables are combined
with duplicates removed. This is the basis table for
expansion which has about 40 percent of prefixes of
length 48 and 64 each. When expanding, a prefix with
length 64 is randomly selected and expanded to a number
of prefixes of length 128. The exact number is randomly
chosen between 128 and 1,024. The bits that expand from
bit 65 to bit 128 are also randomly generated. Expansion
continues until we reach the desired size of the table.

Using this scheme, we generated seven tables of sizes of
20,000, 31,284, 48,210, 144,124, 223,112, 530,601, and
1,208,666. The memory widths for this set of experiments
are 168, 296, 552, and 1,064, respectively. Assuming that the
total length of other fields is 40 bits for IPv6, the length of
the key field in a node is 128, 256, 512, and 1,024,
respectively. Shorter memory widths cannot accommodate
a single IPv6 endpoint in the worst case and modification
needs to be done.

TABLE 8
Results of IPv6 Using 168 Bits Memory Width

name | entries | memory ME memory
(bits) ratio | accesses

tl 58 3696 63.72 4

2 181 11760 | 64.97 4

3 534 17304 | 32.40 <+

4 488 15456 | 31.67 -+

t5 248 15792 | 63.68 4

t6 284 16128 56.79 4

882

IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005

TABLE 9
Memory Size for IPv4 as a Function of Table Size and Memory Width

memory table size (number of prefixes)
width (bits) 50449 66004 128479 258784 591050 939889

68 1411000 | 1613300 | 2415700 | 4084828 | 8292736 | 12685196
100 1090300 | 1251300 | 1895400 | 3220800 | 6558500 | 10028200
164 978752 | 1123236 | 1687396 | 2860816 | 5822820 | 8903396
292 953088 | 1099964 | 1681044 | 2868608 | 5842920 | 8955640
548 987496 | 1144772 | 1755792 | 3028796 | 6201716 | 9477112
1060 1038800 | 1208400 | 1876200 | 3294480 | 6954660 | 10767480

Table 11 shows the memory size as a function of table
size and memory width. The result is plotted in Fig. 8. From
the results, we can see 1,064 bits memory width is the best
choice among all memory widths for this set of tables. We
can also see that the memory requirement increases
proportionally to the increase of the number of prefixes.
The ME ratio does not change much when the number of
prefixes increases. For example, the ME ratio is 115.8 for
tables of size of around 20k and 125.6 for tables of size of
around 1M if the memory width is 1,064. All ME ratios are
rather high compared with the small real-life tables. The
reason for this is that the endpoints in real-life tables are
correlated. The endpoints in randomly generated tables are
not. For example, when a 64 bit prefix expands to 128, the
trailing 64 bits are randomly generated. If we select 128 to
1,024 entries from a space of size of 204 it is rare that any
two of them correlate. (We borrow the word correlate to

roughly express the following idea: For example, we can
say 11111100 and 11111111 correlate, but 10100100 and
11111111 not so much).

The number of memory accesses is shown in Table 12.
Similarly to IPv4, it is not sensitive to the size of the tables.

7 PREvVIOus WORK

Papers on address lookup algorithms are abound in the
literature. It is not possible to mention all of them. We only
compare with those that are similar to our approach. We
also list papers that use a small amount of memory and
omit those that use a large amount of memory. Surveys on
address lookup algorithms were given in [14], [13].
Performance measurements for some of the algorithms are
highlighted and compared as follows: Multiway search [9],
[16] is the most similar approach to our method. However,

16M T T T T

8M -

Mt

Memory size in bits

2M -

MM

68 bits
1060 bits
100 bits
548 bits

1 1

1
64k 128k

1
512k ™

256k
Number of prefixes

Fig. 7. Memory size for IPv4 as a function of table size with different memory widths.

SUN AND ZHAO: AN ON-CHIP IP ADDRESS LOOKUP ALGORITHM

TABLE 10
Number of Memory Accesses for IPv4
as a Function of Table Size and Memory Width

memory table size (number of prefixes)

width 50449 | 66004 | 128479 | 258784 | 591050 | 939889
68 9 9 10 10 10 11
100 6 7 7 8 8 8
164 5 5 6 6 6 6
292 4 5 5 5 5 5
548 4 4 4 4 4 4
1060 3 3 4 4 4 4

due to the lack of techniques to compress and optimize the
data structures, larger memory requirements than ours are
reported and the number of memory accesses is comparable
to ours. Using a 32 byte cache line (which equals 256 bits
memory width), a 6-way search can be done. For a routing
table with over 32,000 entries, 5.6M bits memory is needed.

883

In the worst case, four memory accesses are needed. If
256 bit memory width is used, we can report much better
results than those in the previous section. Even with 144 bit
memory width, we reported more favorable results than
those from [9].

Reference [17] proposed an algorithm which requires a
worst case of log W hash lookups, where W is the length of
the address in bits. Hence, at most five hash lookups for
IPv4 and at most seven hash lookups for IPv6 are needed.
However, data from [9] showed that this algorithm needs
1,600K bytes for an IPv4 routing table with roughly
40k entries. In addition to that, the building of the data
structure is not fast.

Reference [7] uses LC-trie for storing the table. They
reported that about 4M bits are needed for the LC-trie.
According to the paper, they need at least 100 bits for each
prefix.

Reference [8] presented an IP address lookup scheme
and a hardware architecture. The routing table is meant to
put in off-chip memory, for they need 450-470k bytes
memory for a routing table with 40,000 entries. They

TABLE 11
Memory Size for IPv6 as a Function of Table Size and Memory Width
memory table size (number of prefixes)
width (bits) 20000 31284 48210 144124 223112 530601 1208666
168 3078264 | 5032440 | 7962696 | 24559080 | 38229576 | 91463568 | 208804848
296 2644760 | 4343800 | 6890880 | 21319400 | 33197880 | 79448472 | 181433200
552 2390712 | 3881112 | 6115056 | 18782904 | 29196936 | 69782184 | 159235992
1064 2316328 | 3736768 | 5866896 | 17931592 | 27878928 | 66544688 | 151784920
256M T T T T T T
168 bits
128M - 1
296 bits
552 bits
64M - \ B
1064 bits
2
o Mt .
8
2]
2
o
QE) 16M - B
=
8M[- a
v .
2M 1 i 1 1 1 1
16k 32k 64k 128k 256k 512k ™ M
Number of prefixes

Fig. 8. Memory size for IPv6 as a function of table size with different memory widths.

884 IEEE TRANSACTIONS ON COMPUTERS, VOL. 54, NO. 7, JULY 2005
TABLE 12
Number of Memory Accesses for IPv6 as a Function of Table Size and Memory Width
memory table size (number of prefixes)
width (bits) || 20000 | 31284 | 48210 | 144124 | 223112 | 530601 | 1208666
168 6 7 8 8 8 9 9
296 5 7 7 7 7 8 8
552 5 5 6 6 6 7 7
1064 4 4 5 5 5 6 6

reported one to three memory accesses. They compared
their scheme favorably with those proposed in [3] and [5].

Reference [15] was also aimed at hardware implementa-
tion. They used a compact stride multibit trie data structure
to search the prefixes. They reported 4.3MB memory for a
forwarding table of 104,547 entries. The algorithm allows
for incremental updates, but is not scalable to IPvé.

Although [10] achieves O(logn) complexity for both
update and search, the memory required is much larger
than ours.

Table 13 shows roughly the bits consumed for each
IPv4 prefix in the above-mentioned papers. These figures
are derived from the experimental reports from each paper.
They just provide a general picture, rather than an accurate
measure, because data used for experiments, data struc-
tures, and resource assumption, etc., are different for each
paper. For example, reference [15] used 19 bits for the next
hop index field and we use 22 bits.

There are several papers, e.g., [9], [17], that deal with
IPv6 address lookup. They have different merits from
different perspective views of performance. Our algorithm
has the advantage of using the lowest memory and the
search speed is comparable to others.

8 CONCLUSION

We developed a novel algorithm which is tailored to
hardware technology. The distinguishing merit of our
algorithm is that it has a very small memory requirement.
With this merit, a routing table can be put into a single chip,
thus, the memory latency to access the routing table can be
reduced. With the pipeline implementation of our algo-
rithm, the IP address lookup speed can only be limited by
the memory access technology.

Experiment analysis shows that, given the memory
width of 144 bits, our algorithm needs only 400kb memory
for storing a 20k entry IPv4 routing table and five memory
accesses for a search. For a 1M entry IPv4 routing table, 9Mb
memory and seven memory accesses are needed. With a
memory width of 1,068 bits, we estimate that we need
100Mb of memory and six memory accesses for a routing
table with 1M IPv6 prefixes.

TABLE 13
Bits Consumed for Each IPv4 Prefix
papers [7] [9] [17] | [8] | [15] | this paper
ME ratio 100 | 175 | 320 | 90 | 329 15

Real-life tables have some structures. Modifying our
algorithm to exploit these structures can achieve better
performance.

APPENDIX

AN ALGORITHM FOR CONVERTING THE PREFIXES TO
ENDPOINTS

Step 1: Sort the prefixes.

The host part of a prefix is filled with Os and the prefix is
treated as an integer. Prefixes are sorted according to the
value of the integer. The smaller value prefix is sorted in the
front. If two prefixes have the same value, the one whose
length is smaller is sorted in the front.

Step 2: Assign ports to endpoints.

We have a stack. Let “max” be the maximum integer
(endpoint) in the address space, “def” the default port for
the address space, “M” the variable for the endpoint, and
“N” the variable for the port.

N=def;
M=max;
push N;
push M;
For each prefix P=[b, e) with port p
in the sorted routing table {
pop M;
If (b<M) {
assignp to b;
push M; (push back M.)
push p;
push e;
} else if (b=M) {
assign p to b;
while (b=M) {
pop N;
pop M;
}
push M;
push p;
push e;
} else if (b>M) {
oldM=M;
while (b>M) {
pop N;
if (oldMnot = M) {
(assign oldM’port to M.)

(M>b so push back.)

SUN AND ZHAO: AN ON-CHIP IP ADDRESS LOOKUP ALGORITHM

pop M;
pop N; (get the next port.)
assign port N to oldM;
push N;
push M; (push back N, M.)
}
oldM=M;
pop M;
}
while (b=M) {
pop N;
pop M;
}
push M;
push p;
push e;

(M>b so push back.)

ACKNOWLEDGMENTS

The authors would like to acknowledge Greg Soprovich of
SiberCore Technologies for providing comments and
suggestions for most of the experimental scenarios. A

patent was filed based on this work.

REFERENCES

[1] R. Bayer and E. McCreight, “Organization and Maintenance of
Large Ordered Indexes,” Acta Informatica, vol. 1, no. 3, pp. 173-189,
Sept. 1972.

[2] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)
Specification,” RFC 2460, Dec. 1998.

[3] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, “Small
Forwarding Tables for Fast Routing Lookups,” Proc. ACM
SIGCOMM, pp. 3-14, Sept. 1997.

[4] P. van Emde Boas, R. Kaas, and E. Zijlstra, “Design and
Implementation of an Efficient Priority Queue,” Math. Systems
Theory, vol. 10, pp. 99-127, 1977.

[S] P. Gupta, S. Lin, and N. McKeown, “Routing Lookups in
Hardware at Memory Access Speeds,” Proc. Infocom, Apr. 1998.

[6] R. Hinden and S. Deering, “Internet Protocol Version 6 (IPv6)
Addressing Architecture,” RFC 3513, Apr. 2003.

[7]1 S. Nilsson and G. Karlsson, “IP Address Lookup Using LC-Tries,”
IEEE]. Selected Areas in Comm., vol. 17, no. 6, pp. 1083-1092, June
1999.

[8] N.-F. Huang and S.-M. Zhao, “A Novel IP-Routing Lookup
Scheme and Hardware Architecture for Multigigabit Switching
Routers,” IEEE]. Selected Areas in Comm., vol. 17, no. 6, pp. 1093-
1104, June 1999.

[9] B. Lampson, V. Srinivasan, and G. Varghese, “IP Lookups Using
Multiway and Multicolumn Search,” IEEE/ACM Trans. Network-
ing, vol. 7, pp. 324-334, 1999.

[10] H.LuandS. Sahni, “O(log n) Dynamic Router-Tables for Ranges,”
Proc. IEEE Symp. Computers and Comm., pp. 91-96, 2003.

[11] R. Ramaswami and K.N. Sivarajan, Optical Networks: A Practical
Perspective. San Francisco: Morgan Kaufmann, 1998.

[12] Y. Rekhter and T. Li, “An Architecture for IP Address Allocation
with CIDR,” REC 1518, Sept. 1993.

[13] M.A. Ruiz-Sanchez, E.W. Biersack, and W. Dabbous, “Survey and
Taxonomy of IP Address Lookup Algorithms,” IEEE Network,
vol. 15, no. 2, pp. 8-23, Mar./Apr. 2001.

[14] S. Sahni, K. Kim, and H. Lu, “Data Structures for One-
Dimensional Packet Classification Using Most-Specific-Rule
Matching,” Int’l]. Foundations of Computer Science, vol. 14, no. 3,
pp- 337-358, 2003.

[15] K. Seppanen, “Novel IP Address Lookup Algorithm for Inexpen-
sive Hardware Implementation,” WSEAS Trans. Comm., vol. 1,
no. 1, pp. 76-84, 2002.

885

[16] S. Suri, G. Varghese, and P. Warkhede, “Multiway Range Trees:
Scalable IP Lookup with Fast Updates,” Proc. GLOBECOM, 2001.

[17] M. Waldvogel, G. Varghese, J. Turner, and B. Plattner, “Scalable
High Speed IP Routing Lookups,” Proc. ACM SIGCOMM, pp. 25-
36, Sept. 1997.

[18] http://bgp.potaroo.net/, 2003.

[19] http://www-3.ibm.com/chips/products/asics/products/

ememory.html, 2003.

] http://www linleygroup.com/, 2005.

] http://www.merit.edu/ipma/routing_table/, 2003.

[22] http://www.mcvax.org/~jhma/routing/ipv6/, 2005.

] http://www.npforum.org/org/, 2005.

Xuehong Sun received the PhD degree from
Carleton University, Canada. He is a visiting
fellow at the Canadian Space Agency and a
member of AIAA. He is a cofounder of Sourithm
Corp., which commercializes technologies
through advanced algorithms for Internet Proto-
col (IP) address lookup and packet classification
in Internet routers.

Yigiang Q. Zhao (M'01) received the PhD
degree from the University of Saskatchewan in
1990. After a two-year appointment as a post-
doctoral fellow sponsored by the Canadian
Institute for Telecommunications Research
(CITR) at Queen’s University, he joined the
Department of Mathematics and Statistics of the
University of Winnipeg as an assistant professor
in 1992 and became an associate professor in
1996. In 2000, he moved to Carleton University,
where he is now a full professor and the director of the School of
Mathematics and Statistics. His research interests are in applied
probability and stochastic processes, with particular emphasis on
computer and telecommunication network and inventory control
applications. He has published approximately 50 papers in refereed
journals, delivered approximately 50 talks at conferences, and been
invited more than 30 times to speak to seminars/colloquia or workshops.
He has also had considerable experience interacting with industry. He
has been the recipient of a number of grants from the Natural Sciences
and Engineering Research Council of Canada (NSERC) and industries.
He is currently on the editorial board of Operations Research Letters,
Queueing Systems, Stochastic Models, and the Journal of Probability
and Statistical Science. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

