
588

Krzysztof Diks*

Tree Exploration with Little Memory

Pierre Fraigniaud t Evangelos Kranakis t Andrzej Pelc §

A b s t r a c t

A robot with k-bit memory has to explore a tree whose
nodes are unlabeled and edge ports are locally labeled
at each node. The robot has no a priori knowledge
of the topology of the tree or of its size, and its aim
is to traverse all the edges. While O(logA) bits of
memory suffice to explore any tree of maximum degree
A if stopping is not required, we show that bounded
memory is not sufficient to explore with stop all trees of
bounded degree (indeed f~(logloglog n) bits of memory
are needed for some such trees of size n). For the more
demanding task requiring to stop at the starting node
after completing exploration, we show a sharper lower
bound f~(log n) on required memory size, and present
an algorithm to accomplish this task with O(log 2 n)-bit
memory, for all n-node trees.

1 I n t r o d u c t i o n

A robot (mobile agent) has to explore an undirected
graph by visiting all its nodes and traversing all edges,
without any a priori knowledge of the topology of the
graph nor of its size. The task of visiting all nodes of a
network is fundamental in searching for data stored at
unknown nodes of a network, and traversing all edges
is often required in network maintenance and when
looking for defective components. If nodes and edges
have unique labels, this can be easily done by depth-
first search. However, in some navigation problems in
unknown environments such unique labeling may not
be available, or limited sensory capabilities of the robot
may prevent it from perceiving such labels. Hence it is
important to be able to program the robot to explore
anonymous graphs, i.e., graphs without unique labeling
of nodes or edges. Unfortunately, arbitrary graphs
cannot be explored under such weak assumptions, as
witnessed by the case of a cycle: without any labels
of nodes and without the possibility of putting marks

~ y t u t Informatyki, Uniwersytet W~szawski, Banac~a 2,
02-097 Warszawa, Poland. E-mail: diksOmimuw.edu.pl.

t CNRS, Laboratoire de Recherche en Informatique, Universit~
Paris-Sud, 91405 Orsay, France. http://v~rc~.]ri.fr/'pierre.

tSchool of Computer Science, Carleton University, Ottawa,
Ontario, KIS 5B6, Canada. kranalds@scs.carlet;on.ca.

§D~partement d'Informatique, Universit~ du Quebec & Hull,
Hull, Quebec J8X 3X7, Canada. pelc@uqah.uquebec.c&

on them, it is clearly impossible to explore a cycle
of unknown size and stop. if marking of nodes (e.g.,
by dropping and removing pebbles) is available then
the problem can be solved even in directed graphs (cf.
[4]). Otherwise, the class of graphs tha t can potentially
be explored has to be restricted to connected graphs
without cycles, i.e., to trees.

In this paper we study the problem of graph explo-
ration under very weak assumptions: we do not assume
any labels on nodes and do not allow marking, hence
we restrict attention to exploration of trees. Clearly the
robot has to be able to locally distinguish ports at a n-
ode: otherwise it is impossible to explore even the star
with 3 leaves (after visiting the second leaf the robot
cannot distinguish the port leading to the first visited
leaf from that leading to the unvisited one). Hence we
make a natural assumption that all ports at a node are
locally labeled 1,...,d, where d is the degree of the node.
No coherence between those local labelings is assumed.

In many applications, robots (mobile agents) are
meant to be simple, often small, and inexpensive devices
which limits the amount of memory with which they
can be equipped. As opposed to numerous papers that
imposed no restrictions on the memory of the robot and
sought exploration algorithms minimizing time, i.e., the
number of traversals, we investigate the minimum size
of the memory of the robot that allows exploration of
trees of given (unknown) size, regardless of the t ime of
exploration. More precisely, we consider the following
main tasks:

• exploration with stop: starting at any node of the
tree, the robot has to traverse all edges and stop at
some node;

• exploration with return: starting at any node of the
tree, the robot has to traverse all edges and stop at
the starting node.

In both cases we want to find an algorithm for a
robot performing the given task using as little memory
as possible.

1.1 O u r r e su l t s . We first consider the auxiliary easi-
er task of perpetual exploration in which the robot has to
traverse all edges of the tree but is not required to stop.

589

Perpetual exploration may be of independent interest,
e.g., if regular control of a network for the presence of
faults is required, and all edges must be periodically
traversed over long periods of time. In our context,
the study of perpetual exploration shows that from the
point of view of memory use, the most demanding part
of exploration with stop is indeed stopping. Here is why.
We show an algorithm performing perpetual exploration
of any tree of maximum degree A using O(log A)-bit
memory. In particular, bounded memory is sufficient
for perpetual exploration of all bounded degree trees.
In contrast we show that this is not the case for explo-
ration with stop. Indeed, f~(log log log n) bits of memory
are needed for exploration with stop of some bounded
degree trees of size n. The additional memory is essen-
tially needed to decide when to stop in our anonymous
environment. Moreover, our memory-efficient perpetual
exploration algorithm yields algorithms for exploration
with stop in special classes of trees, or for all trees un-
der additional knowledge of a bound on size. Indeed,
if we know a bound N on the size of the tree, we can
explore it with stop using O(log N)-bit memory, while
if we know a bound m on the number of nodes of a giv-
en degree then we can explore a tree with stop using
O (log A + log m)-bit memory.

For exploration with return, we show a lower bound
f~(log n) on the number of memory bits needed for
trees of size n. As for upper bounds, a simple DFS-
based algorithm performs exploration with return using
O(D log A) memory bits for trees of diameter D and
maximum degree A. However, the memory used by
this algorithm can be linear in the size n for some trees.
Our main algorithm for exploration with return is much
more memory-efficient in general: it uses only O(log ~- n)
memory bits for all trees of size n.

1.2 R e l a t e d work . Exploration and navigation
problems for robots in an unknown environment have
been extensively studied in the literature (cf. the sur-
vey [14]). There are two groups of models for these
problems. In one of them a particular geometric setting
is assumed, e.g., unknown terrain with convex obstacles
[7], or room with polygonal [9] or rectangular [3] obsta-
cles. Another approach is to model the environment as
a graph, assuming that the robot may only move along
its edges. The graph setting can be further specified
in two different ways. In [1, 4, 5, 10] the robot explores
strongly connected directed graphs and it can move only
in the direction from head to tail of an edge, not vice-
versa. In [2, 8, 11, 12] the explored graph is undirected
and the robot can traverse edges in both directions. In
the graph setting it is often .required that apart from
completing exploration the robot has to draw a map of

the graph, i.e., output an isomorphic copy of it.
The efficiency measure adopted in most papers deal-

ing with exploration of graphs is the time of completing
this task, measured by the number of edge traversals
by the robot. On the other hand, there are no restric-
tions imposed on the memory of the robot. (This is
precisely, where our setting differs: we are interested in
minimizing the memory of the robot but do not restrict
exploration time.)

Graph exploration scenarios considered in the liter-
ature differ in an important way: it is either assumed
that nodes of the graph have unique labels which the
robot can recognize, or it is assumed that nodes are
anonymous. Exploration of directed graphs assuming
the existence of labels was investigated in [1, 10]. In
this case no restrictions on the robot moves were im-
posed, other than by directions of edges, and fast ex-
ploration and mapping algorithms were sought. Explo-
ration of undirected labeled graphs was considered in
[2, 8, 11, 12]. Since in this case a simple exploration
based on depth-first search can be completed in time
2e, where e is the number of edges, investigations con-
centrated either on further reducing time for an unre-
stricted robot, or on studying efficient exploration when
moves of the robot are restricted in some way. The first
approach was adopted in [12], where an exploration al-
gorithm working in time e -I- O(n), with n being the
number of nodes, was proposed. Restricted robots were
investigated in [2, 8, 11]. It was assumed that the robot
has either a restricted tank [2, 8], forcing it to peri-
odically return to the base for refueling, or that it is
tethered, i.e., attached to the base by a rope or cable
of restricted length [11]. It was proved in [11] that ex-
ploration and mapping can be done in time O(e) under
both scenarios.

Exploration of anonymous graphs presents a differ-
ent type of challenges. In this case it is impossible to
explore arbitrary graphs if no marking of nodes is al-
lowed. Hence the scenario adopted in [4, 5] was to allow
pebbles which the robot can drop on nodes to recognize
already visited ones, and then remove them and drop
in other places. The authors concentrated attention on
the minimum number of pebbles allowing efficient explo-
ration and mapping of arbitrary directed n-node graphs.
(In the case of undirected graphs, one pebble suffices for
efficient exploration.) In [5] the authors compared ex-
ploration power of one robot to that of two cooperating
robots with a constant number of pebbles. In [4] it was
shown that one pebble is enough if the robot knows an
upper bound on the size of the graph, and O(log log n)
pebbles are necessary and sufficient otherwise.

Our scenario is even weaker than that in [4, 5]: n-
odes do not have labels and no marking is allowed. S-

590

ince the presence of even one cycle precludes exploration
with stop, we restrict attention to the class of (undi-
rected) graphs in which this task is possible under these
very weak assumptions: the class of trees. Moreover,
as previously mentioned, our scenario differs in that we
optimize memory, not exploration time.

2 T e r m i n o l o g y a n d p r e l i m i n a r i e s

A tree with locally labeled ports is an undirected tree
whose nodes are unlabeled and edges incident to a node
v have distinct labels 1 ,d, where d is the degree of v.
Thus every edge uv has two labels which are called its
port numbers at u and at v. Port numbering is local:
there is no relation between labels given to an edge uv
at u and at v.

A robot with k-bit memory is a deterministic state
machine with K = 2 k states among which a specified
state So is called initial and some specified states are
called final. Such a robot, when placed in the initial
state in any node of a tree with locally labeled ports,
operates as follows. If the robot is in a node in a non-
final state S, the state determines a local port number
is. The robot leaves the node by this port. Upon
traversing the corresponding edge, the robot reads the
port number at the node it enters and the degree of
this node. This pair of integers is an input symbol that
causes the transition from state S to S I. The robot
continues moving in this way until it enters a final state
for the first t ime. Then it stops.

As said in Section 1, we consider three tasks of
increasing difficulty: perpetual exploration in which the
robot has to traverse all edges of the tree but is not
required to stop, exploration with stop in which starting
at any node of the tree, the robot has to traverse all
edges and stop at some node, and exploration with
return in which starting at any node of the tree, the
robot has to traverse all edges and stop at the starting
node. A robot is said to perform one of the above tasks
in a tree, if starting at any node of this tree in state So it
completes this task in finitely many steps. (Notice that
in the case of perpetual exploration, completing this
task after finitely many steps means only traversing all
edges, not necessarily stopping after it.)

The way in which operation of the robot in a tree
is defined implies that a robot exploring a star with A
leaves needs at least A states: if it has fewer states
then, starting at the center of the star it could never
enter some ports. Hence we get the following trivial
lower bound.

PROPOSITION 2.1. A robot exploring all trees of maxi-
mum degree A must have f~(log A)-bit memory.

The following simple algorithm performs perpetual

exploration using only O(log A) memory bits:

A l g o r i t h m CH00SE-NEXT. The robot leaves the start-
ing node by port 1. After entering any node of degree
d by port i, the robot leaves it by port (i rood d) + l .

It is easy to see that, using algorithm CH00SE-NEXT
the robot traverses all edges of an n-node tree after at
most 2 (n - 1) steps. Hence we have

PROPOSITION 2.2. Algorithm CH00SE-NEXT accom-
plishes perpetual exploration of any tree of maximum
degree A using O(logA) bits of memory.

This observation implies algorithms for exploration
with stop if some additional information about the tree
is available. One such situation arises when an upper
bound N on the number of nodes in the tree is known.
Then the robot can perform algorithm CH00SE-IIEXT,
additionally counting steps, and stop after 2 (N - 1)
steps. This requires f~(log N)-bi t memory. Another
type of additional information could be an upper bound
m on the number of nodes of given degree d. Using
algorithm CH00SE-NEXT every such node is visited at
most 2d times before all edges are traversed. Hence it is
enough to perform this algorithm, additionally counting
visits at nodes of degree d, and stop after 2rod visits.
This can be done with O(logA + logm)-bi t memory.
For example, this enables exploration with stop of any
rooted binary tree (whose root is the only node of degree
2} using bounded memory.

3 Exploration with stop
As we have seen, perpetual exploration can be per-
formed in all bounded degree trees using bounded mem-
ory, i.e., the same robot can perform perpetual explo-
ration in all trees of maximum degree bounded by a
constant. This ability can be transfered to the more
demanding task of exploration with stop for restrict-
ed classes of bounded degree trees, such as trees with
bounded number of nodes of given degree. However, the
main result of this section shows that exploration with
stop of all trees of bounded degree, even of all trees of
maximum degree 3, cannot be performed by the same
robot. (Of course, all trees of maximum degree 2, i.e.,
paths, can be explored with stop by the same robot with
only 3 memory bits}.

THEOREM 3.1. For every robot there exists a tree of
maximum degree 3 which this robot cannot explore with
stop.

Proof. Fix a robot with the set ~g of states, such that
IS] = K. The idea of the proof is to construct two trees
such that if the robot explores one of them and stops

591

then, when run on the other, it stops before exploring
it. In fact, we will construct parts of the second (larger)
tree by simulating actions of the robot in the first tree.

We restrict attention to the class of trees all of
whose internal nodes have degree 3. Moreover we
consider only symmetric port labelings, i.e., such that
both labels on an edge joining internal nodes are equal.
Hence we may speak of colors 1,2,3, of such edges,
where the color number of an edge is equal to both port
numbers at this edge. The color of an edge joining a
leaf with an internal node is the port number at the
internal node (the port number at a leaf is always 1).
Notice that incident edges have different colors. Call
such colored trees of degree 3 proper trees.

For proper trees the behavior of the robot is par-
ticularly simple. If the robot is in a non-final state and
is situated at a leaf, it takes the unique port, reads the
port number at the neighbor (equal to the edge color)
and transits to some state. If the robot is in a non-final
state and is situated at an internal node, the state de-
termines the color of the edge to take, the robot moves,
it only verifies if the neighbor is a leaf or an internal
node (in both cases the entry port number is already
known) and it transits to a new state. In particular, on
a path consisting only of internal nodes, the state of the
robot at the end of the path depends only on the state
at the beginning of it.

Consider a proper infinite tree with exactly one
leaf. Let the robot start at the leaf in the initial state.
Without loss of generality we may assume that the robot
visits nodes of this tree arbitrarily distant from the leaf
(otherwise it is easy to construct a finite tree which
the robot would not explore). For any positive integer
x, define the following function f~ : S x {1, 2, 3}
S x {1,2, 3}. Fix S E S and i e {1,2, 3}. Suppose that
the robot starts at the leaf in state S and that the color
of the edge incident to the leaf is i. Let v be the first
node at distance x from the leaf, visited by the robot.
Cut the two edges incident to v different from the edge
by which the robot entered v, thus making v a leaf. Let
f= (S, i) = (S', j) , where S ~ is defined as the state of the
robot after entering the leaf v and j is defined as the
color of the edge by which the robot enters v.

Let g = 3 • 3K2(3K) aK. Consider numbers K +
1 , . . . ,K- t -d . Since there are only (3K) ag possible
functions f~, there exist two even integers a and b with
the property K < a < a + 3K 2 < b < K + g, such that
fa = lb. Fix two such integers. They have the following
property. Suppose that the robot starts at a leaf of a
proper tree in any state and traverses a (non-necessarily
simple) path in the tree such that the end of this path
is a leaf and all internal nodes of the path are internal
nodes of the tree. Then the state of the robot at the

other end of the path and the color of the entry edge
to it are the same, regardless of whether the distance
between the beginning and the end of the path is a or
b.

We now construct the two proper trees with the
property mentioned in the beginning of the proof. The
tree T is defined as follows. Take a node v of degree 3
and attach to each of its 3 neighbors a complete binary
tree of height a / 2 - 1. Each of these complete binary
trees is called a principal subtree of T and v is called the
center of T. The tree T is proper and has diameter a.
The coloring of its edges is unique up to automorphism.

Suppose that the robot explores T and eventually
stops, when starting at a leaf w. We define a long trip in
T to be a part of the trajectory of the robot in T which
starts and ends at leaves at distance a and traverses
only internal nodes on the way. The robot must make
at least 2 and at most K long trips before stopping. The
first is clear and the second follows from the fact that
if the robot is twice in the same non-final state in the
same node then it never stops. More than K long trips
would cause the robot to be in the same non-final state
in the central node v at least twice.

We now construct a proper tree T ~ in which the
robot stops before exploring all of it. The construction
proceeds incrementally by adding consecutive pieces to
the tree T ~ under construction. First construct an
isomorphic copy T~ of the principal subtree 711 of T
containing the leaf wl beginning the first long trip, with
the same coloring as in the original. Let w~ be the leaf
corresponding to wl. Add to T~ a copy of the part
of the trajectory of the robot before the first long trip
in T. This trajectory may have nodes outside of T~,
corresponding to nodes in principal subtrees of T, other
than 711. However, the only leaves on this trajectory are
those ofT1. Since there are no leaves at distance a on it,
call this trajectory a short trip. Let $1 be the state of
the robot at wl at the beginning of the first long trip in
T. Consider the infinite proper tree containing T~ whose
set of leaves is exactly the set of leaves of T~. Consider
the run r ~ of the robot in this infinite tree starting at w~
in state $1, until hitting a node u~ at distance b from
w~.

Claim. During the run r ~ the robot does not visit any
leaf of T~.

Let r be the long trip in T starting at wl in state
81. This long trip corresponds to an initial segment of
r ~. By definition, the robot does not visit any leaf of
T1 during r. Let Ul be the node at distance a from
wa at the end of r and denote by Pl the simple path
between wl and ul. Consider the state of the robot at
the first visit of each node of this path. Since a > K, for

592

some internal nodes z and y on the path pt this state
is the same. Let x be the node first visited before y
and let c~ be the distance between z and y. Since after
first visiting z the robot made progress a on the path
pl without visiting a leaf, after first visiting y it will
make further progress a on this path without visiting a
leaf because the state at the first visit of z and y was
the same. Using the same reasoning for the run r ~ of
the robot in the infinite tree, the robot will keep going
farther from w~ first on the path corresponding to p and
then on its extension in the infinite tree, without ever
returning to leaves of T~I, until the end of run r t. This
proves the claim.

We continue the construction of the tree T ~ by
adding the run r ~ (with appropriate coloring of edges) to
the previously constructed part. Let T~ be the principal
subtree of T containing the leaf ul at the end of the
first long trip in T. At the end of run r ~ add an
isomorphic copy T~2 of T2 in such a way that the leaf
u~ corresponding to ul is the node ending run d , and
we reproduce the coloring from 7"2. Notice that , in view
of the properties of integers a and b, the state of the
robot after hitting the leaf u~ in T ~ is the same as the
state at the end of the first long trip in T (provided that
all nodes of run r ~ have degree 3 in T ~, which we will
guarantee at the end of the construction). Intuitively
speaking, the robot does not know at this point if it is
at u~ in T ~, or at ul in T.

Let p~ be the simple path of length b joining w~
with u~. Consider the state of the robot at the first
visit of each internal node of this path. Since there
are only K states, it follows that for two nodes Vl and
v2 at distance at most K on path p~ this state is the
same. Let Vl precede v2 on the path and let I be the
segment of path ~ between these nodes. Consider the
sequence of states at first visits of nodes of segment
I. Consider the segment J of path p~ following v2
and of the same length as I. The sequence of states
at first visits of corresponding nodes of I and J and
the sequence of corresponding edge colors are the same.
Hence the sequence of edge colors on path p~ is periodic
with period of length s _ K. By definition of b there
are at least 3K such periods on p~ between the root of
T~ and the root of T~.

Let now w~ be the leaf in T2 from which the second
long trip in T is started and let u/2 be the corresponding
leaf in T~. Consider the part of the trajectory of the
robot in T between the end of the first long trip and the
beginning of the second. Call it a short trip, as before:
it has the same properties as those observed for the first
short trip. Add an isomorphic copy of this short trip to
T ~, between leaves u~ and w~ (again a part of it may
be outside of T~). Consider the state $2 of the robot at

the beginning of the second long trip in T. In the tree
T p under construction the robot is in the same state, at
w~, after faithfully reproducing the short trip between
ul and w2 by an isomorphic run between u~ and w~
(provided that all nodes on this run which correspond
to internal nodes of T have degree 3 in T ~, which we will
guarantee at the end of the construction}.

Consider the infinite proper tree containing the part
of T ~ already constructed, with no leaves outside of T~
and T~. Consider the run ~ of the robot in this infinite
tree starting at w~ in state 82, until hitting a node u~
at distance b from w~. As before (see Claim), the robot
does not visit any leaf of T~ during this run. Two cases
are possible: either u~ is a leaf in T~I or u~ is some node
of degree 3. In the first case we repeat the previous
part of the construction, simulating the short trip of
the robot following the second long trip in T by its run
beginning at u~ and ending at a leaf w~ in T~. In the
second case we continue the construction of the tree
T' by adding the run r[(with appropriate coloring of
edges) to the previously constructed part of T ~. Let Ta
be the principal subtree of T containing the leaf u2 at
the end of the second long trip in T. At the end of run
r~ we add an isomorphic copy T~ of T3 in such a way
that the leaf u~ corresponding to u2 is the node ending
run ~ , and we reproduce the coloring from T3. (Notice
that T3 could be equal to 2"1.)

We need to observe a property that will be crucial
for continuing the construction inductively. Let p~ be
the simple path between w~ and u~. Let ld~ be the
reverse of path p~. Let z be the last common node on
these paths. Since there are at least 3K periods of edge
colors on p~ (and hence also on p~) between the root
of T~ and the root of T~2, it follows that z is before the
middle of p~ (and hence also of p~). Indeed, if it were
in the second half of this path, there would be more
than K periods before z. Consequently, for some earlier
period, at the first visit of a node z ~ corresponding to z
in this period, the robot would be in the same state as
at the first visit of z. Hence the last common node on
paths p~ and p~ would be z I rather than z.

We continue the construction of T ~, adding new
runs of the robot in the infinite tree (corresponding to
long trips and to short trips in T) and adding trees T/
isomorphic to principal subtrees of T at the end of each
run corresponding to a long trip. Suppose that T~, ..., T/t
are already constructed and that we start the ith run,
corresponding to the ith long trip in T, at a leaf w~ of
T[(as before, until hit t ing a node at distance b from
w~). We must show tha t this run cannot hit any leaf
of T~I, "",~/~i-2 because these leaves may be at distances
other than b from w~, and we could not argue that the
state after the ith run is identical to that after the ith

593

long trip in T. This can be shown as follows. Let p~,
for 1 < j < i, be the simple path between a leaf of 7"~
and a leaf of T~+I, corresponding to the j th run, and let
p~' be the reverse of this path. Suppose that during the
ith run the robot hits a leaf in some T~,,, for m < i - 2.
This means that ~ deviates from " p~_ ~ at the node t in
which pi'_ 1 deviates from Pi-~." However, similarly as
argued before, t is before the middle of ' Pi-1. On the
other hand, t must be before the middle of p~, hence
also before the middle of ~" i.e., after the middle of Pi- - l ,
P~-I, which gives a contradiction. (Notice that the ith
run may hit a leaf of ~ - 1 but this is not a problem,
because such a leaf is at distance b from w~.)

We add as many runs and trees T~ in the above
described manner as there are long and short trips in
the operation of the robot in tree T. Suppose that
after the run corresponding to the last long trip the

' of tree T[+ 1 in state S*. Consider robot is in leaf u i
the behavior of the robot in tree T when it is situated
in leaf u~ finishing the last long trip, and is in state
S*. The robot traverses some trajectory without ever
hitting leaves in principal subtrees other than that to
which ui belongs (i.e., it makes another short trip), and
then stops at some node. Add an isomorphic copy of
this final short trip to the tree T' under construction
(again some nodes of it may be outside of Ti'+l)- Now

the construction is almost finished. Let T be the tree
constructed so far. Its maximum degree is 3. Let L be
the set of all its leaves which are not leaves of any tree
2r~ (these are nodes in which the robot returned during
runs corresponding to long or short trips). Let M be
the set of nodes of degree 2 in T. To each node in L
add two new neighbors of degree 1, and to each node in
M add a new neighbor of degree 1. The resulting tree
is T'.

The tree 2* is a proper tree with the following
property: all internal nodes of a run corresponding to
a long trip in T are of degree 3. Hence, in view of the
choice of integers a and b, the state of the robot in the
leaf of T ~ ending a given run is the same as the state of
the robot in the leaf of T ending the corresponding long
trip. The definition of the final trajectory (after leaving
u~) implies that the robot must stop at the end of it.
However, it did not explore the entire tree T': indeed,
it only explored the subtree 7 ~, and T r \ T is nonempty
because either the set L or the set M are nonempty.
This concludes the proof.

The following result can be obtained by estimating
the size of the tree T I (constructed in the above proof),
which the robot fails to explore with stop.

THEOREM 3.2. A robot which can explore with stop
any n-node tree of maximum degree 3 must have

12(log log log n)-bit memory.

Proof. We use the notation and terminology from the
proof of Theorem 3.1. Consider a simple path p~ of
length b joining two ends of a run r ~ of the robot in T ~,
corresponding to a long trip in T.

Claim. During the run r ' the robot is never at distance
larger than K from the path p~.

Suppose it is, and let w be a node visited by the
robot during run r ~, at distance larger than K from the
closest node v of p~. Consider the state of the robot at
the first visit of each node on the path q joining v and w.
There are two internal nodes vl and v2 on q for which
this state is the same. Let vl be the node first visited
before v2 and let fl be the distance between vl and vz.
Since after first visiting vl the robot made progress
on the path q before visiting the leaf u~ ending p~, after
first visiting v2 it will make further progress/~ on this
path before visiting u~ because the state at the first visit
of Vl and vz was the same. The robot will keep going
farther from v first on q and then on its extension in the
infinite tree, before visiting u~. Hence the first node at
distance b from wl visited by the robot will be outside
of ~ and hence different from u~, which contradicts the

t This proves the claim. definition of u i-
In the same way we can prove that during runs

corresponding to short trips the robot is never farther
than at distance K from the closest leaf of the tree T[
where this run starts and ends.

Let T* be the union of all trees T i' and all simple
paths iv,'. defined during the construction of T'. Attach
to each node u of degree 2 of T" a new neighbor u'
and attach to it a complete binary tree of height K + 1
rooted at u'. Denote the resulting proper tree by T**.
The above claim and the remark following it imply that
T** includes T'.

We now estimate the size of T**. Every path p,'.
has length b < K + 3 .3KZ(3K) ax . and every tree T[
has size smaller than 2 ~ < 2 b. There are at most K
paths ~ and at most K + 1 trees T I. The total length
of all paths is at most Kb and a tree of size at most
2 K+2 is attached to each of their nodes. Consequently
the number n = 2(4K)4~ is an overestimate of the size
of T** and hence also of 7". Hence a robot with k-bit
memory, where 2 k = K, fails to explore with stop some
tree of maximum degree 3 and of size n = 2 (4K)'K .
This implies that in order to explore with stop all n-
node trees of maximum degree 3, the robot must have
fl(log log log n)-bit memory.

594

4 E x p l o r a t i o n w i t h r e t u r n

We now turn attention to the most demanding of our
exploration tasks, when we require the robot to stop at
the starting node after performing exploration. For this
task we have a much sharper lower bound on memory
than for exploration with stop. In fact, even a robot
specifically constructed for exploration with return of
an a priori given tree requires logarithmic memory.

THEOREM 4.1. Let T be any tree of size n. A robot
which can explore with return the tree T must have
~2(log n)-bit memory.

Proof. Suppose that a robot with k < [log nJ memory
bits can perform exploration with return in T. Fix any
node v o f T . For any node u, let Su be the state of
the robot at the first visit of v when u is the node at
which the robot starts. Since the robot has fewer than
n states, for two different starting nodes ul and u2 we
have S~1 = S~2- Hence the part of the trajectory of
the robot after the first visit of v is the same, regardless
of whether it started at ul or at u2- Consequently, the
node at which the robot stops is the same in both cases.
This cannot be both ul and u2, which contradicts the
definition of exploration with return.

As for upper bounds, we present two algorithms.
The first, Algorithm STACK-0F-PORTS, is a natural
exploration with return, based on depth-first search.
The label of the port by which a robot enters a new
node is pushed on a stack and popped after the last
visit of the node.

Algorithm STACK-0F-PORTS. The robot can be in two
modes: F (forward} or B (backward) and uses a stack
of integers.

. The robot starts in mode F in some node v of degree
d. It pushes a special symbol * on the empty stack
and leaves v by port 1.

. When the robot enters an internal node w of degree
d~ by port i in mode F, it pushes the integer i on
the stack and leaves by port (i rood dw)+l.

3. When the robot enters a leaf it switches to mode
B and returns to the neighbor of this leaf.

. When the robot enters an internal node w of degree
d~ by port i in mode B it compares i to the top of
the stack.

(a) If the top of the stack is an integer j and
i ~ j - 1 mod dw then the robot switches
to mode F and leaves by port (i rood dw)+l .

(b) If the top of the stack is an integer j and
i - j - 1 mod dw then the robot pops the
stack and leaves by port j .

(c) If the top of the stack i s , and i < d~ then the
robot switches to mode F and leaves by port
(i mod d t ,)+ l .

(d) If the top of the stack is , and i = dw then
the robot stops.

The height of the stack never exceeds the diameter
D of the tree and each label uses O(log A) memory bits,
where A is the maximum degree. Hence we have:

THEOREM 4.2. Algorithm STACK-0F-PORTS accom-
plishes exploration with return of any tree of diameter
D and maximum degree A using O (D l o g A) bits of
memory.

In fact the bound on the memory required by
Algorithm STACK-0F-PORTS can be slightly improved by
observing that the total number of bits in all elements
simultaneously on the stack is at most O(logex + • .- +
log ok), where el, ..., ck is a sequence of degrees of nodes
on a branch of the tree. However, this number of bits
can still be linear in the size of the tree. This should
be compared to our main algorithm for exploration
with return which we present below. It accomplishes
exploration with return in any n-node tree using only
O(log 2 n) memory bits.

We first describe a family of exploration protocols.
Each protocol is designed for a specific value of the
number of nodes. A protocol running for any value of n
while preserving the nice features of this family will be
presented later. We need the following concepts:

DEFINITION 4.1. Given a tree T , a node s o f T , and
t E {0, 1,...,deg(s)}, the open subtree Ts,t ofT is T
i f £ -= O, and it is the subtree of T consisting of the
connected component o f T containing s after the removal
of its incident edge corresponding to port L, otherwise.

Exploring an open subtree T,.t means exploring T
from s if £ = 0, and otherwise it consists of the following
two tasks: (I) explore T,,l from s 0rod return to s, and
{2) leave s through port L Note that T,.l might be a
subtree of an unknown tree. Note also that the case
l = 0 would not need a special treatment if we assumed
that the expression "leave through port 0" means "stay
here" (we recall that ports are labeled from 1 to the
degree of the node}.

LBMMA 4.1. There exists a family of exploration proto-
cols {£k, k >_ 0}, satisfying the Iollowing properties:

595

1. Ck allows exploration of any n-node open subtree
T~,t of any unknown tree, for n < 2 k.

2. When the exploration terminates, the robot reports
SUCCESS if n < 2 ~, and FAILURE otherwise.

3. If the robot reports SUCCESS then it knows n.

Proof. The construction of the family {£k, k > 0) is
by induction on k. Let us s tar t by the description of
the trivial protocol go. We consider exploration of an
open subtree T~,t by a robot ~ . The case g -- 0 is
straightforward: if deg(s) = 0, then 7~ reports sUCCESS,
otherwise it reports FAILURE. The case g > 0 is not
much more involved: ~ leaves through port g and
reports FAILURE if deg(s) > 1 and SUCCESS otherwise.
It is easy to check tha t go satisfies all the properties of
the lemma.

Let us now assume tha t we have constructed a se-
quence £0, £ 1 , . . . , £k of protocols satisfying the prop-
erties of the lemma, and let us construct the protocol
£k+1. We will later prove tha t ,fk+l is correct, i.e., sat-
isfies the properties of the lemma. Construction. We
consider exploration of an open subtree Ts,t. The robot

can be in three states: EXPLORE, SUCCESS, or FAIL-
URE. It starts in the state EXPLORE. ~ uses a variable
number which counts the number of nodes that have
been visited so far, and a stack p a r e n t used to store in-
tegers of variable size. It also uses a variable hop-count
which counts the distance between s and the current po-
sition o f / d . Initially hop -coun t - 0, number = 1, and
p a r e n t is empty. In addition to these variables Td also
uses a constant number of variables to store port-labels.

We describe the actions o f ~ in s ta te EXPLORE, and
currently at node u (possibly u - s). Let p be the
port through which ~ entered u (p = £ if u = s). For
i = 1 , . . . , d e g (u) , let vi be the neighbor of u connected
to u by the link corresponding to port i a t u. Viewing
T as rooted at u, let T (i) be the subtree of T rooted at
v~. 7~ successively tries to explore every T (i} with the
gj 's , j _< k, by increasing order of the index j . More
precisely, for every i = 1, ..., deg(u) let qi be the port
label at vi of the link connecting vi to u. For i - 1 to
deg(u), including i = p, 7~ does the following. Starting
from j = 0, and increasing j by one in case of failure,
repeats (1) move to vi, and (2) explore the open subtree
T (i)v~,q, with £j. This process is carried on until either
there is k~ g k for which £1¢~ succeeds (i.e., for which

comes back to u in the state s u c c e s s) , or all £j 's,
0 < j < k, fail to explore T(O. When ~ has completed
the previous operations for each T(0, it continues as
follows:

I1 If, for every subtree T (1), i # p, there is ki < k

such that El,, succeeded to explore the open subtree
Tv (i) then 7~ switches to the s tate s u c c e s s . i) q i ,

I2 If there is exactly one subtree T (q), q ~ p, for which
all gj's fail, then 7~ stores q and stays in s ta te
EXPLORE.

I3 If there are at least two distinct subtrees T (q) and
T (q') , q ~ p and qt ~ p, for which all £ j ' s fail, then
7~ switches to the state FAILURE.

In the three cases, ~ sums the number of vertices
of the subtrees T(1), i # p, whose exploration succeeded
and adds it to number. If number > 2 k+*, then
switches to the s tate FAILURE (if not yet in tha t state).
At this point of the exploration, two cases have to
be considered, depending on whether ~ is in s tate
E X P L O R E o r not.

Case I: ~ is in state EXPLORE. In this case, only one
subtree T (q) of u remains to be explored (7~ failed to
explore that tree using gk, but exploration with Ck+1
is potentially doable). Before leaving u, ~ proceeds as
follows:

* If all £j 's, 0 < j < k, fail to explore T(P), or if kp is
larger (strictly) than all the other kl %, i ¢ q, then
nothing is stored;

• Otherwise, let ~q(p) be the number of indices i such
tha t either (i) ki > kp, or (ii) kl = kp and i < p.
The value of vq(p) is placed at the top of p a x e a t .

Once this is done, T~ increases hop-carro t by 1, and
leaves through port q, to reach a new node C from where
the exploration carries on in the same way as it was
performed at u.

C a s e 2: ~ is in state s u c c e s s or FAILURE. Its objective
is then to return back to s and to report the success
or the failure of the exploration. For tha t purpose,
moves back along the edge labeled p. ~ will eventually
return to s by using the information previously stored in
p a r e n t . We describe bellow how this process is carried
out.

Assume tha t 7~ enters a node u via port q, in s tate
suCCESS or FAILURE, with hop-eounl; ¢ 0. :~ tries to
compute the port p leading toward s. For tha t purpose,

repeats the same process as when :R entered u in
the s tate EXPLORE. In particular, ~ re-explores the
subtrees rooted at u's neighbors. Again, viewing T
as rooted at u, let T 0) be the subtree of T rooted at
u's neighbor vi, i = 1 , . . . , d e g (u) , and let qi be the
port label at vi of the link connecting vl to u. For
i = 1 , deg(u), i # q, ~ does the following. Start ing
from j = 0, and increasing j by one in case of failure,

596

7~ repeats (1) move to vi, and (2) explore the open
subtree T(i)- o~,q, with £j. This process is carried on until
either there is ki < k for which ~k, succeeds, or all Ej's,
0 < j < k, fail to explore T (1) .

The index p is then obtained as follows:

• If there exists i ¢ q such that all gj 's , 0 < j < k,
fail to explore T (i) , or if there exists i ¢ q such that
ki is larger (strictly) than all the other kj 's, j ¢ q,
then p = i;

• Otherwise the integer v at the top of paxenl; is
popped out, and p is such that vq(p) = v.

Once p has been identified, 7~ decreases hop-count
by 1, and leaves through port p.

When hop-coun t = 0, :R leaves through port £ to
report the success of the exploration together with the
total number of nodes of the open subtree T~,t if it is in
the state s u c c e s s , or the failure of the exploration, if it
is in the state FAILURE. This completes the description
of ~k+a. In the remaining, we show that this protocol
satisfies the properties of the lemma.

Proof of correctness. If Te,t has at most 2/¢ nodes,
then all explorations of open subtrees rooted at the
neighbors vi's of s, i 5~ £, will succeed for some ~k~,
ki < k. Therefore, ~k+1 will also succeed in this case by
application of I1.

If 2 k < n < 2 k+1, then, since £k explores all
trees of size at most 2 k, 7~ can only apply I1 or I2
at s. If 12 is applied, 7~ moves to the root of the yet
unexplored tree. ~ proceeds in this way until it reaches
a node u* in which every open subtree "r'(1) i ~ p,
will be successfully explored by some Eke, hi < k. This
will eventually occur because every t ime the robot goes
"down" through the yet unexplored tree, the number
of nodes of the tree currently explored decreases by at
least one. Since all open subtrees T~v~?q,, i ~ p, of u*
have been explored, all nodes of the open subtree Ts,z
have been visited. At u* the robot applies I1 and enters
s tate SUCCESS.

If n > 2 ~+~ , then 7~ will eventually reach a node u*
where either two subtrees cannot be explored with £~
or the total number of nodes visited so far exceeds 2 TM.
In the former case, the robot applies I3 and enters state
FAILURE. In the latter case, since number > 2 ~+~, the
robot enters state FAILURE a~ well.

It remains to check that the robot returns to s from
u,, and then from s moves through link L

When I1 or I3 is executed, 7~ still knows the label
p of the port leading to s, and the protocol specifies
that ~ leaves through that port. Now, let u be the
current position of 7~, and assume that ~ entered u
through port q. 7~ tries to find the port p leading to

s by re-exploring the open subtrees T (i) rooted at u's
neighbors. Since I2 was applied in u when 7~ was in
state EXPLORE, there is at most one open subtree T (i)
distinct from T (q} whose exploration may fail with £~.
Indeed, T,,t is an open subtree of an unknown tree that
can be arbitrarily large, and hence exploring T (p) may
fail. However, when 7~ was in state EXPLORE, it was able
to explore all the other open subtrees T (i), i ~ {p, q},
each with some Eke, ki < k. From these remarks, it is
easy to check that p can be determined either by using
some asymmetry {i.e., exploring T (p) fails, or kp is the
largest of all ki's) or simply by reading its index when
ports are sorted according to the ki's. Since 7g increases
(resp. decreases) hop-eoun~ by one at every move away
from (resp. towards) s, "h~ is back at s when h o p - c o u n t
= 0. This completes the proof of the first property of
the lemma.

The second property follows directly from the fact
that if number > 2 TM then 7~ enters state FAILURE.

If 7~ returns to s in the state SUCCESS, then the
whole tree has been explored, and the number of nodes
has been accumulated in the variable number. Thus
the third property is also satisfied, which completes the
proof of the [emma.

We are now ready to present our main algorithm of
exploration with return. Given the family {gk, k > 0}
described in Lemma 4.1, our protocol can simply be
described as follows.

Algorithnx EXPLORE. The robot starting at node s of a
tree T successively executes ~k, k = 0, 1,..., until there
is a k for which it returns to s in the state success.
Then it stops.

THEOREM 4.3. Algorithm EXPLORE accomplishes ezplo-
ration with return of any n-node tree using O(log 2 n)
bits of memory.

Proof. By Lemma 4.1, if k = [log2n], then Ek com-
pletes exploration with return of T. It remains to show
that EXPLORE requires O(log 2 n) bits of memory for n-
node trees.

Assume that ~k uses Mk bits of memory, and
compute the memory requirement for Ek+l. First, ~ + 1
reserves Mk bits of memory for the execution of the
gj 's , j _< k. In addition to that, g~+l makes use of two
counters (number and hop-count) , each on k + 1 bits
since £k+1 does not count more than 2 k+l nodes, and
does not explore further than 2 k+l hops away from the
initial position s. gk+l makes also use of a constant
number of integers to store the labels of ports: e.g., the
incoming port, the outgoing port, the label of the open
subtree currently under consideration, etc. Since labels

597

are between 1 and the degree of the nodes, all these
integers are on [log 2 n] bits. The storage of kp (if the
exploration of T (p) succeeded) requires O(logk) bits,
and the computation of Uq(p) requires O(logk) bits as
well. The remaining part of the memory is used to store
the stack paren t . Assume that the stack stores indices
t ,1, . . . , t'r as follows: we use two boolean strings, both
of E~=I [l°g2 vii bits. One is just the concatenation
of the binary expressions of the vi's, and the other
indicates the separations between two successive vi's.
From the specifications of ~:k+t, an index vi is placed
in the stack pa ren t every time there exists at least one
index j ~ {p, q} such that kj >_ kp. More precisely, if vi
is stored, then there are at least Pi = max{vi, 2} indices
j for which kj > kp. Each such index corresponds to
a subtree of size at least 2 k-- t , while T (p) is of size at
most 2 k~. Hence, if T \ T (q) is of size N, then T(P) is

2N Therefore, rlr ~ < 2 k+l, and of size at most u--7~" --i=1 2 - -

hence ~--]r=t[log 2 ui] : O(k). Thus the stack pa ren t
requires O(k) bits to be stored. In total, we have

Mk+t = M~, + O(k) + O(logn) = O(k(k + logn)).

Since Algorithm EXPLORE involves £:t~ for k <_ [log s hi,
we get that its memory requirement is at most
O(log 2 n), which completes the proof.

5 Conclusion

The following table is a summary of our results. It gives
upper and lower bounds on memory size (in # of bits) of
a robot for three types of exploration (perpetual, with
stop, with return) of a tree on n nodes, with maximum
degree A. The upper bound for exploration with stop
assumes that the robot knows an upper bound m on
the number of nodes of a given degree. Without this
knowledge, the best we know is performing exploration
with return, using O(log 2 n) memory bits.

Exploration Upper Bound Lower Bound
Perpetual O(log A) flog A]
(with) Stop
(with) Return

O(log A + log m)
O(log z n)

n(log log log n)
l~ (log n)

The table shows two interesting open problems.
Firstly, what is the exact complexity in terms of memory
bits of exploration with return? Secondly, can we
perform exploration with stop using stricly less memory
space than exploration with return?

6 A c k n o w l e d g e m e n t s

This work was done during K. Diks' stay at the Uni-
versitd du Qudbec ~ Hull, and while P. Fraigniaud was
visiting Carleton University in Ottawa. P. Fraigniaud is
supported by NATO. E. Kranakis is supported in part

by NSERC grant. Andrzej Pelc is supported in part by
NSERC grant OGP 0008136. The three last authors
were supported in part by MITACS (Mathematics of
Information Technology and Complex Systems) project
CANCOM grant.

References

[1] S. Albers and M. R. Henzinger, Exploring nnknown
environments, SIAM Journal on Computing 29 (2000),
1164-1188.

[2] B. Awerbuch, M. Betke, R. Rivest and M. Singh,
Piecemeal graph leasaaing by a mobile robot, Proc. 8th
Conf. on Comput. Learning Theory (1995), 321-328.

[3] E. Bar-Eli, P. Berman, A. Fiat and R. Yan, On-line
navigation in a room, Journal of Algorithms 17 (1994),
319-341.

[4] M.A. Bender, A. Fernandez, D. iron, A. Sahai and
S. Vadhan, The power of a pebble: Exploring and
mapping directed graphs, Proc. 30th Ann. Syrup. on
Theory of Computing (1998), 269-278.

[5] M.A. Bender and D. Slonim, The power of team
exploration: Two robots can learn unlabeled directed
graphs, Proc. 35th Ann. Syrup. on Foundations of
Computer Science (1994), 75-85.

[6] P. Berman, A. Blum, A. Fiat, H. Karloff, A. Rosen
and M. Saks, Randomized robot navigation algorithms,
Proc. 7th ACM-SIAM Syrup. on Discrete Algorithms
(1996), ~4-s4.

[7] A. Blum, P. Raghavan and B. Schieber, Navigating
in unfamiliar geometric terrain, SIAM Journal on
Computing 26 (1097), 110-137.

[8] M. Betke, R. Rivest and M. Singh, Piecemeal learning
of an unlruown environment, Machine Learning 18
(1995), 231-254.

[9] X. Deng, T. Kameda and C. H. Papadimitriou, How to
learn an unknown environment l: the rectilinear case,
Journal of the ACM 45 (1998), 215-245.

[10] X. Deng and C. H. Papadimitfiou, Exploring an un-
known graph, Journal of Graph Theory 32 (1999), 265-
297.

[11] C.A. Duncan, S.G. Kobourov and V.S.A. Kumar, Op-
timal constrained graph exploration, Proc. 12th An-
n. ACM-SIAM Syrup. on Discrete Algorithms (2001),
807-814.

[12] P. Panaite and A. Pelc, Exploring unknown undirected
graphs, Journal of Algorithms 33 (1999), 281-295.

[13] C. H. Papadimitriou and M. Yarmakakis, Shortest
paths without a map, Theoretical Computer Science
84 (1991), 127-150.

[14] N. S. V. Rao, S. Hareti, W. Shi and S.S. lyengar, Robot
navigation in unknown terrains: Introductory survey
of non-heuristic algorithms, Tech. Report ORNL/TM-
12410, Oak Ridge National Laboratory, July 1993.

