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Tree Exploration with Little Memory 
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A b s t r a c t  

A robot with k-bit memory  has to explore a tree whose 
nodes are unlabeled and edge ports are locally labeled 
at each node. The robot has no a priori knowledge 
of the topology of the tree or of its size, and its aim 
is to traverse all the edges. While O(logA) bits of 
memory suffice to explore any tree of maximum degree 
A if stopping is not required, we show that  bounded 
memory is not sufficient to explore with stop all trees of 
bounded degree (indeed f~(logloglog n) bits of memory 
are needed for some such trees of size n). For the more 
demanding task requiring to stop at the starting node 
after completing exploration, we show a sharper lower 
bound f~(log n) on required memory  size, and present 
an algorithm to accomplish this task with O(log 2 n)-bit 
memory,  for all n-node trees. 

1 I n t r o d u c t i o n  

A robot (mobile agent) has to explore an undirected 
graph by visiting all its nodes and traversing all edges, 
without any a priori knowledge of the topology of the 
graph nor of its size. The task of visiting all nodes of a 
network is fundamental  in searching for data  stored at 
unknown nodes of a network, and traversing all edges 
is often required in network maintenance and when 
looking for defective components. If nodes and edges 
have unique labels, this can be easily done by depth- 
first search. However, in some navigation problems in 
unknown environments such unique labeling may not 
be available, or limited sensory capabilities of the robot 
may prevent it from perceiving such labels. Hence it is 
important  to be able to program the robot to explore 
anonymous graphs, i.e., graphs without unique labeling 
of nodes or edges. Unfortunately, arbitrary graphs 
cannot be explored under such weak assumptions, as 
witnessed by the case of a cycle: without any labels 
of nodes and without the possibility of putting marks 
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on them, it is clearly impossible to explore a cycle 
of unknown size and stop. if  marking of nodes (e.g., 
by dropping and removing pebbles) is available then 
the problem can be solved even in directed graphs (cf. 
[4]). Otherwise, the class of graphs tha t  can potentially 
be explored has to be restricted to connected graphs 
without cycles, i.e., to trees. 

In this paper we study the problem of graph explo- 
ration under very weak assumptions: we do not assume 
any labels on nodes and do not allow marking, hence 
we restrict attention to exploration of trees. Clearly the 
robot has to be able to locally distinguish ports at a n- 
ode: otherwise it is impossible to explore even the star 
with 3 leaves (after visiting the second leaf the robot 
cannot distinguish the port  leading to the first visited 
leaf from that  leading to the unvisited one). Hence we 
make a natural  assumption that  all ports at a node are 
locally labeled 1,...,d, where d is the degree of the node. 
No coherence between those local labelings is assumed. 

In many applications, robots (mobile agents) are 
meant  to be simple, often small, and inexpensive devices 
which limits the amount  of memory  with which they 
can be equipped. As opposed to numerous papers that  
imposed no restrictions on the memory  of the robot and 
sought exploration algorithms minimizing time, i.e., the 
number of  traversals, we investigate the minimum size 
of the memory  of the robot that  allows exploration of 
trees of given (unknown) size, regardless of the t ime of 
exploration. More precisely, we consider the following 
main tasks: 

• exploration with stop: starting at any node of the 
tree, the robot has to traverse all edges and stop at 
some node; 

• exploration with return: starting at any node of the 
tree, the robot has to traverse all edges and stop at 
the  starting node. 

In both cases we want to find an algorithm for a 
robot performing the given task using as little memory 
as possible. 

1.1 O u r  r e su l t s .  We first consider the auxiliary easi- 
er task of perpetual exploration in which the robot has to 
traverse all edges of the tree but is not required to stop. 
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Perpetual exploration may be of independent interest, 
e.g., if regular control of a network for the presence of 
faults is required, and all edges must be periodically 
traversed over long periods of time. In our context, 
the study of perpetual exploration shows that from the 
point of view of memory use, the most demanding part 
of exploration with stop is indeed stopping. Here is why. 
We show an algorithm performing perpetual exploration 
of any tree of maximum degree A using O(log A)-bit 
memory. In particular, bounded memory is sufficient 
for perpetual exploration of all bounded degree trees. 
In contrast we show that this is not the case for explo- 
ration with stop. Indeed, f~(log log log n) bits of memory 
are needed for exploration with stop of some bounded 
degree trees of size n. The additional memory is essen- 
tially needed to decide when to stop in our anonymous 
environment. Moreover, our memory-efficient perpetual 
exploration algorithm yields algorithms for exploration 
with stop in special classes of trees, or for all trees un- 
der additional knowledge of a bound on size. Indeed, 
if we know a bound N on the size of the tree, we can 
explore it with stop using O(log N)-bit  memory, while 
if we know a bound m on the number of nodes of a giv- 
en degree then we can explore a tree with stop using 
O (log A + log m)-bit memory. 

For exploration with return, we show a lower bound 
f~(log n) on the number of memory bits needed for 
trees of size n. As for upper bounds, a simple DFS- 
based algorithm performs exploration with return using 
O(D log A) memory bits for trees of diameter D and 
maximum degree A. However, the memory used by 
this algorithm can be linear in the size n for some trees. 
Our main algorithm for exploration with return is much 
more memory-efficient in general: it uses only O(log ~- n) 
memory bits for all trees of size n. 

1.2 R e l a t e d  work .  Exploration and navigation 
problems for robots in an unknown environment have 
been extensively studied in the literature (cf. the sur- 
vey [14]). There are two groups of models for these 
problems. In one of them a particular geometric setting 
is assumed, e.g., unknown terrain with convex obstacles 
[7], or room with polygonal [9] or rectangular [3] obsta- 
cles. Another approach is to model the environment as 
a graph, assuming that the robot may only move along 
its edges. The graph setting can be further specified 
in two different ways. In [1, 4, 5, 10] the robot explores 
strongly connected directed graphs and it can move only 
in the direction from head to tail of an edge, not vice- 
versa. In [2, 8, 11, 12] the explored graph is undirected 
and the robot can traverse edges in both directions. In 
the graph setting it is often .required that apart from 
completing exploration the robot has to draw a map of 

the graph, i.e., output an isomorphic copy of it. 
The efficiency measure adopted in most papers deal- 

ing with exploration of graphs is the time of completing 
this task, measured by the number of edge traversals 
by the robot. On the other hand, there are no restric- 
tions imposed on the memory of the robot. (This is 
precisely, where our setting differs: we are interested in 
minimizing the memory of the robot but do not restrict 
exploration time.) 

Graph exploration scenarios considered in the liter- 
ature differ in an important way: it is either assumed 
that nodes of the graph have unique labels which the 
robot can recognize, or it is assumed that nodes are 
anonymous. Exploration of directed graphs assuming 
the existence of labels was investigated in [1, 10]. In 
this case no restrictions on the robot moves were im- 
posed, other than by directions of edges, and fast ex- 
ploration and mapping algorithms were sought. Explo- 
ration of undirected labeled graphs was considered in 
[2, 8, 11, 12]. Since in this case a simple exploration 
based on depth-first search can be completed in time 
2e, where e is the number of edges, investigations con- 
centrated either on further reducing time for an unre- 
stricted robot, or on studying efficient exploration when 
moves of the robot are restricted in some way. The first 
approach was adopted in [12], where an exploration al- 
gorithm working in time e -I- O(n), with n being the 
number of nodes, was proposed. Restricted robots were 
investigated in [2, 8, 11]. It was assumed that the robot 
has either a restricted tank [2, 8], forcing it to peri- 
odically return to the base for refueling, or that it is 
tethered, i.e., attached to the base by a rope or cable 
of restricted length [11]. It was proved in [11] that ex- 
ploration and mapping can be done in time O(e) under 
both scenarios. 

Exploration of anonymous graphs presents a differ- 
ent type of challenges. In this case it is impossible to 
explore arbitrary graphs if no marking of nodes is al- 
lowed. Hence the scenario adopted in [4, 5] was to allow 
pebbles which the robot can drop on nodes to recognize 
already visited ones, and then remove them and drop 
in other places. The authors concentrated attention on 
the minimum number of pebbles allowing efficient explo- 
ration and mapping of arbitrary directed n-node graphs. 
(In the case of undirected graphs, one pebble suffices for 
efficient exploration.) In [5] the authors compared ex- 
ploration power of one robot to that  of two cooperating 
robots with a constant number of pebbles. In [4] it was 
shown that one pebble is enough if the robot knows an 
upper bound on the size of the graph, and O(log log n) 
pebbles are necessary and sufficient otherwise. 

Our scenario is even weaker than that in [4, 5]: n- 
odes do not have labels and no marking is allowed. S- 
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ince the presence of even one cycle precludes exploration 
with stop, we restrict attention to the class of (undi- 
rected) graphs in which this task is possible under these 
very weak assumptions: the class of trees. Moreover, 
as previously mentioned, our scenario differs in that  we 
optimize memory, not exploration time. 

2 T e r m i n o l o g y  a n d  p r e l i m i n a r i e s  

A tree with locally labeled ports is an undirected tree 
whose nodes are unlabeled and edges incident to a node 
v have distinct labels 1 .... ,d, where d is the degree of v. 
Thus every edge uv has two labels which are called its 
port numbers  at u and at v. Port  numbering is local: 
there is no relation between labels given to an edge uv 
at u and at v. 

A robot  with k-bit memory is a deterministic state 
machine with K = 2 k states among which a specified 
state So is called initial and some specified states are 
called final. Such a robot, when placed in the initial 
state in any node of a tree with locally labeled ports, 
operates as follows. If the robot is in a node in a non- 
final state S, the state determines a local port  number 
is.  The robot  leaves the node by this port. Upon 
traversing the corresponding edge, the robot  reads the 
port  number at the node it enters and the degree of  
this node. This pair of  integers is an input symbol that  
causes the transition from state S to S I. The robot  
continues moving in this way until it enters a final state 
for the first t ime. Then it stops. 

As said in Section 1, we consider three tasks of 
increasing difficulty: perpetual exploration in which the 
robot has to  traverse all edges of the tree but  is not 
required to stop, exploration with stop in which starting 
at any node of the tree, the robot has to traverse all 
edges and stop at some node, and exploration with 
return in which starting at any node of the tree, the 
robot  has to traverse all edges and stop at the starting 
node. A robot  is said to perform one of the above tasks 
in a tree, if  starting at any node of this tree in state So it 
completes this task in finitely many steps. (Notice that  
in the case of perpetual exploration, completing this 
task after finitely many steps means only traversing all 
edges, not necessarily stopping after it.) 

The way in which operation of the robot  in a tree 
is defined implies that  a robot exploring a star with A 
leaves needs at least A states: if it has fewer states 
then, starting at the center of the star it could never 
enter some ports. Hence we get the following trivial 
lower bound. 

PROPOSITION 2.1. A robot exploring all trees of maxi- 
mum degree A must have f~(log A )-bit memory. 

The following simple algorithm performs perpetual 

exploration using only O(log A) memory bits: 

A l g o r i t h m  CH00SE-NEXT. The robot  leaves the start- 
ing node by port  1. After entering any node of degree 
d by port  i, the robot leaves it by port  (i rood d ) + l .  

It is easy to see that,  using algorithm CH00SE-NEXT 
the robot  traverses all edges of an n-node tree after at 
most 2 ( n -  1) steps. Hence we have 

PROPOSITION 2.2. Algorithm CH00SE-NEXT accom- 
plishes perpetual exploration of  any tree of  maximum 
degree A using O(logA) bits of memory. 

This observation implies algorithms for exploration 
with stop if some additional information about  the tree 
is available. One such situation arises when an upper 
bound N on the number of nodes in the tree is known. 
Then the robot can perform algorithm CH00SE-IIEXT, 
additionally counting steps, and stop after 2 (N - 1) 
steps. This requires f~(log N)-bi t  memory. Another 
type of additional information could be an upper bound 
m on the number of nodes of given degree d. Using 
algorithm CH00SE-NEXT every such node is visited at 
most 2d times before all edges are traversed. Hence it is 
enough to perform this algorithm, additionally counting 
visits at nodes of degree d, and stop after 2rod visits. 
This can be done with O(logA + logm)-bi t  memory. 
For example, this enables exploration with stop of any 
rooted binary tree (whose root is the only node of degree 
2} using bounded memory. 

3 Exploration with stop 
As we have seen, perpetual exploration can be per- 
formed in all bounded degree trees using bounded mem- 
ory, i.e., the same robot can perform perpetual explo- 
ration in all trees of maximum degree bounded by a 
constant. This ability can be transfered to the more 
demanding task of  exploration with stop for restrict- 
ed classes of bounded degree trees, such as trees with 
bounded number of nodes of given degree. However, the 
main result of this section shows that  exploration with 
stop of  all trees of  bounded degree, even of all trees of 
maximum degree 3, cannot be performed by the same 
robot. (Of course, all trees of maximum degree 2, i.e., 
paths, can be explored with stop by the same robot with 
only 3 memory bits}. 

THEOREM 3.1. For every robot there exists a tree of 
maximum degree 3 which this robot cannot explore with 
stop. 

Proof. Fix a robot  with the set ~g of  states, such that 
IS] = K.  The idea of the proof is to construct two trees 
such that if the robot explores one of them and stops 
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then, when run on the other, it stops before exploring 
it. In fact, we will construct parts of the second (larger) 
tree by simulating actions of the robot in the first tree. 

We restrict attention to the class of trees all of 
whose internal nodes have degree 3. Moreover we 
consider only symmetric port labelings, i.e., such that 
both labels on an edge joining internal nodes are equal. 
Hence we may speak of colors 1,2,3, of such edges, 
where the color number of an edge is equal to both port 
numbers at this edge. The color of an edge joining a 
leaf with an internal node is the port number at the 
internal node (the port number at a leaf is always 1). 
Notice that  incident edges have different colors. Call 
such colored trees of degree 3 proper trees. 

For proper trees the behavior of the robot is par- 
ticularly simple. If the robot is in a non-final state and 
is situated at a leaf, it takes the unique port, reads the 
port number at the neighbor (equal to the edge color) 
and transits to some state. If the robot is in a non-final 
state and is situated at an internal node, the state de- 
termines the color of the edge to take, the robot moves, 
it only verifies if the neighbor is a leaf or an internal 
node (in both cases the entry port number is already 
known) and it transits to a new state. In particular, on 
a path consisting only of internal nodes, the state of the 
robot at the end of the path depends only on the state 
at the beginning of it. 

Consider a proper infinite tree with exactly one 
leaf. Let the robot start at the leaf in the initial state. 
Without loss of generality we may assume that  the robot 
visits nodes of this tree arbitrarily distant from the leaf 
(otherwise it is easy to construct a finite tree which 
the robot would not explore). For any positive integer 
x, define the following function f~ : S x {1, 2, 3} ...... 
S x {1,2, 3}. Fix S E S and i e {1,2, 3}. Suppose that  
the robot starts at the leaf in state S and that the color 
of the edge incident to the leaf is i. Let v be the first 
node at distance x from the leaf, visited by the robot. 
Cut the two edges incident to v different from the edge 
by which the robot entered v, thus making v a leaf. Let 
f= (S, i) = (S', j ) ,  where S ~ is defined as the state of the 
robot after entering the leaf v and j is defined as the 
color of the edge by which the robot enters v. 

Let g = 3 • 3K2(3K) aK. Consider numbers K + 
1 , . . . ,K- t -d .  Since there are only (3K) ag possible 
functions f~, there exist two even integers a and b with 
the property K < a < a + 3K 2 < b < K + g, such that 
fa = lb. Fix two such integers. They have the following 
property. Suppose that  the robot starts at a leaf of a 
proper tree in any state and traverses a (non-necessarily 
simple) path in the tree such that the end of this path 
is a leaf and all internal nodes of the path are internal 
nodes of the tree. Then the state of the robot at the 

other end of the path and the color of the entry edge 
to it are the same, regardless of whether the distance 
between the beginning and the end of the path is a or 
b. 

We now construct the two proper trees with the 
property mentioned in the beginning of the proof. The 
tree T is defined as follows. Take a node v of degree 3 
and attach to each of its 3 neighbors a complete binary 
tree of height a / 2 -  1. Each of these complete binary 
trees is called a principal subtree of T and v is called the 
center of T. The tree T is proper and has diameter a. 
The coloring of its edges is unique up to automorphism. 

Suppose that the robot explores T and eventually 
stops, when starting at a leaf w. We define a long trip in 
T to be a part of the trajectory of the robot in T which 
starts and ends at leaves at distance a and traverses 
only internal nodes on the way. The robot must make 
at least 2 and at most K long trips before stopping. The 
first is clear and the second follows from the fact that 
if the robot is twice in the same non-final state in the 
same node then it never stops. More than K long trips 
would cause the robot to be in the same non-final state 
in the central node v at least twice. 

We now construct a proper tree T ~ in which the 
robot stops before exploring all of it. The construction 
proceeds incrementally by adding consecutive pieces to 
the tree T ~ under construction. First construct an 
isomorphic copy T~ of the principal subtree 711 of T 
containing the leaf wl beginning the first long trip, with 
the same coloring as in the original. Let w~ be the leaf 
corresponding to wl. Add to T~ a copy of the part 
of the trajectory of the robot before the first long trip 
in T. This trajectory may have nodes outside of T~, 
corresponding to nodes in principal subtrees of T, other 
than 711. However, the only leaves on this trajectory are 
those ofT1. Since there are no leaves at distance a on it, 
call this trajectory a short trip. Let $1 be the state of 
the robot at wl at the beginning of the first long trip in 
T. Consider the infinite proper tree containing T~ whose 
set of leaves is exactly the set of leaves of T~. Consider 
the run r ~ of the robot in this infinite tree starting at w~ 
in state $1, until hitting a node u~ at distance b from 
w~. 

Claim. During the run r ~ the robot does not visit any 
leaf of T~. 

Let r be the long trip in T starting at wl in state 
81. This long trip corresponds to an initial segment of 
r ~. By definition, the robot does not visit any leaf of 
T1 during r. Let Ul be the node at distance a from 
wa at the end of r and denote by Pl the simple path 
between wl and ul.  Consider the state of the robot at 
the first visit of each node of this path. Since a > K, for 
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some internal nodes z and y on the path pt this state 
is the same. Let x be the node first visited before y 
and let c~ be the distance between z and y. Since after 
first visiting z the robot made progress a on the path 
pl without visiting a leaf, after first visiting y it will 
make further progress a on this path without visiting a 
leaf because the state at the first visit of z and y was 
the same. Using the same reasoning for the run r ~ of 
the robot in the infinite tree, the robot will keep going 
farther from w~ first on the path corresponding to p and 
then on its extension in the infinite tree, without ever 
returning to leaves of T~I, until the end of run r t. This 
proves the claim. 

We continue the construction of the tree T ~ by 
adding the run r ~ (with appropriate coloring of edges) to 
the previously constructed part. Let T~ be the principal 
subtree of T containing the leaf ul at the end of the 
first long trip in T. At the end of run r ~ add an 
isomorphic copy T~2 of T2 in such a way that  the leaf 
u~ corresponding to ul is the node ending run d ,  and 
we reproduce the coloring from 7"2. Notice that ,  in view 
of the properties of integers a and b, the state of the 
robot after hitting the leaf u~ in T ~ is the same as the 
state at the end of  the first long trip in T (provided that  
all nodes of run r ~ have degree 3 in T ~, which we will 
guarantee at the end of the construction). Intuitively 
speaking, the robot does not know at this point if it is 
at u~ in T ~, or at ul in T. 

Let p~ be the simple path of length b joining w~ 
with u~. Consider the state of the robot at the first 
visit of each internal node of this path. Since there 
are only K states, it follows that  for two nodes Vl and 
v2 at distance at most K on path p~ this state is the 
same. Let Vl precede v2 on the path and let I be the 
segment of path ~ between these nodes. Consider the 
sequence of states at first visits of nodes of  segment 
I. Consider the segment J of path p~ following v2 
and of the same length as I. The sequence of states 
at first visits of corresponding nodes of I and J and 
the sequence of corresponding edge colors are the same. 
Hence the sequence of edge colors on path p~ is periodic 
with period of length s _ K.  By definition of b there 
are at least 3K such periods on p~ between the root of 
T~ and the root of T~. 

Let now w~ be the leaf in T2 from which the second 
long trip in T is started and let u/2 be the corresponding 
leaf in T~. Consider the part of the trajectory of the 
robot in T between the end of the first long trip and the 
beginning of the second. Call it a short trip, as before: 
it has the same properties as those observed for the first 
short trip. Add an isomorphic copy of this short trip to 
T ~, between leaves u~ and w~ (again a part  of it may 
be outside of T~). Consider the state $2 of the robot at  

the beginning of the second long trip in T. In the tree 
T p under construction the robot is in the same state, at 
w~, after faithfully reproducing the short trip between 
ul and w2 by an isomorphic run between u~ and w~ 
(provided that all nodes on this run which correspond 
to internal nodes of T have degree 3 in T ~, which we will 
guarantee at the end of the construction}. 

Consider the infinite proper tree containing the part 
of T ~ already constructed, with no leaves outside of T~ 
and T~. Consider the run ~ of the robot in this infinite 
tree starting at w~ in state 82, until hitting a node u~ 
at distance b from w~. As before (see Claim), the robot 
does not visit any leaf of T~ during this run. Two cases 
are possible: either u~ is a leaf in T~I or u~ is some node 
of degree 3. In the first case we repeat the previous 
part of the construction, simulating the short trip of 
the robot following the second long trip in T by its run 
beginning at u~ and ending at a leaf w~ in T~. In the 
second case we continue the construction of the tree 
T'  by adding the run r[  (with appropriate coloring of 
edges) to the previously constructed part of T ~. Let Ta 
be the principal subtree of T containing the leaf u2 at 
the end of the second long trip in T. At the end of run 
r~ we add an isomorphic copy T~ of T3 in such a way 
that  the leaf u~ corresponding to u2 is the node ending 
run ~ ,  and we reproduce the coloring from T3. (Notice 
that T3 could be equal to 2"1.) 

We need to observe a property that  will be crucial 
for continuing the construction inductively. Let p~ be 
the simple path between w~ and u~. Let ld~ be the 
reverse of path p~. Let z be the last common node on 
these paths. Since there are at least 3K periods of edge 
colors on p~ (and hence also on p~) between the root 
of T~ and the root of T~2, it follows that  z is before the 
middle of p~ (and hence also of p~). Indeed, if it were 
in the second half  of this path,  there would be more 
than K periods before z. Consequently, for some earlier 
period, at the first visit of a node z ~ corresponding to z 
in this period, the robot would be in the same state as 
at the first visit of z. Hence the last common node on 
paths p~ and p~ would be z I rather than z. 

We continue the construction of T ~, adding new 
runs of the robot in the infinite tree (corresponding to 
long trips and to short trips in T) and adding trees T/ 
isomorphic to principal subtrees of T at the end of each 
run corresponding to a long trip. Suppose that  T~, ..., T/t 
are already constructed and that  we start  the ith run, 
corresponding to the ith long trip in T, at a leaf w~ of 
T[ (as before, until hit t ing a node at distance b from 
w~). We must show tha t  this run cannot hit any leaf 
of T~I, "",~/~i-2 because these leaves may be at distances 
other than b from w~, and we could not argue that  the 
state after the ith run is identical to that after the ith 
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long trip in T. This can be shown as follows. Let p~, 
for 1 < j < i, be the simple path between a leaf of 7"~ 
and a leaf of T~+I, corresponding to the j th  run, and let 
p~' be the reverse of this path. Suppose that during the 
ith run the robot hits a leaf in some T~,,, for m < i - 2. 
This means that  ~ deviates from " p~_ ~ at the node t in 
which pi'_ 1 deviates from Pi-~." However, similarly as 
argued before, t is before the middle of ' Pi-1. On the 
other hand, t must be before the middle of p~, hence 
also before the middle of ~" i.e., after the middle of Pi- - l ,  
P~-I, which gives a contradiction. (Notice that the ith 
run may hit a leaf of ~ - 1  but this is not a problem, 
because such a leaf is at distance b from w~.) 

We add as many runs and trees T~ in the above 
described manner as there are long and short trips in 
the operation of the robot in tree T. Suppose that  
after the run corresponding to the last long trip the 

' of tree T[+ 1 in state S*. Consider robot is in leaf u i 
the behavior of the robot in tree T when it is situated 
in leaf u~ finishing the last long trip, and is in state 
S*. The robot traverses some trajectory without ever 
hitting leaves in principal subtrees other than that to 
which ui belongs (i.e., it makes another short trip), and 
then stops at some node. Add an isomorphic copy of 
this final short trip to the tree T' under construction 
(again some nodes of it may be outside of Ti'+l)- Now 

the construction is almost finished. Let T be the tree 
constructed so far. Its maximum degree is 3. Let L be 
the set of all its leaves which are not leaves of any tree 
2r~ (these are nodes in which the robot returned during 
runs corresponding to long or short trips). Let M be 
the set of nodes of degree 2 in T. To each node in L 
add two new neighbors of degree 1, and to each node in 
M add a new neighbor of degree 1. The resulting tree 
is T'. 

The tree 2* is a proper tree with the following 
property: all internal nodes of a run corresponding to 
a long trip in T are of degree 3. Hence, in view of the 
choice of integers a and b, the state of the robot in the 
leaf of T ~ ending a given run is the same as the state of 
the robot in the leaf of T ending the corresponding long 
trip. The definition of the final trajectory (after leaving 
u~) implies that the robot must stop at the end of it. 
However, it did not explore the entire tree T': indeed, 
it only explored the subtree 7 ~, and T r \ T is nonempty 
because either the set L or the set M are nonempty. 
This concludes the proof. 

The following result can be obtained by estimating 
the size of the tree T I (constructed in the above proof), 
which the robot fails to explore with stop. 

THEOREM 3.2. A robot which can explore with stop 
any n-node tree of maximum degree 3 must have 

12(log log log n)-bit memory. 

Proof. We use the notation and terminology from the 
proof of Theorem 3.1. Consider a simple path p~ of 
length b joining two ends of a run r ~ of the robot in T ~, 
corresponding to a long trip in T. 

Claim. During the run r '  the robot is never at distance 
larger than K from the path p~. 

Suppose it is, and let w be a node visited by the 
robot during run r ~, at distance larger than K from the 
closest node v of p~. Consider the state of the robot at 
the first visit of each node on the path q joining v and w. 
There are two internal nodes vl and v2 on q for which 
this state is the same. Let vl be the node first visited 
before v2 and let fl be the distance between vl and vz. 
Since after first visiting vl the robot made progress 
on the path q before visiting the leaf u~ ending p~, after 
first visiting v2 it will make further progress/~ on this 
path before visiting u~ because the state at the first visit 
of Vl and vz was the same. The robot will keep going 
farther from v first on q and then on its extension in the 
infinite tree, before visiting u~. Hence the first node at 
distance b from wl visited by the robot will be outside 
of ~ and hence different from u~, which contradicts the 

t This proves the claim. definition of u i- 
In the same way we can prove that during runs 

corresponding to short trips the robot is never farther 
than at distance K from the closest leaf of the tree T[ 
where this run starts and ends. 

Let T* be the union of all trees T i' and all simple 
paths iv,'. defined during the construction of T'. Attach 
to each node u of degree 2 of T" a new neighbor u' 
and attach to it a complete binary tree of height K + 1 
rooted at u'. Denote the resulting proper tree by T**. 
The above claim and the remark following it imply that 
T** includes T'. 

We now estimate the size of T**. Every path p,'. 
has length b < K + 3 .3KZ(3K)  ax . and every tree T[ 
has size smaller than 2 ~ < 2 b. There are at most K 
paths ~ and at most K + 1 trees T I. The total length 
of all paths is at most Kb and a tree of size at most 
2 K+2 is attached to each of their nodes. Consequently 
the number n = 2( 4K)4~ is an overestimate of the size 
of T** and hence also of 7". Hence a robot with k-bit 
memory, where 2 k = K,  fails to explore with stop some 
tree of maximum degree 3 and of size n = 2 (4K)'K . 
This implies that  in order to explore with stop all n- 
node trees of maximum degree 3, the robot must have 
fl(log log log n)-bit memory. 
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4 E x p l o r a t i o n  w i t h  r e t u r n  

We now turn attention to the most demanding of our 
exploration tasks, when we require the robot to stop at 
the starting node after performing exploration. For this 
task we have a much sharper lower bound on memory 
than for exploration with stop. In fact, even a robot 
specifically constructed for exploration with return of 
an a priori given tree requires logarithmic memory. 

THEOREM 4.1. Let T be any tree of size n. A robot 
which can explore with return the tree T must have 
~2(log n)-bit memory. 

Proof. Suppose that  a robot with k < [log nJ memory 
bits can perform exploration with return in T. Fix any 
node v o f T .  For any node u, let Su be the state of 
the robot at the first visit of v when u is the node at 
which the robot starts. Since the robot has fewer than 
n states, for two different starting nodes ul  and u2 we 
have S~1 = S~2- Hence the part  of the trajectory of 
the robot after the first visit of v is the same, regardless 
of whether it started at  ul  or at u2- Consequently, the 
node at which the robot stops is the same in both cases. 
This cannot be both ul and u2, which contradicts the 
definition of exploration with return. 

As for upper bounds, we present two algorithms. 
The first, Algorithm STACK-0F-PORTS, is a natural 
exploration with return, based on depth-first search. 
The label of the port by which a robot enters a new 
node is pushed on a stack and popped after the last 
visit of the node. 

Algorithm STACK-0F-PORTS. The robot can be in two 
modes: F (forward} or B (backward) and uses a stack 
of integers. 

. The robot starts in mode F in some node v of degree 
d. It pushes a special symbol * on the empty stack 
and leaves v by port 1. 

. When the robot enters an internal node w of degree 
d~ by port i in mode F, it  pushes the integer i on 
the stack and leaves by port (i rood dw)+l.  

3. When the robot enters a leaf it switches to mode 
B and returns to the neighbor of this leaf. 

. When the robot enters an internal node w of degree 
d~ by port i in mode B it compares i to the top of 
the stack. 

(a) If the top of the stack is an integer j and 
i ~ j -  1 mod dw then the robot switches 
to mode F and leaves by port (i rood dw)+l .  

(b) If the top of the stack is an integer j and 
i - j -  1 mod dw then the robot pops the 
stack and leaves by port j .  

(c) If the top of the stack i s ,  and i < d~ then the 
robot switches to mode F and leaves by port 
(i mod d t , )+ l .  

(d) If the top of the stack is , and i = dw then 
the robot stops. 

The height of the stack never exceeds the diameter 
D of the tree and each label uses O(log A) memory bits, 
where A is the maximum degree. Hence we have: 

THEOREM 4.2. Algorithm STACK-0F-PORTS accom- 
plishes exploration with return of  any tree of  diameter 
D and maximum degree A using O ( D l o g A )  bits of  
memory. 

In fact the bound on the memory required by 
Algorithm STACK-0F-PORTS can be slightly improved by 
observing that  the total number of bits in all elements 
simultaneously on the stack is at most O(logex + • .- + 
log ok), where el, ..., ck is a sequence of degrees of nodes 
on a branch of the tree. However, this number of bits 
can still be linear in the size of the tree. This should 
be compared to our main algorithm for exploration 
with return which we present below. It accomplishes 
exploration with return in any n-node tree using only 
O(log 2 n) memory bits. 

We first describe a family of exploration protocols. 
Each protocol is designed for a specific value of the 
number of nodes. A protocol running for any value of n 
while preserving the nice features of this family will be 
presented later. We need the following concepts: 

DEFINITION 4.1. Given a tree T ,  a node s o f T ,  and 
t E {0, 1,...,deg(s)}, the open subtree Ts,t ofT is T 
i f  £ -= O, and it is the subtree of  T consisting of  the 
connected component o f T  containing s after the removal 
of  its incident edge corresponding to port L, otherwise. 

Exploring an open subtree T,.t means exploring T 
from s if £ = 0, and otherwise it consists of the following 
two tasks: (I) explore T,,l from s 0rod return to s, and 
{2) leave s through port L Note that T,.l might be a 
subtree of an unknown tree. Note also that the case 
l = 0 would not need a special treatment if we assumed 
that the expression "leave through port 0" means "stay 
here" (we recall that ports are labeled from 1 to the 
degree of the node}. 

LBMMA 4.1. There exists a family  of  exploration proto- 
cols {£k, k >_ 0}, satisfying the Iollowing properties: 
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1. Ck allows exploration of any n-node open subtree 
T~,t of any unknown tree, for n < 2 k. 

2. When the exploration terminates, the robot reports 
SUCCESS if n < 2 ~, and FAILURE otherwise. 

3. If  the robot reports SUCCESS then it knows n. 

Proof. The construction of the family {£k, k > 0) is 
by induction on k. Let us s tar t  by the description of 
the trivial protocol go. We consider exploration of an 
open subtree T~,t by a robot  ~ .  The case g -- 0 is 
straightforward: if deg(s) = 0, then 7~ reports sUCCESS, 
otherwise it reports FAILURE. The  case g > 0 is not 
much more involved: ~ leaves through port g and 
reports FAILURE if deg(s) > 1 and SUCCESS otherwise. 
It is easy to check tha t  go satisfies all the properties of 
the lemma. 

Let us now assume tha t  we have constructed a se- 
quence £0, £ 1 , . . . ,  £k of protocols satisfying the prop- 
erties of the lemma, and let us construct  the protocol 
£k+1. We will later prove tha t  ,fk+l is correct, i.e., sat- 
isfies the properties of the lemma.  Construction. We 
consider exploration of an open subtree Ts,t. The robot 

can be in three states: EXPLORE, SUCCESS, or FAIL- 
URE. It starts in the state EXPLORE. ~ uses a variable 
number which counts the number of nodes that have 
been visited so far, and a stack p a r e n t  used to store in- 
tegers of variable size. It also uses a variable hop-count  
which counts the distance between s and the current po- 
sition o f / d .  Initially hop -coun t  - 0, number = 1, and 
p a r e n t  is empty. In addition to these variables Td also 
uses a constant  number of  variables to store port-labels. 

We describe the actions o f ~  in s ta te  EXPLORE, and 
currently at node u (possibly u - s). Let p be the 
port through which ~ entered u (p = £ if  u = s). For 
i = 1 , . . . , d e g ( u ) ,  let vi be the neighbor of u connected 
to u by the link corresponding to port i a t  u. Viewing 
T as rooted at u, let T (i) be the subtree of  T rooted at 
v~. 7~ successively tries to explore every T (i} with the 
gj 's ,  j _< k, by increasing order of the index j .  More 
precisely, for every i = 1, ..., deg(u) let qi be the port 
label at vi of the link connecting vi to u. For i - 1 to 
deg(u), including i = p, 7~ does the following. Starting 
from j = 0, and increasing j by one in case of failure, 
repeats (1) move to vi, and (2) explore the open subtree 
T (i)v~,q, with £j. This process is carried on until either 
there is k~ g k for which £1¢~ succeeds (i.e., for which 

comes back to u in the state s u c c e s s ) ,  or all £j 's,  
0 < j < k, fail to explore T(O. When ~ has completed 
the previous operations for each T(0,  it continues as 
follows: 

I1 If, for every subtree T (1), i # p, there is ki < k 

such that  El,, succeeded to explore the open subtree 
Tv (i) then 7~ switches to the s tate  s u c c e s s .  i ) q i  , 

I2 If there is exactly one subtree T (q), q ~ p, for which 
all gj's fail, then 7~ stores q and stays in s ta te  
EXPLORE. 

I3 If  there are at least two distinct subtrees T (q) and 
T (q') , q ~ p and qt ~ p, for which all £ j ' s  fail, then 
7~ switches to the state FAILURE. 

In the three cases, ~ sums the number  of  vertices 
of the subtrees T(1), i # p, whose exploration succeeded 
and adds it to number. If number > 2 k+*, then 
switches to the s tate  FAILURE (if not  yet in tha t  state).  
At this point of the exploration, two cases have to 
be considered, depending on whether ~ is in s tate  
E X P L O R E  o r  not. 

Case I: ~ is in state EXPLORE. In this case, only one 
subtree T (q) of u remains to be explored (7~ failed to 
explore that tree using gk, but exploration with Ck+1 
is potentially doable). Before leaving u, ~ proceeds as 
follows: 

* If  all £j 's, 0 < j < k, fail to explore T(P), or if kp is 
larger (strictly) than all the other kl %, i ¢ q, then 
nothing is stored; 

• Otherwise, let ~q(p) be the number of indices i such 
tha t  either (i) ki > kp, or (ii) kl = kp and i < p. 
The value of vq(p) is placed at the top of  p a x e a t .  

Once this is done, T~ increases hop-carro t  by 1, and 
leaves through port  q, to reach a new node C from where 
the exploration carries on in the same way as it  was 
performed at u. 

C a s e  2: ~ is in state s u c c e s s  or FAILURE. Its objective 
is then to return back to s and to report the success 
or the failure of the exploration. For tha t  purpose, 
moves back along the edge labeled p. ~ will eventually 
return to s by using the information previously stored in 
p a r e n t .  We describe bellow how this process is carried 
out. 

Assume tha t  7~ enters a node u via port  q, in s tate  
suCCESS or FAILURE, with hop-eounl;  ¢ 0. :~ tries to 
compute the port  p leading toward s. For tha t  purpose, 

repeats the same process as when :R entered u in 
the s tate  EXPLORE. In particular, ~ re-explores the 
subtrees rooted at  u's neighbors. Again, viewing T 
as rooted at u, let T 0) be the subtree of T rooted at 
u's neighbor vi, i = 1 , . . . , d e g ( u ) ,  and let qi be the 
port label at vi of  the link connecting vl to u. For 
i = 1 . . . .  , deg(u), i # q, ~ does the following. Start ing 
from j = 0, and increasing j by one in case of failure, 
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7~ repeats (1) move to vi, and (2) explore the open 
subtree T(i)- o~,q, with £j.  This process is carried on until 
either there is ki < k for which ~k, succeeds, or all Ej's, 
0 < j < k, fail to explore T (1) . 

The index p is then obtained as follows: 

• If there exists i ¢ q such that  all gj 's ,  0 < j < k, 
fail to explore T (i) , or if there exists i ¢ q such that 
ki is larger (strictly) than all the other kj 's, j ¢ q, 
then p = i; 

• Otherwise the integer v at the top of  paxenl; is 
popped out, and p is such that  vq(p) = v. 

Once p has been identified, 7~ decreases hop-count 
by 1, and leaves through port  p. 

When hop-coun t  = 0, :R leaves through port  £ to 
report the success of the exploration together with the 
total number of nodes of the open subtree T~,t if it is in 
the state s u c c e s s ,  or the failure of  the exploration, if it 
is in the state FAILURE. This completes the description 
of ~k+a. In the remaining, we show that this protocol 
satisfies the properties of the lemma. 

Proof of correctness. If Te,t has at most 2/¢ nodes, 
then all explorations of open subtrees rooted at the 
neighbors vi's of s, i 5~ £, will succeed for some ~k~, 
ki < k. Therefore, ~k+1 will also succeed in this case by 
application of I1. 

If 2 k < n < 2 k+1, then, since £k explores all 
trees of size at most 2 k, 7~ can only apply I1 or I2 
at s. If 12 is applied, 7~ moves to the root of the yet 
unexplored tree. ~ proceeds in this way until it reaches 
a node u* in which every open subtree "r'(1) i ~ p, 
will be successfully explored by some Eke, hi < k. This 
will eventually occur because every t ime the robot goes 
"down" through the yet unexplored tree, the number 
of nodes of the tree currently explored decreases by at 
least one. Since all open subtrees T~v~?q,, i ~ p, of u* 
have been explored, all nodes of the open subtree Ts,z 
have been visited. At u* the robot applies I1 and enters 
s tate SUCCESS. 

If n > 2 ~+~ , then 7~ will eventually reach a node u* 
where either two subtrees cannot be explored with £~ 
or the total number of nodes visited so far exceeds 2 TM. 
In the former case, the robot  applies I3 and enters state 
FAILURE. In the latter case, since number > 2 ~+~, the 
robot  enters state FAILURE a~ well. 

It remains to check that  the robot  returns to s from 
u,,  and then from s moves through link L 

When I1 or I3 is executed, 7~ still knows the label 
p of the port  leading to s, and the protocol specifies 
that  ~ leaves through that port. Now, let u be the 
current position of 7~, and assume that  ~ entered u 
through port  q. 7~ tries to find the port  p leading to 

s by re-exploring the open subtrees T (i) rooted at u's 
neighbors. Since I2  was applied in u when 7~ was in 
state EXPLORE, there is at most one open subtree T (i) 
distinct from T (q} whose exploration may fail with £~. 
Indeed, T,,t is an open subtree of an unknown tree that  
can be arbitrarily large, and hence exploring T (p) may 
fail. However, when 7~ was in state EXPLORE, it was able 
to explore all the other open subtrees T (i), i ~ {p, q}, 
each with some Eke, ki < k. From these remarks, it is 
easy to check that  p can be determined either by using 
some asymmetry {i.e., exploring T (p) fails, or kp is the 
largest of all ki's) or simply by reading its index when 
ports are sorted according to the ki's. Since 7g increases 
(resp. decreases) hop-eoun~ by one at every move away 
from (resp. towards) s, "h~ is back at s when h o p - c o u n t  
= 0. This completes the proof of the first property of 
the lemma. 

The second property follows directly from the fact 
that if number > 2 TM then 7~ enters state FAILURE. 

If 7~ returns to s in the state SUCCESS, then the 
whole tree has been explored, and the number of nodes 
has been accumulated in the variable number. Thus 
the third property is also satisfied, which completes the 
proof of the [emma. 

We are now ready to present our main algorithm of 
exploration with return. Given the family {gk, k > 0} 
described in Lemma 4.1, our protocol can simply be 
described as follows. 

Algorithnx EXPLORE. The robot starting at node s of a 
tree T successively executes ~k, k = 0, 1,..., until there 
is a k for which it returns to s in the state success. 
Then it stops. 

THEOREM 4.3. Algorithm EXPLORE accomplishes ezplo- 
ration with return of  any n-node tree using O(log 2 n) 
bits of memory. 

Proof. By Lemma 4.1, if k = [log2n], then Ek com- 
pletes exploration with return of T. It  remains to show 
that  EXPLORE requires O(log 2 n) bits  of memory for n- 
node trees. 

Assume that  ~k uses Mk bits of memory,  and 
compute the memory  requirement for Ek+l. First, ~ + 1  
reserves Mk bits of memory for the execution of  the  
gj 's ,  j _< k. In addition to that,  g~+l makes use of two 
counters (number and hop-count ) ,  each on k + 1 bits  
since £k+1 does not  count more than 2 k+l nodes, and 
does not explore further than 2 k+l hops away from the 
initial position s. gk+l makes also use of a constant  
number of  integers to store the labels of ports: e.g., the 
incoming port, the outgoing port,  the label of the open 
subtree currently under consideration, etc. Since labels 
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are between 1 and the degree of the nodes, all these 
integers are on [log 2 n] bits. The storage of kp (if the 
exploration of T (p) succeeded) requires O(logk) bits, 
and the computation of Uq(p) requires O(logk) bits as 
well. The remaining part of the memory is used to store 
the stack paren t .  Assume that the stack stores indices 
t ,1, . . . ,  t'r as follows: we use two boolean strings, both 
of E~=I [l°g2 vii bits. One is just the concatenation 
of the binary expressions of the vi's, and the other 
indicates the separations between two successive vi's. 
From the specifications of ~:k+t, an index vi is placed 
in the stack pa ren t  every time there exists at least one 
index j ~ {p, q} such that  kj >_ kp. More precisely, if vi 
is stored, then there are at least Pi = max{vi, 2} indices 
j for which kj > kp. Each such index corresponds to 
a subtree of size at least 2 k-- t ,  while T (p) is of size at 
most 2 k~. Hence, if T \ T (q) is of size N, then T(P) is 

2N Therefore, rlr ~ < 2 k+l, and of size at most u--7~" --i=1 2 - -  

hence ~--]r=t[log 2 ui] : O(k). Thus the stack pa ren t  
requires O(k) bits to be stored. In total, we have 

Mk+t = M~, + O(k) + O(logn) = O(k(k + logn)). 

Since Algorithm EXPLORE involves £:t~ for k <_ [log s hi,  
we get that  its memory requirement is at most 
O(log 2 n), which completes the proof. 

5 Conclusion 

The following table is a summary of our results. It gives 
upper and lower bounds on memory size (in # of bits) of 
a robot for three types of exploration (perpetual, with 
stop, with return) of a tree on n nodes, with maximum 
degree A. The upper bound for exploration with stop 
assumes that the robot knows an upper bound m on 
the number of nodes of a given degree. Without this 
knowledge, the best we know is performing exploration 
with return, using O(log 2 n) memory bits. 

Exploration Upper Bound Lower Bound 
Perpetual O(log A) flog A] 
(with) Stop 
(with) Return 

O(log A + log m) 
O(log z n) 

n(log log log n) 
l~ (log n) 

The table shows two interesting open problems. 
Firstly, what is the exact complexity in terms of memory 
bits of exploration with return? Secondly, can we 
perform exploration with stop using stricly less memory 
space than exploration with return? 
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