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Abstract—In this paper we propose a Virtual Round Robin 
(VRR) gateway algorithm to enforce per-flow fair bandwidth 
allocation by keeping per-flow information. This mechanism 
achieves reasonably fair bandwidth allocation and is easily 
amenable to high-speed implementations.  It uses a single FIFO 
queue with probabilistic drop-on-arrival. In our simulation 
study, we compare the performance VRR with other two 
algorithms, Random Early Detection (RED) and Flow Random 
Early Drop (FRED) [2]. Our simulation results show that VRR 
outperforms RED and FRED in wide variety of scenarios. 

Keywords-Bandwidth Allocation; Congestion Control; Gateway 
Algorithm;  

I.  INTRODUCTION  
    Mechanisms that can fairly allocate bandwidth in the 
gateways can provide end users an incentive to be adaptive to 
network congestion and are critical for Internet congestion 
control [6][7]. An approach for the gateway would then be to 
use per-flow queuing and scheduling[4][9]. This approach can 
ensure fairness, but it does not scale well considering that 
many flows pass through an Internet gateway. To reduce the 
complexity and increase efficiency, the IP gateways usually 
use a single first-in first-out (FIFO) packet queue shared by all 
flows. They provide feedback to senders by discarding packets 
under overload. Random Early Detection (RED)[1][5] uses 
randomization to ensure that all connections encounter the 
same loss rate. However, this equal drop probability does not 
lead to equal bandwidth share. Another approach is to use per-
flow information, not per-flow queueing and scheduling 
[2][3]. This approach uses single FIFO queue for packets from 
all arriving flows, but counts the number of arriving/departing 
packets of each active flow, and calculates its buffer 
occupancy. This per-flow information is used to differentiate 
dropping probability among connections. Flows with different 
buffer occupancy have different drop probabilities. Flow 
Random Early Drop (FRED) [2] is the example of this 
approach. This approach has considerable less complexity than 
the implementation of per-flow queuing and scheduling, thus 
provides an intermediate solution between RED and per-flow 
queuing.  

We present a gateway algorithm that provides fair 
bandwidth allocation to the different flows passing through the 
gateway. The proposed scheme, Virtual Round Robin (VRR), 
applies different drop probability to each flow by looking at its 
state so that each flow is serviced with its fair share and excess 

packets are dropped. This mechanism achieves reasonably fair 
bandwidth allocation. As shown in the simulations, VRR can 
achieve better fairness than FRED. It also has similar 
complexity as FRED and is easily amenable to high-speed 
implementations. It uses a single FIFO queue with probabilistic 
drop-on-arrival; when a packet arrives either the packet is 
dropped or placed on a FIFO queue. The dropping decisions 
are simple with )1(O  complexity. Contrasting with FRED, the 
per-flow states of VRR are not the actual buffer occupancy of 
each flow, but the virtual buffer occupancy of each flow as if 
all flows were serviced in fair round robin fashion. The 
gateway algorithm VRR is given in section 2. The algorithms 
of making drop decision upon packet arrival and of flow states 
management are introduced. In section 3, the simulation results 
analysis and performance evaluation are presented. We 
compared the performance of VRR under a variety of scenarios 
to two other gateway algorithms: RED and FRED[1][2]. 

II. VIRTUAL ROUND ROBIN (VRR) 
In VRR, the gateway can recognize packets from different 

flows. All packets accepted will be enqueued to a single FIFO 
queue. However, the number of packets accepted from each 
active flow is accounted.  For each flow, VRR maintains two 
per-flow variables, iqlen  and istrike . iqlen  represents the 

virtual buffer occupancy of flow i  and istrike  indicates 
whether flow i  is responsive to congestion. The per-flow 
state  iqlen s of VRR are not the actual buffer occupancy of 
each flow, but the number of buffered packets as if all flows 
were serviced in fair round robin fashion. The value of iqlen  is 
decrease with the fair share rate of flow i , and is increased 
when the packets from flow i are accepted. Thus, the value of 

iqlen  represents the size of sub-queue i  as if all the flows 
have their own sub-queue and are serviced in a round-robin 
fashion. Although all the packets are actually serviced in single 
FIFO queue, the drop probability of flow i is calculated based 
on the value of iqlen . Thus, this VRR gateway will have the 
same drop behavior as the gateway with per-flow queueing and 
scheduling. Since all the packets accepted will be eventually 
transmitted, the bandwidth distribution is actually determined 
by how the packets get dropped. This algorithm can achieve 
similar performance as gateway algorithms with per-flow 
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scheduling in bandwidth allocation, but with significantly less 
complexity. 

A. Packet Drop algorithm for VRR 

thmin : minimum threshold of RED 

thmax : maximum threshold of RED 
pmax : maximum dropping probability of RED 

qw : the weight of Exponential Weighted Moving Average  

limq : Buffer size 

qmin_ =4: the minimum value of iqlen without packet loss 
Global Variables: 
qlen: total queue size  
avg : the average of qlen 

Flowmax : index of the virtual queue that have the 
       most buffered packets 
Nact : No. of active flow 
Per-flow Variables: 

iqlen : virtual queue size of flow i  

istrike : if the value is 1, flow i  can have no more than 

 qmin_  packets buffered 
For each arriving packet from flow i : 
Calculate the avg ; 
Compute the drop probability P  based on RED algorithm; 
//when buffer overflow, mark the flow with most packets 
buffered as unresponsive 
if ( avg≥ thmax || qlen ≥  limq )    

 Flowstrikemax  = 1; 

if ( iqlen ≤MAX( qmin_ , 
Nact

thmin
)) 

 Accept the packet from flow i ; 

//unresponsive flow is not allowed to buffer more than 
Nact

thmin
 

packets 
else if ( istrike ==1)  
 drop the packet; 
else      //operating in random drop mode 
 drop the packet with the probability P ; 
 

B. Algorithm for updating the value of iqlen  

In VRR we decrement the value of iqlen s in a round-robin 

way when the packets are serviced, so that the iqlen  will be 
the supposed number of buffered packets of  flow i  if the 
packets from each flow are dequeued in a fair round-robin 
way. We do this by keeping an ActiveList, which is a list of 
indices of non-zero iqlen . The algorithm is: 

Whenever a packet from flow i  is accepted and enqueued: 

iqlen ++; 

if ( iqlen ==1)  // flow i is a new active flow 
 append i  to the end of ActiveList; 
 
whenever a packet dequeued : 
let k  be the first element of ActiveList; 

kqlen --; 

remove the k  from ActiveList 
if ( kqlen >0) 

 append k  to the end of ActiveList; 
else discard k ; 

III. SIMULATIONS 
    We evaluate the performance of VRR by simulations in ns2 
[8]. As a benchmark, we compare the performance of this 
gateway algorithm to RED and FRED. All data packets in our 
simulations are 1000 bytes. To set the parameters of RED, we 
follow the guideline from [10]. The  is set to 30 packets and  is 
three times . The  is set to 0.002 and the value of  is set to 0.1. 
All the RED gateways have the buffer limit of 200 packets. 
The VRR and FRED have the same parameters as in the RED 
setting above, except that the of FRED and  of VRR are 4 as 
recommended in [2].  
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To evaluate the performance, we measure the average 

throughput of each flow in all our simulations. In some cases, 
we also calculate the Jain’s fairness index [11] to measure how 
effective different gateway algorithms can fairly allocate the 
bandwidth among flow. The fairness index F is defined as: 
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Where ib  is the throughput of flowi and N  is the total 
number of active flows in the gateway. 
 

A. Flows with different sending rates 
    In this experiment, we test the performance of gateway 
algorithms when flows with different arrival rate compete at 
the bottleneck link as in the topology in Figure 1. Under an 
ideal algorithm, the bandwidth achieved by each flow should 
be no more than its fair share rate no matter its sending rate. 
The excess packets from the flow that has higher arrival rate 
than its fair share will be dropped in the gateway and the flows 
with a sending rate less than their fair share should experience 
no packet drop. In this experiment, we have 10 UDP flows, 
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indexed from 0 to 9. The sending rate of the first flow is the 
1Mbps, which is equal to fair share rate, and every subsequent 
flow sends at a rate 0.2Mbps higher than the previous flow. 
Thus flow 0 transmits at 1.0 Mbps, flow 1 transmits at 1.2 
Mbps, and the last flow transmits at 2.8 Mbps.  
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   Figure 3. Bandwidth of TCP flows       Figure 4. TCPs with different RTT 

  with different sending rate                            (E(u), mean of u) 
 
Figure 3 summarizes the bandwidth share of each flow gotten 
when different gateway algorithms are used in the bottleneck 
link. VRR has the best performance in this scenario. Each flow 
got exactly its fair share and well-behaved flow0 suffer no 
packet loss because it sends packets at its fair share rate.  On 
the contrary, bandwidth share of each flow is proportional to 
its sending rate with RED. FRED is much fairer than RED, all 
the flows receive roughly their fair share. However, the 
throughputs of high sending rate flows are still slightly higher 
than low sending rate flows. The throughput of flow0 is 
0.94Mbps in FRED gateway. That means flow0 suffered 6% 
packet drop rate even though it sends at its fair share. 
 

B. TCP flows with different RTT 
    In this experiment we show the effectiveness of gateway 
algorithms to protect the TCP flow with large round-trip delay. 
In this simulation we let n TCP flows traverse the gateway, 
where flow0 has long RTT(100ms) and the other flows have 
short RTT(4ms). Because the TCP’s bias against the large 
RTT flows, flow0 normally get less throughput compared to 
the other flows. We measure u , the difference between long 
RTT TCP bandwidth and average low RTT TCP bandwidth, 
where  
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n is the number of TCP flows, and iB is the bandwidth of 
flowi. In an ideal case, the flow0 with less throughput has low 
drop probability and its throughput increases. So the value of 
u  should be small. Under VRR and FRED, each simulation is 
repeated 20 times and the mean value of u , E[u], are 
computed. As shown in the Figure 4, the mean value of u  in 
VRR is always smaller than in FRED. However, flow0 still 
gets less throughput than other flows under VRR even though 
VRR adopt a fair round-robin fashion to decrease iqlen  so 

that each flow that has non-zero value of iqlen  should obtain 
its exact fair share. This is because the TCP flow’s sending 
rate is fluctuating while the size of congestion window is 
changing. For certain period of time, its sending rate is less 

than its fair share and iqlen  becomes zero. When iqlen  

becomes zero, the value of iqlen  cannot be decreased and 
flowi will miss its round. From the point of view of gateways, 
this flow temporarily becomes inactive and cannot claim its 
share of bandwidth. For all the active flows, the fairness is still 
maintained.  
 

C. Mixture of TCP flows and UDP flows 
    In the first experiment we show the impact of one non-
adaptive UDP flow on a set of adaptive TCP flows. In this 
simulation, there are 5 flows traverse the bottleneck link. We 
assume that flow 0 is running non-adaptive UDP while the rest 
of the flows are adaptive TCP connections. The simulation 
results are shown in Figure 5.1-5.3. As we can see in Figure 
5.1, RED has no control over non-adaptive flow when it 
competes to adaptive TCP flows. The higher sending rate the 
CBR flow has, the more bottleneck bandwidth it can obtain. 
The other TCP flows can only share the leftover bandwidth. 
With the growth of CBR sending rate to the link rate, TCP 
flows get very little share.  
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   Figure5.1 Flow bandwidths (RED)       Figure5.2 Flow bandwidths (FRED) 
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   Figure5.3 Flow bandwidths (VRR)          Figure 6 A TCP competing with 
                                                                                  multiple UDP 
    Comparing to RED, other active queue management 
schemes in our experiment can all effectively prevent the non-
adaptive flow from taking all the bottleneck bandwidth. In 
VRR, the CBR flow may get higher bandwidth than TCP 
flows when its sending rate is higher than 2Mbps as seen in 
Figure 5.3. However, comparing to Figure 5.2, the 
performance of VRR is still better than FRED in this scenario. 
Under VRR flow0 can get no more than 2.3Mbps throughput, 
which is 15% more than its fair share. Under FRED flow0 will 
achieve 2.9Mbps throughput, which is 45% more than its fair 
share. 
    In the following experiment, we measure how well the 
algorithms can protect a single TCP flow against multiple non-
adaptive UDP flows. We consider experiments involving N  
flows, 102 ⋅⋅⋅=N . Out of these we assume 1−N  UDP 
flows and one TCP flow for each experiment. Each UDP 
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sends at twice its fair share rate of 
N
10

Mbps. Figure 6 plots 

the ratio between the average bandwidth of the TCP flow and 
the fair share bandwidth it should receive. VRR has the best 
performance across the entire range; TCP flow can achieve its 
ideal fair share. In RED, TCP flow is completely shut out by 
the non-adaptive flows and obtains no bottleneck bandwidth. 
FRED can also protect the TCP flow effectively from being 
shut out. However, it is harder for TCP flow to get its fair 
share under FRED as the number of competing UDP flows 
increases. In case of 9 competing UDP flows, the TCP flow 
only achieves 46.4% of its fair share.  
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    Figure 7. Mix of 9 TCP flows and           Figure 8. Fairness index of each  

   3 UDP flows                                     20ms period for mix traffic 
 

D. Mixture of heterogeneous flows 
    This experiment has a mix of TCP and CBR UDP flows. 
There are 9 TCP flows and 3 CBR flows. The TCP flows have 
different round-trip times; the first 3 TCP have round-trip 
times close to 20ms, the next three have RTTs around 40ms, 
and the last three have RTTs around 60ms. The CBR flows, 
with flow numbers 9, 10, 11, have sending rate of 5 Mbps, 3 
Mbps and 1Mbps respectively. Figure 7 shows the bandwidth 
of each of the 12 flows with RED, with FRED and with VRR. 
With RED, the high-bandwidth CBR flows get almost all the 
bandwidth, leaving little for the TCP flows. All the flow 
experience the same loss rate, so the flows with higher sending 
rate will achieve higher bandwidth. As seen in Figure 7, under 
RED flow9 gets 4.7Mbps bandwidth which is close to its 
5Mbps sending rate. Both VRR and FRED are able to restrict 
the bandwidth received by the CBR flows to near the fair 
share. However, with VRR all the flows have a more evenly 
distributed bandwidth share. 
    In a subsequent simulation, we compare the performance of 
VRR when the traffic rates are randomly changing. We use the 
same traffic combination as above. We assume intervals of 20 
seconds each. During each interval a flow has 60% probability 
to transmit. We run FRED and VRR as gateway algorithms 
and compute the fairness index of each 20s time interval. As 
shown in figure 8, the fairness index of VRR is consistently 
higher that that of FRED. Also the value of fairness index 
under VRR is much smoother than the one under FRED. The 
average value of fairness index of VRR is 0.986, and 
confidence interval is [0.981, 0.991] The average value of 
fairness index of FRED is 0.848, and confidence interval is 
[0.822, 0.874] 
 

E. Multiple congested links 
    We now analyze how the throughput of a well-behaved 
flow is affected under different gateway algorithms when the 
flow traverses more than one congested link. The simulations 
are performed based on the topology shown in Figure 2. 
Except the flow from the sender to receiver, all flows are 
2Mbps UDP flows. The capacity of each link in the system is 
10 Mbps, and each link between gateways has 9 UDP flows at 
2 Mbps sending rate. This will cause all links between 
gateways being congested.  
    In the first simulation, we let a UDP flow sending at its fair 
share rate of 1Mbps from Sender to Receiver. In an ideal case, 
this flow should suffer no packet loss and have all its traffic 
forwarded because it sends at its fair share. Figure 9 shows the 
fraction of UDP flow that is transferred versus the number of 
congested links. VRR has the best performance in this case. 
With the increase of the number of congested links, the 
throughput of well-behaved UDP flow is always close to its 
fair share bandwidth. FRED also performs significantly better 
than RED. The VRR outperforms the FRED in the entire 
range in Figure 9. When the number of congested links is 10, 
the well-behaved UDP flow under FRED achieves only 82% 
of its fair share, while under VRR it obtain its full fair share. 
There is an 18% difference in bandwidth sharing between 
FRED and VRR in this case. 
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Figure 9 A well-behaved UDP flow         Figure 10 TCP flow traversing 
Traversing multiple congested links             multiple congested links 
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Figure 11 Cumulative fraction of              Figure 12 average web transfer 
           web transfer delay                            over multiple congested links 
 
    In another simulation, we show the behavior of TCP flow 
traversing multiple congested links. We use the same topology 
as in Figure 2, and send a FTP flow from sender to receiver 
instead of a UDP flow. In an ideal gateway, this test flow 
should experience very little packet loss at every congested 
link when its arrival rate is lower than its 1Mbps fair share. 
And this low drop rate will allow the TCP congestion window 
of this connection grow, so this flow can achieve its 1Mbps 
fair share throughput. The actual throughput of test TCP flow 
under different algorithms is shown in Figure 10, when TCP 
flow traverses multiple congested links, its throughput 
decreases in all gateway algorithms with the number of 

IEEE Communications Society 0-7803-8533-0/04/$20.00 (c) 2004 IEEE1144



congested links because its packets are more likely to be 
dropped. As an extreme case, TCP flow gets completely shut 
down when the congested gateway uses RED. Under FRED, 
the throughput the TCP flow decreases significantly with the 
number of congested links increase. VRR outperforms FRED 
over all range. Under VRR, flow0 achieve 78.3% of its fair 
share when flow0 traverse 10 congested links, it achieves 
78.3% of its fair share under VRR and only 5.9% under 
FRED.  
 

F.  Short-lived web transfers 
    In this simulation we assess the performance of VRR with 
short-lived web traffic. Short-lived web flows spend 
significant amount of time in the slow start phase, so they send 
at low rate most of the time. A fair gateway algorithm should 
be able to reduce the loss rate of web traffic and allow the 
short flow to finish sooner. The background traffic in the 
simulation is the mix of long lived FTP flows and 
unresponsive UDP flows.  There are 9 FTP flows with 
different RTT and 3 CBR flows with 5Mbps, 3Mbps, and 
1Mbps sending rate respectively. In addition, we consider 600 
web-objects transfer with average of 20 packet per web-object 
to transfer. We use the built-in web-traffic model in NS. The 
competing flows starts randomly within the initial 5s of 
simulation while the web-traffic start after 50s. We record the 
object transfer delays for each web transfer. Figure 11 is the 
cumulative distribution of transfer delay of web-traffic under 
different gateway algorithms. Both FRED and VRR can 
reduce the loss rate of web traffic compared to RED. So the 
transfer delay is smaller in these two algorithms. The results 
are summarized in Table below: 

Algorithm Transfer delay Std. dev Loss rate 
RED 2.1123 2.8882 5.36% 

FRED 0.6344 0.3997 0.84% 
VRR 0.5976 0.3011 0.52% 

 
    Because the loss rate in VRR is less than in FRED, the 
transfer delay under VRR is less than under FRED. 
As the experiment above shown, both FRED and VRR can 
protect low bandwidth web-transfer flow. So this two 
algorithm can reduce the transfer delay of short web traffic. 
We now study the performance of these algorithms when the 
web connections traverse multiple congested link. We use the 
topology of Figure 2. Each congested link has 10Mbps 
capacity and 10 FTP background connections. The short web-
traffic connections start after 50s simulation time from the 
sender to receive. Each simulation is repeated 5 times and the 
mean loss rate and transfer delay are the average of all 
simulations. We record the average object transfer delay for 
web transfers in figure 12. As shown in the figure 12, as the 
number of congested links increase, the mean transfer delays 

are increasing. This is because the packets from web-traffic 
are more likely to be dropped when they go through multiple 
congested links. Under VRR the average transfer delays of 
web traffic are smaller than FRED in all range of figure 12. 
This shows that VRR has better protection of low bandwidth 
flows than FRED. 

IV. CONCLUSION 
We have suggested VRR, a gateway algorithm that enforce 

fairness among active flows by differentiate their drop 
probabilities according to the flow. This approach is suitable 
for high-speed implementations because it use a single FIFO 
queue for all incoming packets with probabilistic drop-on-
arrival. It can allocate bandwidth fairly and  has similar 
complexity as FRED.  

The performance of VRR is compared with RED and 
FRED in our simulation studies. In all cases, VRR and FRED 
achieve significant performance improvement over RED 
because of extra flow states used. With the same complexity as 
FRED, VRR outperform FRED 
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