
Mobile Agent Rendezvous in a Ring

Evangelos Kranakis
�

Danny Krizanc
�

Nicola Santoro
�

Cindy Sawchuk
�

Abstract

In the rendezvous search problem, two mobile agents
must move along the � nodes of a network so as to min-
imize the time required to meet or rendezvous. When the
mobile agents are identical and the network is anonymous,
however, the resulting symmetry can make the problem im-
possible to solve. Symmetry is typically broken by having
the mobile agents run either a randomized algorithm or dif-
ferent deterministic algorithms. We investigate the use of
identical tokens to break symmetry so that the two mobile
agents can run the same deterministic algorithm. After de-
riving the explicit conditions under which identical tokens
can be used to break symmetry on the � node ring, we derive
the lower and upper bounds for the time and memory com-
plexity of the rendezvous search problem with various pa-
rameter sets. While these results suggest a possible tradeoff
between the mobile agents’ memory and the time complexity
of the rendezvous search problem, we prove that this trade-
off is limited.

1 Introduction

The rendezvous search problem for mobile agents is a
search optimization problem based on the following ques-
tion:

How should two mobile agents move along the �
nodes of a network in order to minimize the time
required to meet or rendezvous?

Yu and Yung[23] note that the activities of mobile agents
may lead them to networks where, due to faulty nodes,
incompatibile naming conventions, or a refusal to provide
IDs, the host nodes cannot be uniquely and globally iden-
tified. Such problems increase the difficulty of the ren-
dezvous search problem. For example, when the nodes in
a network are uniquely numbered, the rendezvous search
problem is trivial since identical mobile agents can ren-
dezvous at the node with the lowest identification number.
The problem is more difficult if the nodes of the network
do not have unique identifiers and becomes even harder if

there exists no globally fixed orientation or sense of direc-
tion [14].

Algorithm designers typically break symmetry in the
rendezvous search problem either by using randomized al-
gorithms or by having the mobile agents use different deter-
ministic algorithms. (See [1] to [8], [10] to [12], [15],
and [17] to [23]). In fact, Yu and Yung [23] prove that the
rendezvous search problem cannot be solved on a general
graph if the mobile agents use the same deterministic algo-
rithm. While Baston and Gal [11] mark the starting points
of the players, i.e., mobile agents, they still rely on random-
ization or different deterministic algorithms when solving
the rendezvous search problem.

Rather than using randomized algorithms or different de-
terministic algorithms for various mobile agents, we want to
explore how symmetry can be broken with identical tokens.
While these tokens are similar to the marked starting points
of Baston and Gal [11], we assume that the mobile agents
participating in the rendezvous search problem all run the
same deterministic algorithm.

1.1 The Network Model

Our model consists of two identical mobile agents that
are ������ nodes apart in an anonymous, synchronous, and
possibly oriented � node ring. An oriented ring is defined
as a ring where all the mobile agents on nodes in the ring
share a common orientation, i.e., they agree on the direction
considered to be clockwise. A given node requires only
enough memory to host a token and at most two mobile
agents. Each mobile agent, 	�
 , owns a single identical
stationary token, i.e., the tokens are indistinguishable and,
once they are positioned in the ring, they cannot be moved.
A token or 	�
 at a given node is visible to all 	�
 s on
the same node, but is not visible to any other 	�
 s. The
	�
 s follow the same deterministic algorithm and begin
execution at the same time.

Memory permitting, a 	�
 can count the number of
nodes visited, the number of nodes between tokens, or the
total number of nodes in the network. In addition, a 	�

might already know the number of nodes in the network,
the number of nodes to the nearest token, or some other
network parameter and requires sufficient memory to store

1

this information. Since the 	�
 s are identical, they face the
same limitations on their knowledge of the network.

Rendezvous occurs when the 	�
 s either meet on a net-
work node or simultaneously cross the same network link
while moving in opposite directions. While we are aware
of the problems that arise from the latter definition of ren-
dezvous, we defer the study of these problems to a later
date. Note that when the number of nodes in the network is
odd, rendezvous occurs on a node but when the number of
nodes is even, rendezvous occurs on a network link.

We assume that rendezvous occurs as soon as possible
after the 	�
 s begin travelling in opposite directions, i.e.,
one 	�
 moves clockwise around the ring, while the other
	�
 moves counterclockwise.

1.2 Our Contribution

In this paper, we study the rendezvous search prob-
lem for two identical 	�
 s in an anonymous, synchronous,
and possibly oriented � node ring. Rather than using ran-
domized algorithms or different deterministic algorithms to
break symmetry, we use identical stationary tokens to break
symmetry so that the 	�
 s can run the same deterministic
algorithm.

For example, consider an anonymous, synchronous and
oriented ring with ��� �

nodes where two identical 	�
 s
are located ����� node apart. If the 	�
 s simultane-
ously run the same deterministic algorithm, they will not
rendezvous since they move in the same direction, at the
same speed, and at the same time. Rendezvous is guaran-
teed, however, if each 	�
 has an identical stationary token
that it leaves at its respective starting node. The algorithm
directs each 	�
 to walk until a token is reached, reverse di-
rection, and continue walking. Rendezvous will occur after
each 	�
 has walked at most three nodes.

Consider another example where ����� is even and
�	��
 . Identical tokens cannot be used, in the manner
described above, to break symmetry in this case and thus
rendezvous is impossible. Our first result is the generaliza-
tion of this example, i.e., when ��� � � it is impossible to
construct an algorithm that uses identical stationary tokens
to break symmetry and thus solve the rendezvous search
problem.

Having established when identical stationary tokens can-
not be used to break symmetry, we then consider the ren-
dezvous problem where �� � � . Each 	�
 places its iden-
tical stationary token on its respective starting node in the
ring and begins to walk around the ring at the speed of one
node per unit of time. The 	�
 s know that the network is a
ring but they do not necessarily know � , � , whether �� � � ,
or the orientation of the ring.

In Table 1, we show the upper and lower bounds on the
time complexity necessary for a rendezvous between two

Known Lower/Upper Memory
� � ������� ����� � Bound Required
Y Y Y � ����
 ���! #"%$ �'&
Y Y N � �'�(
 , � ����
 ���) *"($ �+&
Y N Y � �-, �'&.�(
 ���) *"($ �/&
Y N N � �-, �'&.�(
 ���) *"($ �/&
N Y Y � ����
 ���! #"%$ �'&
N Y N � �'�(
 , � ����
 ���) *"($ �+&
N N Y �0,1� ����
%& ���) *"($ �/&
N N N �0,1� ����
%& ���) *"($ �/&

Table 1. Time Complexity for Rendezvous
Search Problem with Two Mobile Agents at
Distance �� � �

mobile agents that use identical stationary tokens and know
that �2 � � . If only one value appears in the Lower/Upper
Bound column, then the bound is tight. Otherwise the lower
bound precedes the upper bound. While the calculation of
the lower bounds assumes that the 	�
 s have unbounded
memory, the calculation of the upper bounds assumes the
amount of memory listed in the last column of Table 1.

As Table 1 indicates, if the 	�
 s know � , then the lower
bound on the time complexity of the rendezvous search
problem is 354� . If � is unknown but � is known, the lower
bound on the time complexity increases to ��6 4� . If both �
and � are unknown, however, then the lower bound on the
time complexity increases to �0,74 � .

To calculate the upper bounds on the time complexity,
we present four solutions to the rendezvous search problem
when �7 � � and identical stationary tokens are used to
break symmetry. These solutions, with one exception, prove
that the lower bounds in Table 1 are tight. The exception
occurs when � is known but the orientation of the ring is
unknown. The lower bound on the time complexity is 354�
but the corresponding upper bound is 8 4� .

While the results in Table 1 assume that the 	�
 s know
�0 � � , the solutions can be easily changed so that the 	�
 s
stop if ��� � � . It merely requires that each M
 have mem-
ory ���! #"%$ �/& . The last row in Table 1 represents the case
where the 	�
 s do not know � , � , or the orientation of
the ring. The solution used to calculate the upper bound
requires ���) *"($ �/& memory and 8 �9 time. In Algorithm 1,
we present another solution for the case where the 	�
 s do
not know � , � , or the orientation of the ring, but this so-
lution requires ���! #"%$: *"($ �/& memory and ��� �<; =.> �; =.>�; =?> � & time.
While Algorithm 1 suggests that the 	�
 s’ memory com-
plexity can be reduced at the expense of a solution’s time
complexity, we prove that if the 	�
 s do not know � , � , or
the orientation of the ring, then an algorithm that solves the
rendezvous search problem when �� � � and stops other-

wise requires � �! #"%$ #"%$ �/& memory.
This result, plus the upper bounds stated earlier, implies

that solving the rendezvous search problem when the 	�
 s
have only ������& memory requires a change in the model.
Suppose that the tokens are no longer stationary, i.e., any-
time a 	�
 encounters a token, it can move the token to
an adjacent node. Algorithm 2, which requires only ��� � &
memory, successfully uses identical but movable tokens to
break symmetry and solve the rendezvous search problem.
The resulting time complexity approaches ��� �/& as � ap-
proaches � , and approaches ��� � 9 & as � approaches � � .

1.3 Outline of the Paper

In section 2, we prove that when ��� � � , two 	�
 s can-
not use identical stationary tokens to break symmetry in an
anonymous, synchronous, and possibly oriented ring. In
section 3, we prove lower and upper bounds for the ren-
dezvous search problem when the 	�
 s know that � � �
and use identical stationary tokens to break symmetry. The
bounds show the impact of the agents’ knowledge of � and
� , as well as the orientation of the ring, on the search time.
In section 4, we present an algorithm that again uses identi-
cal stationary tokens but does so with ���! #"%$: *"($ �/& mem-
ory and runs in time ��� � ; =?> �; =?>�; =.> � & . The solutions in sec-
tions 3 and 4 imply that there is a tradeoff between the
	�
 s’ memory and the resulting time complexity of the
rendezvous search problem. In section 5, however, we
prove that this tradeoff is limited since, when the 	�
 s do
not know � , � , or the orientation of the ring, they need
� �) *"($ *"($ �/& memory for an algorithm that stops if a ren-
dezvous is impossible and otherwise achieves a rendezvous.

The results of section 5 imply that finding a ������& mem-
ory solution for the rendezvous search problem requires a
change in the model. In section 6, we allow a 	�
 to move
a token anytime it resides on the same node as that token.
We present a ��� � & memory algorithm that uses these mov-
able tokens to solve the rendezvous search problem when
the 	�
 s do not know � , � , or the orientation of the ring.
The paper concludes with a summary and a short discussion
of open problems.

2 The Feasibility of Rendezvous

Before we construct algorithms that use identical sta-
tionary tokens to break symmetry in the rendezvous search
problem, we need to identify the conditions under which
identical stationary tokens can be used to that end. In Theo-
rem 1 below, we prove that when �-� � � , the 	�
 s cannot
use identical stationary tokens to break symmetry and thus,
if they simultaneously run the same deterministic algorithm,
they will not rendezvous.

Let the atomic operations in an algorithm be restricted to
“release the token”, “move one node in a given direction”,
and “do not move”. An algorithm may also contain two
constructs. A do-until loop instructs the 	�
 s to perform
a finite sequence of operations until a given state occurs,
while an if-then statement checks if a given condition holds
and, if so, instructs the 	�
 s to perform a finite sequence of
operations. The following lemma is needed in the proof of
Theorem 1.

Lemma 1 Assume that the 	�
 s are initially ����� nodes
apart on the network. If the 	�
 s simultaneously run
the same deterministic algorithm and that algorithm is re-
stricted to a fixed, finite sequence of atomic operations, i.e.,
there are no do-until loops or if-then statements, then the
distance, d, between the 	�
 s will not change.

Lemma 1 implies that the inclusion of a do-until loop or
an if-then statement in an algorithm is a necessary condition
for a rendezvous. Let ���� denote the � th 	�
 ’s state at time
� . The � th 	�
 ’s history at time � is defined as the sequence	 �
 ������� ���� ������� ���
 . The boolean value of the conditional
statement in a do-until loop or an if-then statement evalu-
ated at time � is a function of the history of the given 	�
 at
time ��� � . Two 	�
 s cannot evaluate the same conditional
statement at time � and receive different boolean values un-
less their histories differ at time ��� � .

Theorem 1 Consider two identical 	�
 s in an anonymous,
synchronous � node ring. The 	�
 s are initially ��� � �
nodes apart on the network. To begin an algorithm, the
	�
 s place identical tokens on their respective starting
nodes and these tokens remain in place for the rest of the
algorithm. If the two 	�
 s simultaneously run the same
deterministic algorithm, they will not rendezvous.

Sketch of the Proof of Theorem 1. Suppose that the two
	�
 s rendezvous at time � . Consider the first time, ��� � ,
that ���� � � . At time ��� , � changes because one 	�
 moved
and the other did not, or because both 	�
 s moved but in
opposite directions. The 	�
 s must have evaluated condi-
tional statements from a do-until loop or an if-then state-
ment and received different boolean values. This implies
that the histories of the two 	�
 s differed at time ����� � .
Let time ��� � � � denote the first time that the histories of
the 	�
 s differ. If the histories of the 	�
 s first differ at
time � � , then the states of the two 	�
 s first differ at time � � .
This can happen only if a conditional statement evaluated at
time � � ��� yielded different values for the two 	�
 s. This
implies, however, that the histories of the 	�
 s differed at
time � � ��� and contradicts the fact that � � was the first time
that the histories differed. This proves Theorem 1.

3 The Time Complexity of Rendezvous

While Theorem 1 proves that identical stationary tokens
cannot be used to break symmetry when � � � � , Theo-
rems 2 and 3 below provide the lower and upper bounds
for the time complexity of the rendezvous search problem
when symmetry can be broken using identical stationary to-
kens, i.e., �� � � .
Theorem 2 Consider two identical 	�
 s at distance �
� � from each other in an anonymous, synchronous, � node
ring. The 	�
 s know that �� � � and that the network is
a ring. The 	�
 s are assumed to have unbounded memory.
When the 	�
 s simultaneously run the same determinis-
tic algorithm for the rendezvous search problem, the lower
bounds stated in Table 1 hold.

Proof of Theorem 2. Consider the case where the 	�
 s
know � . The two 	�
 s begin the rendezvous search prob-
lem with the same state. After a 	�
 travels � nodes in
given direction from its starting node, it has new informa-
tion because it either finds a token or learns that the token is
in the other direction from the starting node. The 	�
 s are
still at least � nodes apart, however, so a rendezvous will
require that the 	�
 s travel at least another 4� nodes. Since
the 	�
 s must travel at least 354� nodes for a rendezvous
to occur and moving to an adjacent node takes one unit of
time, a rendezvous requires at least 3?4� units of time when �
is known. This proves the lower bound for all cases where
� is known.

Now assume that the 	�
 s do not know � but they know
� , the number of nodes in the ring. One of the 	�
 s may
find a token after travelling � nodes in a given direction.
The other 	�
 , however, will not have any new information
until it travels � � nodes in the same direction. At that time,
the 	�
 s will still be at least � nodes apart. Given that
the 	�
 s must travel at least �(6 4� nodes for a rendezvous
to occur, and moving to an adjacent node takes one unit of
time, then a rendezvous requires at least ��6 4� units of time
when � is known and � is unknown. This proves the lower
bound for all cases where � is known and � is unknown.

In the remaining cases, the 	�
 s know neither � nor � .
A 	�
 can count � , the number of nodes from its start-
ing node to the first token, but it cannot tell if � � � or
� � � � � until it has travelled around the ring and counted
� . When the 	�
 s return to their respective starting nodes,
they are still � nodes apart. Given that the 	�
 s must travel
at least � , 4� nodes for a rendezvous to occur, and moving to
an adjacent node takes one unit of time, then a rendezvous
requires at least � , 4� units of time when � and � are un-
known. This proves the lower bound for all cases where �
and � are unknown.

The upper bounds for the time complexities stated in Ta-
ble 1 are proven in Theorem 3. They are derived by con-

structing a solution that ensures a rendezvous under the
given conditions, e.g., when � and the orientation of the ring
are known but � is not necessarily known. While the cal-
culation of the lower bounds in Theorem 2 assumes that the
	�
 s have unbounded memory, the memory requirements
for the upper bounds are those of the corresponding solu-
tion.

Theorem 3 Consider two identical 	�
 s at distance �
� � from each other in an anonymous, synchronous � node
ring. The 	�
 s know that �� � � and that the network is
a ring. When the 	�
 s simultaneously run the same deter-
ministic algorithm for the rendezvous search problem, the
upper bounds stated in Table 1 hold. In particular, with the
exception of the case where � is known and the ring is not
oriented, the lower bounds of Theorem 2 are tight.

Proof of Theorem 3. The following four mutually exclusive
cases exhaustively describe the subsets of knowledge that
a 	�
 may possess about a ring, i.e., � , � , or the ring’s
orientation.

Case 1: Each mobile agent has memory ���! #"%$ �+& , knows
� and the ring’s orientation, but may or may not know � .
With � and the orientation known, one of the mobile agents
is guaranteed to find a token in � steps.

Algorithm for Case 1
1. Release the token.
2. Begin walking around the ring in a counter-clockwise
direction.
3. If a token is found within � steps, continue walking in
the same direction.
4. Otherwise, if no token is found by � steps, reverse
direction and continue walking.

The mobile agent that finds a token at � steps continues
walking in the same direction. The other mobile agent re-
verse its direction and continues walking. Rendezvous will
occur in time 3?4� .

Case 2: Each mobile agent has memory ���! #"%$ �+& , knows
� , does not know the ring’s orientation, and may or may not
know � . Given � , a mobile agent needs to walk at most �
steps before deciding whether to reverse direction.

Algorithm for Case 2
1. Release the token.
2. Choose a direction and begin walking around the ring.
3. If a token is found within � steps, continue walking in
the same direction.
4. Otherwise, if no token is found by � steps, reverse
direction and continue walking.

In the worst case, � � � � and the two mobile agents
choose opposite directions in step 2 of the algorithm such
that they are walking on the

� � ��� side of the ring. They
each walk � steps without reaching a token, so they then
reverse direction and walk until rendezvous occurs. At time

 � , each mobile agent is back at its original position, i.e.,

where it released its token in step 1, so the mobile agents
will rendezvous in an additional 4 � steps. As a result, the
algorithm ensures a rendezvous in time 8 4� .

Case 3: Each mobile agent has memory ���) *"($ �/& , knows
� , does not know � and may or may not know the orienta-
tion. Given � , a mobile agent walks at most � � steps before
deciding whether to reverse direction.

Algorithm for Case 3
1. Release the token.
2. Choose a direction and begin walking around the ring.
3. If a token is found within � � steps, continue walking
in the same direction.
4. Otherwise, reverse direction at � � steps and continue
walking.

In the worst case, the two mobile agents choose the same
direction in step 2 of the algorithm. One of the mobile
agents walks �<��
 steps, finds no token, and thus reverses
direction and continues walking. The other mobile agent
walks � steps, finds a token, maintains the current direction,
and continues walking. As a result, rendezvous occurs in
time ��6 4� .

Case 4: Each mobile agent has memory ���! #"%$ �/& and
knows the ring’s orientation, but does not know � or � .

Algorithm for Case 4
1. Release the token.
2. Choose a direction and begin walking around the ring.
3. Count the number of steps to the first token, � � ,
and continue walking.
4. Count the number of steps to the second token, � � .
/*The mobile agent is back at its starting node.*/
5. If � � �� � , continue walking in the same direction.
6. Otherwise, reverse direction and continue walking.

In the worst case, the two mobile agents choose the same
direction in step 2 of the algorithm and thus rendezvous will
occur in time ��, 4� .

All of the algorithms discussed so far require either
���) *"($ �'& or ���) *"($ �/& memory. In the special case where
� is known to be less than or equal to � 3 , there exists an
algorithm that achieves rendezvous with memory ��� � & .
Theorem 4 Consider two identical 	�
 s at distance �
from each other in an anonymous synchronous � node ring.
In this special case, the 	�
 s know that � � � 3 and that the
network is a ring, but do not know � , � , nor the orientation
of the ring. Let each 	�
 have memory ������& . The time
complexity of the rendezvous search problem in this case is
��6 4� .

Proof of Theorem 4. Each mobile agent has memory ��� � & ,
knows that � � � 3 , i.e., � is at most one third of � , but does
not know � , � , or the orientation.

Algorithm for ����� & memory case
1. Release the token.
2. Choose a direction and begin walking around the ring.

3. At the first token, reverse direction and continue walking.
4. At the second token, reverse direction and continue
walking.

In the worst case, the 	�
 s will travel in the same direc-
tion. One 	�
 will find a token after travelling � nodes in
the given direction, and will reverse direction and continue
to travel. At time
 � , this 	�
 will have returned to its orig-
inal position. The other 	�
 , however, has not yet reached
this token since � � �

3 . The two 	�
 will rendezvous in an
additional ��� 354� steps. Thus the two 	�
 will rendezvous
in time ��6 4� .

While the preceding solutions assume that the 	�
 s
know �� � � , the solutions can be easily changed so that
the 	�
 s stop if � � � � . Suppose that in all cases, the
	�
 s have ���! #"%$ �/& memory. A 	�
 s can count the num-
ber of steps taken after it makes a decision whether or not to
change direction. If the intertoken distance is ��� � � , then
the 	�
 can stop as rendezvous is impossible. Otherwise,
the 	�
 proceeds as before.

4 Memory Tradeoff

With ���) *"($ �/& memory, the 	�
 s can detect if ��� � �
and act appropriately, i.e., stop if ��� � � and rendezvous
otherwise. If the 	�
 s did not know � , � , or the orientation
of the ring, the time complexity of the solution is � , 4 � .
When the knowledge of the 	�
 s is unchanged but their
memory is reduced to ���! #"%$: *"($ �/& , the following algorithm
can detect if �2� � � and act appropriately. The time com-
plexity of the algorithm is ��� �/; =.> �; =.> ; =?> � & , which suggests that
the 	�
 s’ memory size can be reduced at the expense of a
solution’s time complexity.

Algorithm 1
Let � � �� ��� ��� denote the first � prime numbers such that� �
�
	 � � � � � .

1. Release the token.
2. Set � ��� � .
3. Choose a direction and begin travelling around the ring.
4. Count the number of steps, ��"� � , to the first token,
� � , and continue walking.

5. Count the number of steps, ��"� � , to the second token,
� � . /* The 	�
 is back at its starting node. */

6. If � � ��"� � ��� � ��"� � ,
If � ����� , stop. Rendezvous is not possible.
If � ���� , set � ��� � 6 � and repeat from step � .

7. If � � ��"� � �� � � "� � , continue travelling in
the same direction.

8. Else, reverse direction and continue travelling.
/* If step 7 or 8 is executed, rendezvous occurs in another 4�
steps.*/

Theorem 5 Consider two identical 	�
 s with memory
���) *"($: *"($ �/& that are distance � from each other in an
anonymous, synchronous � node ring. The 	�
 s do not
know � , � , the orientation of the ring, or if � � � � . The
	�
 s simultaneously run the same deterministic algorithm.
In the rendezvous search problem for two such 	�
 s, Algo-
rithm 1 correctly detects if � � � � and acts appropriately,
i.e., stops if �1� � � and rendezvous otherwise. The time

complexity of the algorithm is ��� � ; =?> �; =?>�; =?> � & .

Proof of Theorem 5. The Chinese Remainder Theorem im-
plies that if ��� � � � �'& ��"� � � for all � � � � � ��� � � , then
����� � � �+& � "� � �� 	 � � � . Let the � � be the first � prime
numbers such that

� �
�
	 � � � � � . The algorithm checks each

� � in turn to see if ��� � ��� �+& � "� � � . If the statement is
true for all � � , then � � � � � � � � and the algorithm stops
since rendezvous is impossible. If � �� � � � �'& � "� � � for
some � � , however, then �� � � . The first time the algorithm
discovers such a � � , one of the 	�
 s reverses its direction
and a rendezvous occurs 4� steps later.

The worst case occurs when �-� � � since all � of the � �
values have to be checked. The resulting run time is ��� � �/& ,
but we need to determine the value of � .

Consider the smallest � such that
� �
� 	 � � � � � . This

implies that
� � � �� 	 � � � � � and thus

� �
�
	 � � � � ��� ��� � � � .

As a result,
� �
� 	 � � �

� ��� �/& .
Let � � ��& denote the number of prime numbers less than

or equal to � . Apostol [9] states that for any integer � ,�	 ; =?> � �
� � ��& � � �; =.> � . Since � � is prime by definition,� � � � & � � for all � so that ��	 ; =.> �� ��� � � � & � � � � ��; =?> �� and

thus � �
� � ; =.> ��� . Taking the product over all � and using

Stirling’s approximation [13] results in

��
� 	 �
� �
� ��
� 	 �

�+ #"%$ � �� � ��� � � � ��
�
	 �
 *"($ � �

� ��� � � � �
���� � ; =.> ���
(1)

The logarithm of equation 1, given that
� �
� 	 � � �

� ��� �/& ,
indicates that ���! #"%$ �/& � � #"%$ � , so a valid value for �
must satisfy � #"%$ � ��� *"($ � .

Let � � �! #"($ �/& � ��� . Substituting for � yields ��� �� &� #"%$ #"%$ � ���(�) *"($ �/& � so that, given a constant � � � ,
a corresponding value of � can be calculated such that
�) *"($ �/& � ��� is a valid value for � . The maximum value for
� is then at least �) *"($ �/& � ��� . Substituting �) *"($ �/& � ��� for �
in � #"%$ � �
� *"($ � yields � *"($ �! #"%$ �/& � ��� � � *"($ � such

that � �"!$#� ����% ; =.> �; =?>�; =.> � and thus � � ��� ; =?> �; =.>�; =?> � & . As

a result, the time complexity of the algorithm, ��� � �/& , is
��� � ; =.> �; =.> ; =?> � & .

5 Limits to the Memory Tradeoff

While the discussion in section 4 implies that the 	�
 s’
memory size can be reduced at the expense of a solution’s
time complexity, the following theorem proves that Algo-
rithm 1 achieves the lower bound of memory required to
solve the rendezvous search problem under the given model.

Theorem 6 Consider two identical 	�
 s that are distance
� from each other in an anonymous, synchronous � node
ring. The 	�
 s do not know � , � , the orientation of the ring,
or if � � � � . The 	�
 s simultaneously run the same deter-
ministic algorithm. To begin an algorithm, each 	�
 places
an identical token on its respective starting node and these
tokens remain in place for the rest of the algorithm. Any
algorithm that correctly detects if � � � � and acts appropri-
ately, i.e., stops if � ���� and rendezvous otherwise, requires
that each 	�
 have at least � bits of memory, where � is& �) *"($ *"($ �/& .
Proof of Theorem 6. Consider a unidirectional ring of �
nodes where � �
 	�
 s are placed ��� � � nodes apart.
Each 	�
 has � bits of memory. Without loss of generality,
label one of the 	�
 s as 	�
 � and the other as 	�
 � . Let '
denote the non-empty collection of algorithms that correctly
solve the rendezvous search problem for two 	�
 s with �
bits of memory each, i.e., every algorithm in ' stops if � �
� � and otherwise ensures a rendezvous. Let
 denote an
arbitrary algorithm in ' .

Construct the following sequence of bits for each node
in the ring. Let the first � bits in the sequence for a given
node be the � bits stored in the memory of the first 	�
 to
visit that node. Every time that a 	�
 visits a node, the �
bits stored in the 	�
 ’s memory at that time are appended
to the sequence. Let � denote the number of complete trips
around the ring completed by a 	�
 in algorithm
 . Given
a unidirectional ring, the two 	�
 s will complete the same
number of rounds when � � � � , otherwise one 	�
 would
pass the other and rendezvous would occur. After � rounds
of algorithm
 , the resulting sequence of bits for a given
node will contain at least �'� � bits, where � �
 is the
number of 	�
 s. The
 � � bits stored at a given node rep-
resent the histories, i.e., the interleaved sequence of states,
of the 	�
 s at that node. In a ring with � nodes where � is
sufficiently large, i.e., � � �
 � � , two such constructed se-
quences of bits will be identical, i.e., two distinct nodes will
have the same sequence of
 � � bits. If � is large enough,
these two nodes will not be separated by a token.

Let � � �+�)(and � � �%�)* denote the two nodes with identical
bit sequences, where � � �+�+(precedes � � �%�+* in the unidirec-
tional ring. By the construction of the bit sequences, 	�
 �
is in the same state at � � �%� (as it is at � � �+� * for each of
the � complete rounds of the algorithm. The same is true

for 	�
 � . If all of the nodes from � � �+� (up to, but not in-
cluding, � � �%� * are removed from the ring,the behaviour of
	�
 � and 	�
 � at � � �%�)* , and any other remaining node,
is unchanged. This implies that the behaviour of the two
	�
 s, under the given algorithm
 , is the same in the origi-
nal case where � � � � as in the case where nodes are deleted
such that � � � . This contradicts the assumption that al-
gorithm
 will correctly stop without a rendezvous when
� � � � and ensure a rendezvous otherwise.

Algorithm
 is an arbitrary algorithm chosen from ' , the
collection of algorithms that correctly solve the rendezvous
search problem for two 	�
 s with � bits of memory each.
The algorithm fails because � � �7
 � � . We want to find
the value of � , i.e., the amount of memory available to a
	�
 , such that for a given � , � �
 � � holds and thus
algorithm
 and any other algorithm arbitrarily chosen from' will succeed.

In � rounds, the two 	�
 s will deposit a total of
�� � bits
at each of the � nodes. These
�� � bit sequences represent

 ��� � different strings, so � must exceed � �
 ��� � , where � �
is a non-zero positive integer constant, if any of the strings
are to be repeated at different nodes, i.e., as in � � �+��(and
� � �%�)* above.

Consider � , the number of rounds of the arbitrary algo-
rithm
 . We claim that � �
 � � where ����
 . Suppose
not. If � �
 � � , then both 	�
 s will eventually return to
their respective starting nodes with the same bits in memory
as when they started.

With � ��
 � � , then � �
 ��� � � � �
 � ������� and � �� �
 � ������� will cause the algorithm
 to fail. Thus each 	�

needs � bits of memory such that � $� �
 � ������� in order
to guarantee the correctness of algorithm
 . This implies
that *"($ � �
 � 6 � so that #"%$ *"($ ��
 � , #"%$ � , � .
Thus the correctness of an arbitrary algorithm in ' is guar-
anteed if each 	�
 has at least � memory bits where � �& �) *"($ *"($ �/& .

Together, Theorem 5 and Theorem 6 imply that
� �) *"($ *"($ �/& memory bits are required to ensure the cor-
rectness of an algorithm for the rendezvous search problem
with two identical 	�
 s on an anonymous, synchronous �
node ring.

6 Constant Memory

The preceding theorem indicates that if the 	�
 s have
����� & memory and do not know � , � , or the orientation of the
ring, then the rendezvous search problem cannot be solved
in the given model. We need to change the model if we want
to solve the rendezvous search problem in such cases. Sup-
pose we change the model so that, upon meeting a token, a
	�
 can move that token to an adjacent node. We prove, in
Theorem 7 below, that Algorithm 2 can use such movable

tokens to solve the rendezvous search problem with mem-
ory ������& .

Algorithm 2 (The Movable Tokens Algorithm)
/* Assume memory ������& , and � , � , and orientation are un-
known. */
1. Release the token.
2. Choose a direction and begin walking.
3. Upon finding a token, reverse direction.
4. Move the token one node in the new direction.
5. Continue walking in the new direction.
6. Repeat from step 3 until rendezvous occurs.

Theorem 7 Consider two identical 	�
 s with memory
������& at a distance � apart in an anonymous, synchronous,
� node ring. The 	�
 s do not know � , � , or the orientation
of the ring. If, upon reaching a token, a 	�
 can move the
token to an adjacent node, then Algorithm 2 solves the ren-

dezvous search problem in time
� � � ! � � ! 4 ���� � 4 , � % % .

Thus, as � approaches � , � approaches ��� �/& and, as � ap-
proaches � � , � approaches ��� � 9 & .

7 Conclusion

After proving that identical stationary tokens cannot be
used to break symmetry in the given model when � � � � ,
we derive the lower and upper bounds on the time com-
plexity of the rendezvous search problem when the mo-
bile agents successfully use such tokens to break symme-
try. We then present an algorithm that suggests there is a
tradeoff between the mobile agents’ memory size and the
time complexity of the rendezvous search problem. We
prove that this tradeoff is limited, however, by showing
that � �! #"%$ #"%$ �/& memory enables the mobile agents to stop
when � � � � and rendezvous otherwise. As a result, con-
structing a ������& memory algorithm that solves the ren-
dezvous search problem requires a change in the model.
Suppose that the identical tokens are no longer stationary,
i.e., upon meeting a token, a 	�
 can move that token to
an adjacent node. We present a ��� � & memory algorithm
that uses such tokens to break symmetry and solve the ren-
dezvous problem.

Our discussion of lower and upper bounds on the time
complexity of the rendezvous search problem contains an
open problem. If the 	�
 s know � but do not know the
orientation of the ring, then the lower bound for the time
complexity of the rendezvous search problem is 354� but the
upper bound is 8 4� . In future research, it would be inter-
esting to study how changes in the model affect the time
complexity of the rendezvous search problem. For exam-
ple, one might study a network topology that differs from
the ring or the case where each mobile agent has more than
one token.

Acknowledgements

The authors wish to thank Paola Flocchini for many use-
ful conversations. This research is supported in part by
NSERC (Natural Sciences and Engineering Research Coun-
cil of Canada) and by MITACS (Mathematics of Informa-
tion Technology and Complex Systems) grants.

References

[1] S. Alpern, Asymmetric Rendezvous on the Circle, Dy-
namics and Control, 10, pp. 33-45, 2000.

[2] S. Alpern, Rendezvous Search: A Personal Perspec-
tive, LSE Research Report, CDAM-2000-05, London
School of Economics, 2000.

[3] S. Alpern and S. Gal, The Theory of Search Games
and Rendezvous, Kluwer Academic Publishers, 2003.

[4] S. Alpern and J.V. Howard, Alternating Search at Two
Locations, LSE OR Working Paper, 99.30, 1999.

[5] S. Alpern and D. Reyniers, The Rendezvous and Co-
ordinated Search Problems, Proceedings of the 33rd
Conference on Decision and Control, Lake Buena
Vista, FL, December 1994.

[6] E.J. Anderson and S. Essegaier, Rendezvous Search
on the Line with Indistinguishable Players, SIAM
Journal of Control and Optimization, 33, pp. 1637-
1642, 1995.

[7] E.J. Anderson and S. Fekete, Two-dimensional Ren-
dezvous Search, Operations Research, 49, pp.107-
188, 2001.

[8] E.J. Anderson and R.R.Weber, The Rendezvous Prob-
lem on Discrete Locations, Journal of Applied Proba-
bility, 28, pp. 839-851, 1990.

[9] T.M. Apostol, Introduction to Analytical Number
Theory, Springer Verlag, 1997.

[10] V. Baston and S. Gal, Rendezvous on the Line When
the Players’ Initial Distance is Given by an Unknown
Probability Distribution, SIAM Journal of Control and
Optimization, 36, No.6, pp. 1880-1889, 1998.

[11] V. Baston and S. Gal, Rendezvous Search When
Marks are Left at the Starting Points, Naval Research
Logistics, 47, No. 6, pp. 722-731, 2001.

[12] E. Chester and R. Tutuncu, Rendezvous Search on the
Labeled Line, Old title: Rendezvous Search on Fi-
nite Domains, Preprint, Department of Mathematical
Sciences, Carnegie Mellon University, 2001 (revised
2002).

[13] T. Cormen, C. Leiserson, and R. Rivest, Introduction
to Algorithms, MIT Press, Cambridge, Massachusetts,
1992.

[14] P. Flocchini, B. Mans, and N. Santoro, Sense of Direc-
tion in Distributed Computing, Theoretical Computer
Science, 291, No. 1, pp. 29-53,2003.

[15] J. Howard, Rendezvous Search on the Interval and
Circle, Operations Research, 47, No.4, pp. 550-558,
1999.

[16] P. Flocchini, E. Kranakis, D. Krizanc, N. Santoro, and
C. Sawchuk, The Rendezvous Search Problem with
More Than Two Mobile Agents, preprint, 2002.

[17] W.S. Lim, Rendezvous Search on the Line with Three
Players, LSE CDAM Research Report, LSE-MDS-81,
1997.

[18] W.S. Lim and S. Alpern, Minimax Rendezvous Search
on the Line, Journal of Control and Optimization, 34,
pp.1650-1665, 1996.

[19] W.S. Lim and A. Beck and S. Alpern, Rendezvous
Search on the Line with More Than Two Players, Op-
erations Research, 45, pp.357-364, 1997.

[20] M. Pikounis and L.C. Thomas, Many Player Ren-
dezvous Search: Stick Together or Split and Meet?,
Working Paper 98/7, University of Edinburgh, Man-
agement School, 1998.

[21] T. C. Schelling, The Strategy of Conflict, Harvard Uni-
versity Press, Cambridge, MA, 1960.

[22] L.C. Thomas amd P.B. Hulme, Searching for Targets
Who Want to be Found, Journal of the Operations Re-
search Society, 48, Issue 1, pp. 44-50, 1997.

[23] X. Yu and M. Yung, Agent Rendezvous: A Dy-
namic Symmetry-Breaking Problem, in Proceedings
of ICALP ’96, LNCS 1099, pp. 610-621, 1996.

