
Performance of Generative Programming Based Protocol Implementation

Zheyin Li and Michel Barbeau
School of Computer Science, Carleton University,

1125 Colonel By Drive
Ottawa (Ontario), Canada K1S 5B6

�zheyin99@yahoo.com, barbeau@scs.carleton.ca�

Abstract

Protocol Implementation Framework for Linux (PIX)
is a protocol development tool using generative program-
ming. It aims at capturing the similarities in behaviors
among different layers of protocols and grouping solu-
tions to cross-cutting concerns of communication systems. It
achieves a high degree of configurability by providing sev-
eral combinations which could be chosen to generate de-
sired protocols. This paper addresses the following open
question. How does the performance of generative pro-
gramming based protocol implementation compare with
traditional protocol implementation techniques? This paper
provides an answer to this question. A benchmark is devel-
oped to give a thorough performance analysis of PIX to con-
trast it with other protocol development frameworks. The
benchmark compares the performance of bulk data trans-
fer. The file transfer protocol (FTP) is used for comparison
purposes. Latency, throughput and resource usage measure-
ments are provided in order to compare the performance of
PIX and generative programming with NcFTP, which uses
structured programming, and x-Kernel, which uses struc-
tured and object-based programming.

1. Introduction

The strategies for network protocol implementa-
tion could be categorized into three approaches: kernel
level, user level or mixed. This classification is accord-
ing to the placement of the code of the implementation rela-
tive to the operating system. Each approach has its pros and
cons. The kernel level approach can achieve better perfor-
mance because the input processing is handled at low level,
which reduces latency. The user level approach shows su-
periority in code development and maintenance, which
are relatively easier. The performance could be, how-
ever, the biggest concern. A mixed approach is a compro-
mise of these two strategies.

Implementing a network protocol is not a trivial task.
A natural solution to this problem is to build a frame-
work, which contains the common components of differ-
ent protocols. Developers construct application specific pro-
tocols by reusing, extending and customizing the frame-
work. Linux [3], BSD Unix [8] and System V Streams [1]
are some well-known protocol implementation frameworks.
Protocol Implementation Framework for Linux (PIX) [2] is
a framework based on generative programming (GP) [5].
GP is as a technique to build models for families of sys-
tems and then generate concrete systems from these mod-
els. With the aid of GP, PIX targets supporting families of
protocols. PIX captures common protocol behavior models
and groups solutions to cross cutting concerns of different
protocols so that developers can assemble various protocols
to satisfy different needs. Commonalities and variations of
protocols are captured as features, or in other words, prop-
erties of the Protocol abstract object. By feeding the speci-
fication of these features to PIX, its protocol generator au-
tomatically produces base classes for the required protocol
providing the core of the behavior. Currently, protocols con-
structed from this framework are at the user level.

The design of protocols in PIX is inspired by the x-
Kernel object-based protocol development framework [6].
PIX reuses some of the key concepts of x-Kernel, e.g. Pro-
tocol and Session. PIX and x-Kernel share similar concepts,
while the design goal and implementation techniques are
quite different. The fundamental distinction between PIX
and x-Kernel is that PIX is designed to obtain a high de-
gree of configurability - currently it could provide 48 com-
binations of ways to assemble a protocol. Providing config-
urability is not only the utmost difference between PIX and
x-Kernel, but it is also a difference between PIX and the
other aforementioned protocol development frameworks.
The Horus and Ensemble [4] framework provides config-
urability by means of enabling assembling stacks of micro-
protocols to fulfill needs for group communications. The
configuration is based on the functionality of targeted proto-
cols. In contrast, PIX emphasizes on protocol structure and

barbeau
2nd Annual Conference on
Communication Networks and Services Research (CNSR 2004)
Fredericton, N.B., Canada, May 19-21, 2004

optimization instead of functionality. The protocols gener-
ated from PIX are of a well-defined prototype and specific
functionalities need to be added to this prototype in order to
make it become a complete network protocol.

To the best of our knowledge, PIX is the first attempt
to use GP in network protocol development. PIX was de-
signed to make the protocol development work easier, but
not at the expense of correctness or performance. Zhang [9]
provides partial performance evaluation of PIX. It compares
the choices that PIX offers for the Message and EventMan-
ager features. However, the performance of PIX and GP
based protocol implementation, with respect to other tra-
ditional software development approaches, still remains an
open question. Such a performance analysis is a necessary
task.

This paper contributes to the evaluation of the perfor-
mance of PIX and GP based protocol implementation by
analyzing the performance of implementations of the File
Transfer Protocol (FTP) as the core performance bench-
mark. Latency and throughput are the metrics used to com-
pare the performance of file transfer. Latency is defined as
the time required to transfer a file from one end of the net-
work to the other, e.g. the download of a file from a server
to a client. The latency is comprised of several parts: the
time to open and close a TCP connection for data transfer;
the time to send a file transfer request, replies and the file
data, which could be divided into two parts: processing de-
lay and actual transmission time. Processing delay involves
the processing time of every protocol layer. From a protocol
point of view, the transmission time, which depends on net-
work bandwidth, is beyond control, so the part that varies
is the processing delay, which is what we are investigat-
ing. Throughput is a measure of how much data can pass
through a channel per unit of time. It depends fundamen-
tally on available bandwidth and efficiency of communica-
tion protocols. The efficiency of the communication proto-
cols depends on how the protocols are designed and how
well the communicating parties make use of the raw band-
width of the channel. They are key indicators of the perfor-
mance of a network.

The contribution of this paper is a performance compar-
ison of a PIX based FTP with an x-Kernel based FTP and
Linux NcFTP over Internet sockets.

This paper is structured as follows: Section 2 gives an
overview of protocol implementation in PIX. Section 3
gives a quantitative performance evaluation of the FTP-PIX,
namely, in latency, throughput and resource usage. Sec-
tion 4 concludes the paper.

2. Protocol implementation in PIX

This section gives an overview of protocol implementa-
tion in PIX, contrasts it with x-Kernel and discusses the de-

sign of an implementation of FTP in PIX and x-Kernel.

2.1. Overview of PIX

PIX is designed to capture the similarities in behaviors
among different layers of protocols and to group together
the solutions to cross cutting concerns during protocol im-
plementation. This allows developers to assemble various
abstract protocols from basic components to fulfill differ-
ent needs. It is based on GP, which addresses the devel-
opment of family of systems, and belongs to domain en-
gineering [5]. Domain engineering considers development
for reuse and consists of three basic steps. Firstly, domain
analysis involves domain scooping and feature modeling.
Domain scooping determines which system belongs to the
domain and which are not. Feature modeling identifies the
common and variable features of the domain concepts and
dependencies among the variable features. In this phase a
feature diagram is depicted to reveal the variability con-
tained in the domain space. Secondly, domain design pro-
duces a common architecture for the family of systems.
Thirdly, domain implementation implements components,
generators and any reusable infrastructure.

A feature diagram of PIX is drawn as Figure 1, according
to [2]. The Protocol concept, the root in the diagram, cap-
tures two functions. Firstly, it implements the algorithms
that make up a unit of communication functionality. For ex-
ample, an IP protocol object, which adds, strips and pro-
cesses IP headers and routes messages to their right desti-
nation. It is also responsible for managing Sessions, which
represent end points of network communication channels. A
Protocol is composed of several features, namely (from left
to right in the diagram) Participant, Message, UI,Session,
EventManager, PassiveOpen and ActiveOpen. Features can
be mandatory (filled circle at the end of an edge) or optional
(open circle at the end of an edge) and an arch between the
features shows an alternative relationship. Using Figure 1,
it is possible to calculate that protocols can have 48 differ-
ent variations (two alternatives for Message, two for Ses-
sion, four for EventManager and three for protocols).

A detailed description of features in the diagram follows.
Session is an instance of a network connection in Proto-
col. It holds the information for the connection. It is cre-
ated at runtime either actively, when the application ini-
tiates the communication, or passively, when higher level
protocol informs its lower level protocol of its readiness
to accept connections. Participant identifies the parties that
communicate with each other in a network. Message is a
two-part structure that separates the header from the user
data. There are two basic operations for message process-
ing, prepending headers to outgoing messages and stripping
headers from incoming messages. There are two alterna-
tives: SingleBufferMessage and BufferTreeMessage. Event-

Figure 1. Feature diagram of PIX.

Manager provides a mechanism for scheduling a proce-
dure to be called after a certain amount of time. By reg-
istering a procedure with the event manager, protocols are
able to set timeouts and act on messages that have not been
acknowledged or perform periodic maintenance functions.
There are three variations: SimpleEventManager, DeltaL-
istManager and TimingWheelManager. Uniform Interface
(UI) defines the common operations to all protocols and ses-
sions. Each protocol or session has its own specific imple-
mentation of UI. ActiveOpen is required when a node (like
a client) knows the other nodes it wishes to communicate
with. It has two sub features, ActiveId and ActiveMap. Ac-
tiveId is the structure containing the identifiers of both the
local and the remote participant, it serves as the key in Ac-
tiveMap, which is a map containing the bindings between
the ActiveId and the corresponding active sessions. Pas-
siveOpen is required when a node (like a server) is will-
ing to accept connections from remote nodes. An enabled
object is created to remember the fact that this node is will-
ing to accept connections. It also has two sub features, Pas-
siveId and PassiveMap. PassiveId contains the local partic-
ipant and acts as the key in PassiveMap, which stores bind-
ings between PassiveId and the corresponding enabled ob-
jects.

The next step in the design cycle of domain engineer-
ing is domain design, in which, a common architecture
of the family of protocols is developed, also features are
mapped to components. GenVoca grammar as a widely used
methodology to capture the system architecture in a hierar-
chical layered fashion is utilized here. Figure 2 gives the
GenVoca representation of the PIX architecture in seven
layers. The Message and EventManager features are col-
lected together in the bottom layer. Vertical bars separate

Protocol : (L1)
PassiveOpen[PassiveOpenWithAO]
| ActiveOpen[config] | ProtocolUI

PassiveOpenWithAO : (L2)
ActiveOpen[Config]

Config : (L3)
ProtocolUI EventManager ActiveId
ActiveMap PassiveId PassiveMap

ProtocolUI: (L4)
Protocol[ProtocolUIConfig]

ProtocolUIConfig: (L5)
Message SessionUI Participant

SessionUI: (L6)
Session[SessionConfig]

SessionConfig: (L7)
Message: SingleBufferMessage
| BufferTreeMessage
EventManager: SimpleEventManager
| DeltalistManager | TimingWheelManager

Figure 2. GenVoca representation of the PIX
architecture.

the alternatives provided by Message and EventManager.
This layer serves as the configuration repository to define
the SessionUI layer (L6), which reflects the Session object.
ProtocolUI configuration repository (L5) requires three fea-
tures, Message, Session and Participant. This layer is used
to define the layer above, ProtocolUI, which is the abstrac-
tion of an interface to a protocol. Layer three (L3) is the con-
figuration repository for a protocol definition and includes a
dependency on the ProtocolUI layer and all additional fea-
tures. The PassiveOpen feature depends on the ActiveOpen
feature as shown in layer two (L2). The top layer (L1) Pro-
tocol groups three different alternatives that can be taken to
define a protocol. PassiveOpen with PassiveOpenWithAO
provides a basis for protocols that have sessions with both
client and server behavior. ActiveOpen parameterized with
Config provides a basis for protocols with sessions that only
act as client. And the third option ProtocolUI is used by pro-
tocols that do not embed sessions.

The last step - domain implementation turns components
into C++ classes. A component takes a component from
the layer below it as its parameter, which means compo-
nents are implemented as parameterized classes, or be more
specific represented as C++ class templates. Eventually the
Protocol class template is coded as having a parameter that
serves as the configuration repository containing the values
to the features of a wanted protocol. To assemble a protocol,
there are two ways: a manual assembly and an automatic as-
sembly. Manual assembly means developer writes his/her
own configuration repository for each protocol in this fam-
ily, which is tedious and restrictive. A more efficient and
practical way is the auto generation of system by providing
its specification to a generator. A generator is a class tem-

typedef PROTOCOL_GENERATOR
<
ProtocolUI,
FTPActiveId,
FTPActiveMapConfig::FTPActiveMap,
FTPEnable,
FTPPassiveId,
FTPPassiveMapConfig::FTPPassiveMap,
FTPHeader,
SimpleEvent,
ProtocolUI,
with_activeopen,
with_passiveopen
>::RET FTPBASE;

Figure 3. A specification example provided to
the protocol generator.

Framework x-Kernel PIX
Approach Object-based Object-oriented

and generative Programming
Language C C++

Table 1. Comparison between x-Kernel and
PIX.

plate that encapsulates the rules defining how components
can be assembled together. In general it performs the fol-
lowing operations: it validates if the system could be built,
completes the specification (by applying default), and as-
sembles components into a system [5]. Detailed explanation
of how protocol generator is implemented could be found
in [9]. Figure 3 shows an example of a specification to gen-
erate a protocol from the protocol generator. It generates an
FTPBase base class which conforms to common protocol
interface ProtocolUI, using SimpleEvent as event manager,
supporting both active open (with activeopen,) and passive
open (with activeopen,) capabilities from the protocol gen-
erator. By adding FTP capabilities to the generated protocol
prototype FTPBase, we get the functional FTP, which is de-
scribed in the next section.

2.2. Comparison of PIX and x-Kernel

PIX reuses the key concepts defined in x-Kernel, while
these two protocol development frameworks do differ one
from the other. The key distinction of PIX is a high de-
gree of configurability by combining well-established tech-
niques of protocol implementations. Table 1 summarizes
and compares the characteristics of these two frameworks.
Because PIX utilizes the GP model it provides choices for
features such as message representation.

Figure 4. The FTP architecture in PIX.

The protocols generated from PIX are already
able to perform the basic behavior, like send-
ing/receiving/demultiplexing messages. What develop-
ers need to do is to add protocol specific algorithms or rules
to get a fully functional protocol. In contrast, in x-Kernel
developers need to develop each component of a proto-
col, in conformance to a uniform protocol interface (UPI)
to ensure the interoperability with other layers. To be more
specific, each protocol from x-Kernel needs to imple-
ment its own active open, passive open, close and control
connections, demultiplex, send and receive message func-
tions. However, a protocol generated from PIX does not
need to implement any of those operations unless it re-
quires special processing.

2.3. Design of an implementation of FTP in PIX
and x-Kernel

Figure 4 illustrates the architecture of the FTP devel-
oped in PIX. There are a client protocol and a server pro-
tocol. Each part contains three sub layers. The top layer
FTP Client or FTP Server contains the main functions that
are responsible for initialization. The FTP Client part is
also responsible for interactions with a user. The middle
layer is called an application interface (API) layer, which
defines the interface for an FTP client (Client API) and FTP
server (Server API). In other words, Client API handles
FTP client commands and Server API consists of sever han-
dlers for these commands. The bottom layer is composed of
FTPProtocol and FTPSession that takes care of real data
transmission and interaction with the transport layer, e.g.
TCPProtocol and TCPSession.

The class diagram of the PIX implementation of FTP is
depicted in Figure 5. Each class is represented as rectan-
gle frame with the class name on the top, followed by the

Figure 5. Class diagram.

class attributes in the middle and the list of methods at the
bottom. The small book icons, key icons, and lock icons
are used to denote public, protected and private attributes or
methods respectively.

ProtocolUI is a class defined in PIX to provide a uni-
form protocol interface. Each method in this class is a vir-
tual function and therefore can be overridden by the con-
crete derived protocol. The xOpen() method is used by a
high-level protocol to actively open a session associated
with its low-level protocol. The xOpenEnable() method is
used by a high-level protocol to passively open a session as-
sociated with the low-level protocol. The xDemux() method
is used by a low-level session to pass messages to its high-
level protocol. The xControl() method is used by other pro-
tocols to retrieve information or set processing parameters.
The xClose() method decrements the reference count of a
session or if the reference count is zero, deletes the session.
The xOpenDisable() method is used by a high-level proto-
col to undo the effects of an earlier invocation of xOpenEn-
able. The xOpenDisableAll() is used to cancel all xOpenEn-
able() operations. The xCloseDone() is used by a low-level
protocol to inform the high-level protocol that a peer par-
ticipant has closed the session that was originally opened
by the high-level protocol. The getmyHlp() and getmyLlp()
are used to get a protocol’s high-level and low-level proto-
cols. The setmyHlp() and setmyLlp() are used to set a pro-
tocol’s closely related high-level and low-level protocols,

which is mainly used to build a protocol stack graph.
FTPBase is produced by PIX’s protocol generator, as

shown in Figure 3 and it conforms to the protocol inter-
face defined in ProtocolUI.

FTPProtocol is inherited from FTPBase and designed to
support both the active sessions initiated by the client end
and the passive sessions required by the server end. The
protocol keeps separate collections of both active and pas-
sive sessions in active map and passive map. Each session
is identified by a unique key. Unlike a TCP or an IP pro-
tocol whose key is embedded in the protocol header, FTP’s
active key is its low-level session because there is a one-
to-one map between an FTP session and a session of trans-
port protocol. Passive sessions are defined by enable ob-
jects. An enable object contains the session’s passive key
and a count. FTP’s passive key is unique because there is
just one entity above the FTP protocol, namely the API
layer. Whenever the API class calls xOpenEnable() oper-
ation of FTP, the reference count of the enable object is
incremented. The createSession() method creates an FTP
session. The xOpenPreamble() calls its low-level protocol’s
xOpen() to get the low-level session, save this session as the
active key. The xOpenEnablePreamble() calls its low-level
protocol’s xOpenEnable(). The assignDemuxKey() method
saves the session in the parameter list as the active key and
it is called by xClose() of the active open feature. The xCon-
trol() method gives FTP information requested by other pro-
tocols according to different operation codes.

FTPSession represents an FTP channel between the
client and server. When a message is to be sent out, the
xPush() method of FTPSession is called, while a mes-
sage is received, the xPop() method is called. The receiv-
ing FTP session has the responsibility to read its incoming
data in chunks equal in size to the ones pushed at the send-
ing side. In other words, if it receives less than a chunk,
it waits for more to come, and if it receives more than ex-
pected, it caches the surplus part until more data arrive to
form another chunk. This algorithm is implemented in a pri-
vate method read() and called by xPop() when data is re-
ceived. Currently the xControl() method provides the infor-
mation on the total header length of its low-level protocols.
Its capability could be extended by adding different opera-
tion codes to satisfy various requirements.

Protocol API defines an interface for the FTP server
and client applications. Its protected data members include
the message buffers for control and data connections, the
semaphores to synchronize multiple threads for different
messages and the mutex to ensure that only one thread is
blocked. The public methods are the functional commands
supported by our FTP implementation. They are pure virtual
functions. Its derived class gives the real definitions. The
protected methods are helper functions to facilitate send-
ing messages (sendMessage()), get file size (getFileSize())

and get data content from the message buffer (getData())
that are common to all derived classes.

Server API implements two interfaces of different na-
ture, one for the protocol stack, the other is for FTP server
functionality. Therefore it inherits from both ProtocolUI
and Protocol API to provide service to server application.
It decouples server’s services from its concrete implemen-
tation. It overrides the public methods in Protocol API to
define server’s response to user commands.

Client API also provides two interfaces, one for the pro-
tocol stack, the other for FTP client functionality. It inherits
from both Protocol API and ProtocolUI and provides ser-
vice to client applications. It hides the user from concrete
service implementation. Its private data member ctrlSession
is dedicated to the FTP control connection. It overrides ev-
ery public method in Protocol API to give the client’s inter-
pretation to user’s commands.

As discussed earlier, PIX borrows the fundamental ideas
of protocol, session, message, map and event handler from
x-Kernel. Therefore, the way the FTP implementation is de-
signed in x-Kernel is very much similar to the design in
PIX. The x-Kernel version is, however, written in a struc-
tured programming language, i.e. C, it is object-based and
it provides its own object infrastructure, which becomes the
glue to make it possible for one object to invoke an opera-
tion on another object. For example, when an object invokes
the operation on some other protocol, it includes this proto-
col as one of the arguments to this operation.

3. Performance evaluation

This chapter reports on an experiment conducted to eval-
uate the performance of PIX. The objective is to quantify
the impact that PIX and generative programming have on
protocol performance. The experiment aims to compare the
performance of a file transfer protocol implemented in PIX
with an x-Kernel implementation and a built-in Linux im-
plementation. Firstly, we measure the latency and through-
put of the file transfer protocol implementations. Secondly,
the CPU and memory usage are measured.

3.1. Experimental environment

The equipment used in the experiment is a pair of In-
tel Pentium III, 547 MHz and 192 MB PCs. They are con-
nected by a 100-Mbps Ethernet crossover cable. The imple-
mentations are evaluated using the Mandrake 8.0 distribu-
tion of Linux. For the PIX experiment, each machine is con-
figured with a version of the software embedding the FTP-
Adapter protocol stack, as illustrated in Figure 6. One ma-
chine hosts the client side while the other hosts the server
side. The Adapter protocol converts the API of PIX, to
the API of Socket . For the built-in Linux experiment, the

FTP (PIX)

Adapter

FTP (Linux)
FTP

(x-Kernel)

Adapter

Socket (Linux)

Figure 6. Protocol graph of the PIX implemen-
tation, built-in Linux implementation and x-
Kernel implementation.

NcFTP implementation is used. The x-Kernel implementa-
tion is interfaced to the Socket API, also using a similar
Adapter protocol.

The experiment consists of running the same test for 50
times. Each test, consists of retrieving a file on a server by
a client. The system clock is read at the beginning and end
of each test. The average of the 50 runs is reported. One
thing to be noticed is that NcFTP reports to the user the du-
ration of the time interval starting immediately after a data
connection has been opened successfully and ending imme-
diately after all the data has been transferred and the data
connection is fully closed. Indeed, in general a user does not
care about the setup time associated with connection estab-
lishment and control information exchange. Taking all the
overhead into account is important in our experiment be-
cause we are concerned about the impact of the whole pro-
tocol stack on performance. Therefore, we consistently de-
fine in PIX, NcFTP and x-Kernel the time it takes to retrieve
a file as the period of time beginning when a client starts to
process a retrieval request and ending when the processing
of the request is finished.

3.2. Latency

Figure 7 gives the results for transferring files of size 1
B to 100 MB. Horizontal axis is ����� of file size in bytes
while vertical axis is ����� of time in milliseconds. Figure 8
zooms in files under 100 KB. The PIX stack takes slightly
more time than the x-Kernel stack, which takes slightly
more time than NcFTP stack. The difference tends, how-
ever, to be not noticeable as the size of files grows.

To analyze further the extent to which the PIX stack is
slower than the NcFTP implementation, we calculate the
proportion of increment in latency, denoted as � and defined
as follows

� �
���� � ������

������

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1 2 3 4 5 6 7 8

La
te

nc
y

(lo
g

of
 ti

m
e

in
 m

ill
is

ec
on

ds
)

File size (log of size in bytes)

PIX
NcFTP

x-Kernel

Figure 7. Latency of file transfer in PIX,
NcFTP and x-Kernel (�����-����� scale).

 1.53

 1.54

 1.55

 1.56

 1.57

 1.58

 1.59

 1.6

 1.61

 1.62

 1 1.5 2 2.5 3 3.5 4

La
te

nc
y

(lo
g

of
 ti

m
e

in
 m

ill
is

ec
on

ds
)

File size (log of size in bytes)

PIX
NcFTP

x-Kernel

Figure 8. Latency of transfer of files under
100 KB (�����-����� scale).

where ������ is the latency of NcFTP and ���� is the
latency of PIX. The value of � oscillates between 3.5%,
smallest file, to 7.2%, largest file. In the equation, if we
substitute the latency of NcFTP ������ by the latency of
x-Kernel ��	
��

, then the value of � oscillates between
1.5%, smallest file, to 2.8%, largest file. It is a measure of
how much PIX is slower compared to NcFTP and x-Kernel.

3.3. Throughput

The throughput, in M bps, is defined as follows:

��

������

where � is the file size in bytes and � is the latency in
seconds. The throughput for all three implementations, as
a function of file size, is given in Table 2. All three im-
plementations are capable of saturating the 100 Mbps net-

� PIX NcFTP x-Kernel
1 KB 0.208 0.216 0.211
10 KB 1.89 2 1.92
100 KB 16.62 17.92 17.21
1 MB 67.8 72.73 69.57
10 MB 82.9 88.89 85.38
100 MB 76.55 82.05 78.66

Table 2. Throughput, in M bps, of file transfer
in PIX, NcFTP and x-Kernel.

work. 100% efficiency is not possible because of the link
layer overhead.

The throughput of transferring files of size 100 KB and
under is low because the network pipe cannot be fully uti-
lized. It is also shown in the table that transferring files of
size 10 MB achieves higher throughput than transferring
files of size 100 MB. One possible reason is that transfer-
ring 100 MB files involves a huge number of file system ac-
cess, which reduces the system throughput.

3.4. Resource usage

Resource consumption is an important performance cri-
terion. it refers to the CPU and memory usage of a program
execution.

We use the getrusage system call of Linux to collect in-
formation about the CPU time spent by an FTP client exe-
cuting in user mode or in system mode during the process
of retrieving a file from a server. The transfer of large files
is evaluated, as they demand higher CPU time. The usage
of the CPU is measured during the execution of a file re-
trieve procedure. This experiment is repeated 50 times and
the CPU time usage is averaged. Figure 9 represents the
CPU time in the user mode and the CPU time in the sys-
tem mode when a client retrieves a 100 MB file. We ob-
serve that the CPU system time used by the three imple-
mentations is very close, while the PIX protocol stack and
x-Kernel protocol stack require noticeably more user time
than NcFTP.

To determine the memory footprint of a process in real-
time, we use the top command of Linux which returns the
dynamic information regarding the memory usage of a spe-
cific process. Table 3 shows the memory footprint of FTP
servers and FTP clients in KB. The column under the field
of Initialization lists how much memory is used after the
FTP server or client has been initialized and ready for pro-
cessing a request. During the procedure of transferring a
file, the memory usage increases and drops back to the ini-
tial state when the transfer is finished. The increase is re-
lated to the size of files being transferred, the larger the file,

Figure 9. CPU time usage.

Phase Initialization 100 MB file transfer
Server/Client Server/Client

PIX 768 / 848 804 / 904
NcFTP 1288 / 1152 1288 / 1224
x-Kernel 672 / 664 688 / 700

Table 3. Footprint, in KB, of file transfer in
PIX, NcFTP and x-Kernel.

the bigger the increase. The column under the field of 100
MB File Transfer shows the peak value of memory usage,
which is during the transfer a 100 MB file. The NcFTP soft-
ware occupies more memory because it supports complete
FTP functionalities, while FTP of PIX implements part of
them and FTP of x-Kernel only supports the file transfer ca-
pability.

4. Conclusion

In a companion paper [2], it is argued that, with re-
spect to more traditional protocol development tools, PIX
offers configurability superiority because of the use gener-
ative programming. An important issues that needed to be
clarified, was whether or not this configurability superior-
ity was at the expense of performance. By means of the file
transfer protocol case, this paper has analyzed the perfor-
mance of PIX and GP based protocol implementation with
respect to traditional approaches.

Regarding latency, we found that PIX and GP are
3.5% to 7.2% slower than NcFTP (structured program-
ming) and 1.5% to 2.8% slower than x-Kernel (structured
and object-based programming). Concerning through-
put PIX can achieve 92% of NcFTP’s peak throughput
and 97% of x-Kernel’s peak throughput (the 10 MB col-

umn in Table 2). Relating to resource usage, CPU usage
time is of the same order with all three implementa-
tions. Memory usage by NcFTP is higher, but is currently
support more functionality.

From the statistics of our experiments, we could state
that using generative programming adds very light addi-
tional measurable cost with respect to object-based or struc-
tured programing when used for protocol implementation.
Take into consideration of the benefit of a high degree of
configurability, generative programming is a very promis-
ing approach of implementing protocols.

Acknowledgment

The authors graciously acknowledge the financial sup-
port received from the following organizations: Natu-
ral Sciences and Engineering Research Council of Canada
(NSERC) and Mathematics of Information Technol-
ogy and Complex Systems (MITACS).

References

[1] American Telephone and Inc. Telegraph: Unix System V Pro-
grammer’s Guide. Prentice Hall, Englewood Cliffs, NJ. (1987)

[2] Barbeau and F. Bordeleau: A Protocol Stack Development
Tool Using Generative Programming. in: D. Batory and C.
Consel (Eds.): Proceedings of Generative Programming and
Component Engineering (GPCE). Lecture Notes in Computer
Science 2487. (2002)

[3] Beck, M., Bohme, H., Dziadzka, M., Kunitz, U., Magnus, R.,
Verworner, D.: Linux Kernel Internals - Second Edition. Ad-
dison Wesley Longman. (1998)

[4] Birman, K., Constable, R., Hayden, M., Kreitz, C., Rodeh,
O., van Renesse, R., Vogels, W.: The Horus and Ensem-
ble Projects: Accomplishments and Limitations. Proc. of the
DARPA Information Survivability Conference and Exposition
(DISCEX ’00). Hilton Head, South Carolina. (2000)

[5] Czarnecki, K. Eisenecker, U.W.: Components and Generative
Programming. Proceedings of the 7th European Engineering
Conference held jointly with the 7th ACM SIGSOFT Sympo-
sium on Foundations of Software Engineering. (1999) 2–19

[6] Hutchinson, N.C., Peterson, L.L.: The x-Kernel: An Architec-
ture for Implementing Network Protocols. IEEE Transactions
on Software Engineering. 17 (1) (1991) 64–76

[7] Li, Z.: Performance of Generative Programming Based
Protocol Implementation. Master Thesis, School of Com-
puter Science, Carleton University. (2003) (Available at:
www.scs.carleton.ca/�barbeau/Thesis/li.pdf)

[8] Wright, G.R., Stevens, W.R.: TCP/IP Illustrated - Volume 2.
Addison Wesley. (1995)

[9] Zhang, S.: Channel Management, Message Repre-
sentation and Event Handling of a Protocol Imple-
mentation Framework for Linux Using Generative
Programming. Master Thesis, School of Computer
Science, Carleton University. (2002) (Available at:
www.scs.carleton.ca/�barbeau/Thesis/zhang.pdf)

