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Abstract

In a Web site, each page v has a certain probability p, of being requested by a
user. The access cost of page v, is ¢(v) = p, - ¢(r,v), where ¢(r,v) is the cost of the
shortest path between the home page, r, and page v. The access cost of a Web site
is the sum of the access cost of all its pages. The cost of a path is measured in two
ways. One measure is in terms of its length, where the cost of the path is simply
the number of hyperlinks in it. The other measure is in terms of the data transfer
generated for traversing the path.

This research work concerns the problem of minimizing the access cost of a Web
site by adding hotlinks over its underlying structure. We propose an improvement on
Web site access by making the most popular pages more accessible to users. We do
this by assigning hotlinks to the existing structure of the Web site. The problem of
finding an optimal assignment of hotlinks is known as the hotlink problem.

Consider a directed graph G = (V, E), where V represents the pages of a Web site
connected via hyperlinks E. We prove that the hotlink assignment problem is NP-
hard, and give some theoretical results related to this problem. We present heuristic
algorithms which are tested and compared by simulation on real and random Web
sites.

We develop The Hotlink Optimizer (HotOpt), a new software tool that finds an
assignment of hotlinks reducing the average number of steps in a Web site. HotOpt

is empowered by one of the algorithms presented in this dissertation.
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Chapter 1

Introduction

1.1 Hotlinks

A Web site is a collection of Web pages administered by the same authority which
are linked together to form a unified source of information. We say that two Web
pages are connected by a hyperlink, which is a one-way linkage between two pages.
This research focuses on improving the design of Web sites by assigning hotlinks
(shortcuts) to the collection of Web pages.

The notion of a home page is needed to understand the organization of a Web
site. The home page is considered to be the starting point of any Web site, and it
is assumed that any Web page belonging to the Web site can be reached from the
home page. Under this assumption, we can say that within a site, a Web page b is
a descendant of a Web page a if there is a path of hyperlinks leading from a to b.
Therefore, any Web page is a descendant, of the home page.

A hotlink is defined as a hyperlink that links a Web page to a descendant of that
page. A special case of a hotlink is a bookmark, which may only link the home page to
one other page of the collection. Thus, every bookmark is a hotlink but only certain

hotlinks are bookmarks.
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1.2 Why Hotlinks

There are many factors, from physical to logical, which affect the speed of information
retrieval from the Internet. Examples include the efficiency of the underlying data
transmission lines and the protocols that govern their usage; the physical location of
the information and the efficiency of the Web browsers which locate it.

Continuing efforts are being made in order to improve the performance of the
Internet. Some of the most important areas of research are Web site design, clustering,
and caching, which are discussed later.

We believe that a well designed Web site contributes to the improvement of the
Internet since well structured sites lead to less traffic on the Web, as users are getting
the information they want without having to traverse superfluous Web pages. In
addition, well designed Web sites become more attractive to users since they offer
rapid access to information.

We have interesting problems concerning the assignment of hotlinks, which are

theoretically challenging, and their solutions appear to be of significant utility.

1.3 Important Trends in Web Design and Improve-
ment

Since its appearance in the second half of the 20"* Century, the Internet has been the
subject of arduous study. Until the last two decades, when the amount of information
on the Internet started to expand at unprecedented rates and with unknown patterns,
it was never so urgent to organize the content. Perhaps, the unregulated growth of
the Internet is a result of the different socio-economic interests that interact on it.
As an entity that is not well-understood, consisting of a solid source of information

and communication for the whole world, the Internet has become an attractive field
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of study to researchers.
There are numerous studies on Web sites. In this section, we look at some impor-
tant trends. First, we present a brief survey of Web characterizations. Secondly, we

summarize the history of Web improvement with caching and adaptive Web sites.

1.3.1 Topological Characteristics

To improve the Web it is important to know what it looks like and how it is expanding.
These are two of the most challenging and intriguing questions about the Web. Some
researchers have found interesting topological characteristics of the Web collected
within a certain period of time. The Web is constantly expanding, and therefore it is
not enough to find its topological characteristics but it is important to find out how
it is expanding. Many researchers use random Web sites to test the performance of
their algorithms. The generation of random Web sites is not an easy task. In this
section we survey some important literature on Web characterization and topology
modeling.

Some authors extract important characteristics of the Web. Bray [10] provides
approximate answers to interesting questions, for example, “how big is the Web?”,
“what is the average page like?”, “how richly connected is the Web?”, and “what does
the Web look like?.” Pitkow [46] extracts certain characteristics of the Web, such as,
requested file popularity, site popularity, and reading time per page. As a consequence
of fast expansion, their results are only an outdated snapshot of the Web and do not
tell us much about how it looks now, or how it is expanding.

Due to this uncertainty, many researchers base their work on random graphs.
This approach gives rise to the necessity of having accurate random graphs genera-
tors. Calvert et al. [12] discuss how graph-based models can be used to generate large
graphs with specific parameters of locality and hierarchy. Zegura et al. [57| compare

different random graphs generators and present new ones that guarantee certain char-
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acteristics of the graphs that are generated. Aiello et al. |3] describe a random graph
model for reproducing sparse gigantic graphs with particular degree sequences. The
model proposed by Aiello et al. fails in reproducing a connected graph, though the
graph generated contains a gigantic connected component. Hayes [27] explains the
difficulties of modeling the Web accurately. Hayes [28| indicates that gigantic graphs,
such as the Web, tend to have three particular characteristics, they are sparse, clus-
tered, and of small diameter (diameter = log(n), where n is the number of nodes).
Graphs exhibiting those characteristics are called small world graphs. See [53] for a
full description of the small world phenomenon. Hayes [28] describes some classical
methods for generating gigantic graphs, such as lattices andErdés-Rényi graphs, how-
ever, he points out that lattices do not have small diameter andErdos-Rényi graphs
are not clustered.

Faloutsos et al. [21]| find that the Web obeys power-law relationships. They
observe that the probability that a page has ¢ hyperlinks pointing to other pages is
proportional to i7¢, where c is a positive constant. This important observation is a
big step toward the answer of what the Web looks like. Another important result has
been published by Reka et al. [48]. They observe that the diameter of the Web is 19,
where diameter means the average distance between two random pages. Broder et al.
[11] tightened the diameter given by Reka et al. to be 17 if the path is directed, and
6 if it is not. Broder et al. also find precise values for the constant c for the indegree,
i.e., the number of pages that point to a page, and the outdegree, i.e., the number of
pages pointed to by a page. In addition, they present a macroscopic picture of the
Web.

The question of “how the Web is expanding?” remains as yet unanswered. Does the
Web expand obeying certain patterns? Is it expanding randomly? These intriguing
questions still constitute an obstacle in the efforts toward the improvement of the

Web.
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1.3.2 Web Caching

One of the proposed ways of Web improvement is caching. A complete description
of caching can be found in [18]. Caching consists in storing the most requested Web
pages in the proxy for future access. See [39] for an overview of proxies. One of the
intrinsic problems with caching is deciding what to cache and for how long. Pitkow et
al. [47] present an adaptive caching algorithm, based on the analysis of a psychological
model of human memory, that responds to the hit rates and access patterns of users
requesting documents. Glassman [24] describes the design and performance of a
proxy based on a study on human behaviour. Lately, some commercial companies
have explored the idea of Web mirroring, e.g., Akamai, Digital Island. Web mirroring
consists of keeping copies (or mirrors) of a Web site (or part of it) in different strategic
locations. Li et al. [37, 38| provide algorithms for optimally placing proxies in the
Internet when the topology is a line [37] and a tree [38]. With the emergence of large
multimedia traffic such as video and audio, different techniques have been deployed;
for example, Wu et al. [55] propose a scheme where the time an object remains in the
cache depends on a combination of the object’s size and the last time it was fetched.
Jung et al. [31] propose a pre-fetching approach that consists in taking advantage of
the http protocol capability which allows to request partial documents when errors
have occurred during the transmission, instead of requesting the whole document.
Bouras et al. [9] propose to reduce data transfers over the Web by fragmenting pages,
and whenever a user requests a page that is in the cache, only the outdated fragments
(if any) of the page will be retrieved from the source server. Bauer et al. [7] analyse
maximal forward paths® to retrieve pages to the user’s cache before these pages are
actually requested.

Even though memory is becoming inexpensive along with increased capacity, new

1A forward path is the path followed by a user in a single session until the user returns to a
previously visited page.
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applications require faster access to large amount of information. From this point of

view, caching techniques must constantly adapt to the demands of new applications.

1.3.3 Access Patterns

Some researchers have focused their attention on the optimal design of Web sites based
on user access patterns. Some of them suggest analysing user access patterns to help
design better Web pages, sites, and browsers. Catledge et al. [13] and Drott et al.
[20] analyse user access patterns to suggest improvements that help to design better
Web pages. For example, Catledge et al. find that users rarely traverse a path of more
than two hyperlinks before returning to the starting point. This observation would
suggest to create dense Web sites. Pirolli et al. [45] propose to create aggregation of
Web pages according to their importance or their content.

Perkowitz et al. [42] propose the design of adaptive Web sites by promoting and
demoting pages, highlighting hyperlinks, adding hyperlinks and clustering related
pages. Perkowitz et al. [43] present an algorithm that analyses user access logs
in order to identify candidate hyperlink sets to be included in index pages. Their

algorithm performs the following steps:

1. process the access log into visits;

2. find clusters of linked pages and create an adjacency matrix;
3. find maximal cliques;

4. rank the cliques found; and

5. for each cluster, create a Web page consisting of hyperlinks to the documents

in the cluster.

The algorithm is tested only in a particular Web site. The performance of the al-

gorithm is measured according to the quality of the clusters; specifically, they assess
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the quality of a cluster by answering the following question. Given a visit to a page
of a cluster, what percentage of the pages in this cluster was visited by this user?
They find that when the number of clusters is 1, the percentage of visits is approxi-
mately 72%; but when the number of clusters is 10, the percentage of visits is around
20%. They also compare clusters constructed by a human with clusters constructed
by their algorithm and find that the algorithm constructs clusters with at least 15%
more visits than the human-authored ones. Note that the approach of Perkowitz et
al. finds clusters of related documents and creates index pages to those documents,
however, this solution does not specify where the index pages are to be inserted in
the Web site.

Spiliopoulou et al. [51] present a tool for detecting “interesting” commonly tra-
versed paths. They suggest the use of this information to improve Web site design
but do not suggest a specific mechanism.

Nakayama et al. [41] propose a technique to detect the gap between Web designer’s
expectations and users’ behaviour. The former is assessed based on the content of
Web pages, whereas the latter is assessed by analysing user navigation patterns. The
resulting gap suggests (without specifying) the possibility for improvements to the
Web site based on the criteria of the Web designer. These improvements may be on
the hyperlink topological structure or on the page layout. The statistical analyses used
to assess Web designers’ expectations and users’ behaviour are suitable for evaluating
the improvements without involving actual users.

Fu et al. [22] propose an algorithm to reduce the number of steps to reach the
most popular pages of a Web site. They classify the Web pages according to the
number of hyperlinks in them into “index pages” and “content pages”. Based on this
classification and on the popularity of Web pages, the authors promote and demote
pages to reduce the number of steps. Fu et al. test their approach in a particular Web

site. They show experimentally that their approach actually “reduces” the number
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of steps required to reach popular pages. Their algorithm requires the empirical
adjustment of parameters used in their classification of Web pages.

Srikant et al. [52] propose improving Web site design by finding the pages whose
actual location is different from their expected locations, i.e. where visitors expect to
find them. Their algorithm relies on the belief that when the user presses the back
button of the navigator it is because the user did not find the page where he or she
had expected to find it. The algorithm of Srikant et al. is tested only in a particular
Web site. They find that “many” pages are wrongly placed, according to their criteria.

1.4 Our Approach: Hotlink Optimization

Unfortunately, it is common that the users and designers of a Web site perceive the
Web site in a different way. This discrepancy is reflected in users having to traverse
“costly” paths in order to reach the pages they are interested in. We say that a path
is costly either because it is “t00” long or because the pages in it are “too” big (in
bytes).

We endeavour to improve Web access by improving the design of Web sites. A
well designed Web site will avoid some useless traffic, save time to users, and reduce
the Web server work load. Our idea is conceptually simple, “bring the most popular

pages closer to the home page.”

1.4.1 The Problem

In a Web site, each page v has a certain probability p, of being requested by a user.
The access cost of page v, is ¢(v) = p, - ¢(r, v), where ¢(r,v) is the cost of the shortest
path between the home page, r, and page v. The access cost of a Web site is the sum
of the access cost of all its pages. The cost of a path is measured in two ways. One

measure is in terms of its length, where the cost of the path is simply the number of
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hyperlinks in it. The other measure is in terms of the data transfer generated by the
path, i.e., the number of bytes that need to be transferred in order to traverse the
path. The problem is to minimize the access cost of a Web site by adding hotlinks to
its underlying structure. A hotlink is an additional hyperlink that provides a shortcut
between two pages. An immediate intuitive solution to the problem would be to add
as many hotlinks as necessary to connect directly the home page with every other
page of the Web site. However, from a practical point of view, this solution could
produce a Web site without semantic structure and with a very dense home page, that
would be difficult to visualize and understand by users. Therefore, we must restrict
our problem to assigning at most k£ hotlinks per page. The problem is to minimize
the access cost of a Web site by adding at most k hotlinks per page. This is a very
difficult problem, in fact, we prove it is NP-hard. The problem and its NP-hardness

are studied in Chapter 2 and can also be found in [8].

1.4.2 Principles of Hotlink Design

We propose an improvement on Web site access by adding hotlinks that provide
shortcuts to the most popular pages. Suppose that there is a page with many access
hits; we want this page to be closer to the home page so users can reach it at a lower
cost. Cost may be measured in terms of the expected number of steps or in terms of
the expected data transfer. Figure 1.1 illustrates the idea. In Chapter 2 we formally
define the access cost of a Web site.

It would be interesting to measure the cost of a Web site in terms of its latency.
Latency is a measure of network performance that “corresponds to how long it takes
a single bit to propagate from one end of a network to the other” (|44], page 23). The
latency of a Web site is the average of the latencies of its Web pages. The latency of
a Web page is the time elapsed from the time when the user requests a page on his or

her navigator to the time when the page is completely displayed on the screen. From
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home page

— hyperlink
—= hotlink

Figure 1.1: Example of an assignment of at most one hotlink per page. The figure
shows a small Web site modeled with a directed graph (edges going downward).

this definition of latency, we can say that the latency of page v is smaller for user A,
who has a high speed Internet connection, than for user B, who has a slower one. The
latency of a Web page experienced by users A and B also depends on other factors
including their physical locations and the traffic on the transmission lines. Due to the
fact that the latency of a Web page depends on a combination of many factors that
vary from one user to other, it is extraordinarily complex to design a realistic model
for optimizing the latency of a Web site. Nevertheless, by optimizing the expected
number of steps (or the expected data transfer) of a Web site, as we endeavour to do
in this dissertation, we may significally decrease latency. See the example illustrated

in Figure 1.2.

One Hotlink per Page

The graph of a Web site contains a naturally embedded tree that can be constructed
starting from the home page of the site. The home page has hyperlinks to internal
pages that also have hyperlinks to other internal pages and so on. This perception
of the Web site gives rise to a breadth first search (BFS) tree with the home page

as the root. This breadth first search tree respects the most natural and basic struc-
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— hyperlink
—= hotlink

Figure 1.2: Example of how a hotlink assignment reduces the latency of a Web site
by reducing the average data transfer. The sizes of the Web pages are in KBytes.

ture originally conceived by the Web site designer. In [16] we present our heuristic
algorithms and study their performance.

Our simplest hotlink assignment algorithm is called simpleBFS. This algorithm
assigns hotlinks iteratively in breadth first search order, starting from the home page.
Let A = {v1,v9,...,un} be the set of nodes of the tree in increasing breadth first
search order in such a way that v; is the home page. Now in the i-th iteration of
the algorithm, we assign a hotlink (s,¢), where s = v;, and ¢ is a descendant of s
that minimizes the access cost. The algorithm stops when there are no more possible
hotlinks to assign.

The next algorithm that we present is a slight modification of simple BF'S. Here,
we also assign hotlinks iteratively in breadth first search order starting from the home
page. The only difference is that in each iteration of the algorithm, we do not allow
two hotlinks to cross each other, i.e., ¢ is a descendant of s that minimizes the access
cost, but is not a descendant of a node x, which is at a higher level than s and already
has an incoming hotlink. See Figure 5.1. The algorithm stops when there are no more
possible hotlinks to assign. We call this algorithm greedyBFS because certainly none

of the hotlinks is wasted, as we will see in Chapter 5.



CHAPTER 1. INTRODUCTION 13

A third algorithm is a recursive version of greedyBFS. The basic idea is to assign
a hotlink (s,t), where s is the home page and ¢ is the node that offers the biggest
savings on the access cost. The original tree is then split into subtrees consisting of
the subtrees rooted at the children of s and the subtree rooted at t. This procedure
proceeds recursively for each of these subtrees. See Figure 5.4. We simply call this
algorithm recursive.

We evaluate the performance of the algorithms on random and real Web sites.
The simulation reveals that we can save at least 24%, and as much as 35% of the
original access cost of a Web site. These algorithms are studied in Chapters 5 and 8,

and the test performed are described in Chapters 6 and 9.

Multiple Hotlinks per Page

A multiple hotlinks algorithm based on greedyBF'S is called k-greedyBFS, and consists
of assigning at most k£ hotlinks on each iteration of algorithm greedyBFS.

Another multiple hotlinks algorithm based on greedyBFS is called greedyBFS*.
This algorithm assigns at most k hotlinks per node. Algorithm greedyBFS* runs k
times the algorithm greedyBFS but after each of those £ iterations creates a new
breadth first search tree, and in the subsequent iterations treats the previous hotlinks
as regular hyperlinks. Figure 5.5 illustrates the principle of the algorithm.

We compare the performance of the algorithms k-greedyBFS and greedyBFS* on
random Web sites. The simulation reveals that greedyBFS* has a better performance
for £ > 5. These algorithms are studied in Chapter 5 and the experiments are

described in Chapter 6.

The Hotlink Optimizer

In Chapter 7 we describe our Hotlink Optimizer (HotOpt). HotOpt is a powerful

software tool that assists administrators and designers in structuring their Web sites
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inputs { homepage.html logfile.txt

HotOpt Hotlink Optimizer
mechanisms
| |
outputs
P { set of hotlinks % of savings

Figure 1.3: Inputs and outputs of HotOpt.

in such a way that users need fewer steps to reach the desired Web pages.

HotOpt is able to suggest a set of hotlinks to be added to the Web site by analysing
its hyperlink structure, and taking into account the patterns of the users. This is a
semi-automatic process in the sense that the hotlinks are found automatically, but
are not automatically added to the Web site. For the moment, we want to assist Web
designers, not to replace them.

The inputs of HotOpt are the home page file? and the access log files, and the
output are the set of hotlinks H and the proportion of the access cost that can be
reduced with this set of hotlinks, 2%. Figure 1.3 depicts a macroscopic view of

HotOpt. HotOpt is also presented in [34].

Special Structure: Full Binary Trees

To improve our understanding of the problem we find it instructive to look at versions
of the problem which are structurally simple but at the same time interesting enough

to yield meaningful mathematical solutions. Following this approach, we looked me-

20bserve that from the home page we can obtain the structure of the Web site by performing
breadth first search.
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thodically at full binary trees.

Hotlink Assignments In Chapter 3 we introduce hotlink assignment algo-
rithms for full binary trees with m = 2" leaves and present upper and lower bounds
where the access probabilities of the trees are drawn from one of the following distri-

butions:
e Uniform: py =po=---=pn=1/m

e Geometric: p; =a % fori =1,...,m—1,and p,, =2 — (1 —a ™)/(1 —a}),

where a > 1
e Arbitrary: pr+pe+---+pn =1
e Zipt: p; = ﬁ’ where H,, =) ", 1/i is the harmonic number

These results are also presented in [8].

Optimal Structure of Bookmarks An important technique for improving
the response rate of large, distributed documents is to design the assignments of
bookmarks in a careful and methodical manner. A bookmark is a special case of
a hotlink. However, unlike general hotlinks, bookmarks can only connect the home
page with any other page. This is the approach we follow in [17].

We pose the following bookmark assignment problem (k-BAP): Find an assignment
of k bookmarks in a Web site that minimizes the expected number of steps to reach

any page of the site from the home page.

1.5 General Notation and Terminology

Consider a part of the Web called a Web site, consisting of a collection V' = {vy, ..., ox}

of Web pages connected by hyperlinks. These hyperlinks have been placed a priori
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by design in the initial construction of the Web pages. Assume there exists a directed
path of hyperlinks from the home page r to any other page of the collection. We can
view the Web site as a directed graph G = (V, E), where each page is represented
by a node, and each hyperlink is represented by an edge®. The number of hyperlinks
in page v is called outdegree, and is denoted by ¢§,. The mazimum degree of all the
pages of a Web site is denoted by 4.

Consider a tree T'= (V, E'), where E' C E, with a distinguished node called the
root, r. We define the distance from the root r to a node v € V, denoted by d(v), as
the number of edges between them.

Suppose that the leaves of T" have a probability distribution p over them. We
assign weights® to the internal nodes in a bottom-up fashion, in such a way that the
weight of a node is equal to the sum of the probabilities of the leaves descendant to
it. Observe that in this way, the root node will have a weight of 1. Thus, let us say
that node v has weight p,, then we define the access cost of page v, denoted by c(v)

as:

c(v) = py - c(r,v), (1.1)

where ¢(r,v) is the cost of the shortest path between the home page, r, and page v.
The cost of a path is measured in two ways. One measure is in terms of its length,
where the cost of the path is simply the number of hyperlinks in it. The other measure
is in terms of the data transfer generated by the path, i.e., the number of bytes that
need to be downloaded in order to traverse the path.

The access cost of a Web site T, is the expected number of steps (or the expected

data transfer ) to reach a leaf from the root, which is defined by:

3Throughout this dissertation we use interchangeably the terms root and home page, node and
Web page, edge and hyperlink.

4The terms weight, probability, and popularity will be used interchangeably throughout this dis-
sertation, except in Part IV, where weight refers to the size (in bytes) of a Web page.
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E[T) = Z c(v)

v 18 a leaf
1.6 Contributions of the Thesis

In this thesis we make several contributions. We start by looking at the mathematical
structure of the problem and try to assess its intrinsic difficulty by looking at its NP-
hardness and specific topologies. We consider some variants of the problem, namely,
one hotlink per page and multiple hotlinks per page. We use simulations to test
the performance of our algorithms. In particular, we use randomly generated Web
sites, real Web sites and a case study. We develop the Hotlink Optimizer, a hotlink

assignment software tool. In this section we summarize our main contributions.

1.6.1 Hotlink Assignments

First we study the mathematical structure of the problem for full binary trees and

then we proceed to the general case.

Hotlinks in Specific Structures

We look at the assignment of at most one hotlink per node of full binary trees with
well known probability distributions and prove that the hotlink assignment problem

is NP-hard for directed acyclic graphs. Table 1.1 summarizes our results.

Bookmarks in Specific Structures

We prove a NP-hard result for directed acyclic graphs and present an optimal book-
mark placement algorithm. More specifically, our results concerning the bookmark

assignment problem are the following:
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| algorithm | distribution | lower bound | upper bound |
bottomUpStrategy | geometric Q(1) O(1)
lengthTwoHotlinks | arbitrary ig’g fntl
lengthTwoHotlinks uniform 3’”4—+1 3”4—“
sortedZipfHotlinks | Zipf (sorted) Tos3 5 +O(v/n-logn)

lengthTwoHotlinks Zipt o3 Sntl

Table 1.1: Lower and upper bounds on the access cost of a full binary tree.

1. The bookmark assignment problem is NP-hard even for arbitrary directed acyclic

graphs, even with uniform distribution of access probabilities.

2. We present a characterization of an optimal assignment of £ < /N + 1 book-

marks in a full binary tree of N nodes.

Hotlink Assignments to Web sites

Our algorithms for Web sites were tested with simulations on randomly generated Web
sites, real sites, and a case study. Tables 1.2, 1.3 and 1.4 summarize the performance

of our algorithms.

maximum minimum % maximum %

number of of reduction on | of reduction on

algorithm hotlinks per page | the access cost | the access cost
greedyBFS 1 24 27
k-greedyBFS 2 34 -
20 - 52
greedyBFS* 2 32 —
20 - 60
weighted-greedyBFS 1 11 14

Table 1.2: Performance of our hotlink assignment algorithms tested on randomly
generated Web sites. Algorithms greedyBFS, k-greedyBFS, and greedyBFS* reduce
the access cost in terms of the expected number of steps, while algorithm weighted-
greedyBFS reduces the access cost in terms of the expected data transfer.
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maximum minimum % maximum %
number of of reduction on | of reduction on
algorithm hotlinks per page | the access cost | the access cost
greedyBFS 1 34 35
weighted-greedyBFS 1 28 30

Table 1.3: Performance of our hotlink assignment algorithms tested on real Web
sites. Algorithm greedyBFS reduces the access cost in terms of the expected number
of steps, while algorithm weighted-greedyBFS reduces the access cost in terms of the
expected data transfer.

maximum % of reduction
number of on the
algorithm hotlinks per page access cost
greedyBFS 1 27
weighted-greedyBFS 1 22

Table 1.4: Performance of our hotlink assignment algorithms tested in the
scs.carleton.ca domain. Algorithm greedyBFS reduces the access cost in terms of
the expected number of steps, while algorithm weighted-greedyBFS reduces the ac-
cess cost in terms of the expected data transfer.
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1.6.2 The Hotlink Optimizer

We have developed the Hotlink Optimizer (HotOpt), a powerful software tool that
assists Web administrators and designers in re-structuring their Web sites according
to the needs of users. HotOpt is also presented in [34].

By analysing the hyperlink structure of a Web site, and taking into consideration
the access patterns of the users, HotOpt is able to suggest a set of hotlinks, H, and
thus save a certain proportion of the access cost of the Web site. While the inputs
are the home page file and the access log files, the output is a set of hotlinks H along
with 2%, the proportion of gain achieved by H. Figure 7.2 shows the user interface

of HotOpt.

1.7 Overview

This dissertation is organized in four parts. In Part I we provide the background for
the study of hotlinks, explain our work intuitively, and define the problems and their
difficulty. In Chapter 2 we formally define the problems, prove their NP-hardness and
discuss our approach.

In Part II we present our work for full binary trees. Chapters 3 and 4 study the
assignment of hotlinks and bookmarks.

In Part III we study the optimization of the expected number of steps to reach
the pages of a Web site. In Chapter 5 we present a theoretical lower bound on the
minimum number of steps required to reach a page of a Web site and present heuristic
hotlink assignment algorithms. Chapter 5 is divided in two sections which study the
assignment of at most one hotlink per page and the assignment of multiple hotlinks
per page respectively. In Chapter 6 we evaluate the performance of the algorithms
presented in Chapter 5. In Chapter 7 we introduce the Hotlink Optimizer, a software

tool that assists Web administrators and designers by suggesting an assignment of
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hotlinks.

Finally, in Part IV we study the optimization of the expected data transfer, i.e.,
the expected number of bytes that need to be transferred by the server when a user
visits one of its pages. While in Chapter 8 we present a theoretical lower bound and
a heuristic hotlink assignment algorithm, an evaluation of the algorithm is provided
in Chapter 9.

Finally, in Chapter 10 we discuss the conclusions and some possible extensions to

our work.



Chapter 2

What Makes Hotlink Assignments
Difficult

2.1 Introduction

In this chapter we define the hotlink and bookmark assignment problem and prove
that they belong to the set of NP-hard problems. Given the NP-hardness of the
problems, we provide a framework for addressing them in this dissertation. This

work is also presented in [8] and [17].

2.2 Optimal Hotlink Assignment Problem

We want to minimize the access cost of a Web site. The access cost of a Web site is
equal to the average access costs of all its pages. The cost of a page is equal to the
cost of the shortest path from the home page. The cost of a path can be measured in
two ways. One measure is in terms of the number of steps, where the cost of the path
is the number of hyperlinks in it. The other measure is in terms of the data transfer

generated for traversing the path. We define the problems formally.

22
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2.2.1 Optimizing the Expected Number of Steps

Assume there is a probability distribution over the leaves of a tree T. Let us say
that a leaf 7 has probability p;. We assign probabilities to the internal nodes in a
bottom-up fashion, in such a way that the probability of a node is equal to the sum
of the probabilities of the leaves that are its descendants. Consider the cost of page

v,

c(v) = py - c(r,v), (2.1)

where ¢(r,v) is the length of the (shortest) path between the home page, r, and page
v. The length of the path from r to v, ¢(r,v), is defined as the number of hyperlinks
in the path.

The expected number of steps to reach a leaf from the root is defined by

ET]= Y ¢ (2.2)

v is a leaf
The optimal k-hotlinks assignment problem consists in minimizing Equation 2.2
by adding at most k£ hotlinks from each node of the tree. If £ = 1 we call it optimal
hotlink assignment problem. A hotlink, h, is an additional directed edge, (s,t), added
to the original tree!, such that ¢ is a descendant of s. We say that s is the hyperparent
of ¢, and ¢ is the hyperson of s. Consider a set H of hotlinks assigned to the tree T’
the resulting graph is denoted by T#, and the gain of H is defined by

G(H) = E[T] - E[T"] (2.3)

The gain of a single hotlink, h = (s, t), is defined by

ILiterals s and t stand for source and target nodes.
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g(h) = pi(d(t) — d(s) — 1) (2.4)

A set of hotlinks H is optimal if G(H) > G(H') for any hotlink set H'. The hotlink

assignment problem is proven to be NP-hard in Section 2.3.

2.2.2 Optimizing the Expected Data Transfer

Another way of measuring the access cost of a Web site is by considering the average
data transfer, i.e., the amount of bytes that need to be transferred in order to reach a
Web page. All definitions in Section 2.2.1 remain the same, except the ones redefined
here.

Define the weight (in bytes) of a page v, w,, as its own size plus the size of its
embedded files. The access weight of a page v, w(v), is equal to the sum of the
weights of the pages contained in the shortest path between the home page and v.

The access cost of page v is defined by

c(v) = w(v) - py

The expected data transfer to reach a leaf from the root is defined by

ET]= Y ¢ (2.5)

v is a leaf
The optimal hotlink assignment problem consists in minimizing Equation 2.5 by
adding hotlinks to the tree.

The gain of a single hotlink, h = (s, t), is now defined by

9(h) = pi(w(t) —w(s) —w) (2.6)
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2.2.3 Optimal Bookmark Assignment Problem

Recall that a bookmark is a special case of a hotlink that connects the home page
with any other page.

Recall that in the hotlink assignment problem, the probability distribution is on
the leaves. In the bookmark assignment problem we assume that the probability
distribution is over all the nodes V of T'. Let us say that node i has probability p;.
Consider equation 2.1.

The expected number of steps to reach a node from the root is defined by

E[T] =) c(v) (2.7)

veV
The optimal bookmark assignment problem (k-BAP) consists in minimizing Equa-
tion 2.7 by adding at most k£ bookmarks to the tree. A bookmark b, is an additional
directed edge (r,v),v # r, added to the original tree. A bookmark set on 7 is a set
B C V; thus we identify a bookmark (r,v) with the node v itself. Consider a set
B ={by,..., b} of bookmarks assigned to the tree T; the resulting graph is denoted
by T2, and the gain of B is defined by

G(B) = E[T] — E[T"]

The distance from the root to a node v in T? is denoted by dg(v). The gain of a

single bookmark, b € B, is denoted by

g5(b) = d(b) — dp(b)

The gain for a node v in T is denoted by

gs(v) = d(v) — dp(v)
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A bookmark set B of size k is optimal if G(B) > G(B') for any bookmark set B’
of size k. We will prove that the optimal bookmark assignment problem is NP-hard.

2.3 NP-Hardness of the Hotlink Assignment Prob-
lem

In this section we prove that the optimal hotlink assignment problem is NP-hard
even for arbitrary directed acyclic graphs with uniform distributions. Consider the
following optimization problem.

HOTLINK ASSIGNMENT

Instance: Directed graph G = (V, E), a node s € V from which every node of the
graph can be reached, and positive integer g.

Question: Does there exist a hotlink assignment H for which the gain G(H) is at

least g?
Theorem 1. The problem HOTLINK ASSIGNMENT is NP-hard.

Proof. The transformation is from the following NP-complete decision problem [23].
EXACT COVER BY 3-SETS (X3C)
Instance: Set S with |S| = 3k and a collection C' of 3-element subsets of S.
Question: Does C contain an exact cover for S, i.e., a subset C’ C C such that every
element of S belongs to exactly one member of C'?

Given an instance (C,S) of X3C we construct an instance (G, g) of HOTLINK
ASSIGNMENT as follows. Let the set S = {s1,s2,...,$n} be of size m = 3k, and
the set C of size t. The graph G = (V| E) is defined as follows.

e The vertex set V consists of the vertices below:

1. Ay is the source node of the graph,
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complete
bipartite

row 1 row 2 row 3 row m

Figure 2.1: An instance of HOTLINK ASSIGNMENT. The i-th rectangular box at
the bottom row represents the row s;1,S8;2,...,8ik, for ¢ = 1,2,...,m. If 5, € C}
then there is a directed edge from C} to each of the vertices of the i-th row.
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2. Al,...,Akfl. B17B2a---;Bk71: and 01,02,...,Ct,

3. 8i1,8i2,--+,8ik fort =1,2,...,m, are m rows of vertices each row of size

k.
e The edge set E consists of the directed edges below:

1. (Ao, 4;), and (A;, By), foralli=1,...,k—1,
2. (B;,Cj),foralli=1,....,k—1,and j =1,2,...,¢,

3. if s; € C; then there exist directed edges (Cj, si1), (Cj, 8i2),---,(Cj, Sik)-

The directed graph G is depicted in Figure 2.1. We can prove the following lemma.

Lemma 1. There is a set cover of size at most k if and only if the directed graph G

has a hotlink assignment which attains a gain of at least mk + 3k.

Proof. The lemma implies the theorem. To prove the lemma it is enough to prove
the following two claims.

Claim 1: If there is an exact cover of S by 3-sets then there is a hotlink assignment
for the graph G whose gain is at least mk + 3k.

Indeed, let C;,,C;,, ..., C

ir_, be such a set cover of the set S. Consider the following

hotlinks.
Ao — CioaAl — Cin ceey Ak—l — Cikfl'

The gain resulting from the hotlink Ay — Cj, is 2(3k) and the gain resulting from
the remaining £ — 1 hotlinks is (m — 3)k. Hence the total gain is mk + 3k.

Claim 2: If there is no set cover of size k then the gain from any hotlink assignment
on the graph G is less than mk + 3k.

Indeed, consider any hotlink assignment of G. On the one hand, if this hotlink
assignment is using a hotlink from A, to some vertex B;, for some 1 =1,2,... k—1,

then the maximum gain that can be attained is at most mk +2(k — 1) + (k — 1) <
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mk + 3k. On the other hand, if this hotlink assignment is never using a hotlink from
Ay to any vertex B;, for any i = 1,2,...,k — 1, then again the maximum gain that

can be attained is less than 2(3k) + (m —4)k + k — 1 < mk + 3k.

This completes the proof of the lemma and hence also of the theorem.

We conclude this section with a useful observation that shows that the hotlink
assignment problem on arbitrary graphs is reducible to the hotlink assignment prob-
lem on trees. Observe that for a given hotlink assignment, we can “selectively drop
edges” without altering the average length of a shortest path from the source node to
the destinations in such a way that the resulting underlying graph is a tree rooted at

the source node s. More precisely we have the following result.

Lemma 2. Let G = (V, E) be a digraph with real weights associated to its vertices
and some designated source vertex s such that every vertex of G is reachable from
s. There exists a subgraph G' = (V, E') such that E' C E and G’ is a tree and the

average shortest path from s is the same for G and G'.

Proof. We prove by contradiction that a subgraph G’ of G with minimal number of
edges and the same expected length must be a tree. Note that no incoming edge of s
can be in G'. If G’ is not a tree and the indegree of s is 0, some vertex v must have
at least two incoming edges e1,e5 € E'. We can discard at least one of these, thus
contradicting the minimality of G'. Indeed, if the shortest path tree from s to v uses,
say, edge e;, then edge es is never used in the shortest path from s to v or any of its

descendants.
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2.4 NP-Hardness of the Bookmark Assignment Prob-
lem

In this section we prove that the optimal bookmark assignment problem is NP-hard
even in arbitrary directed acyclic graphs with uniform distributions. Consider the
following optimization problem.
BOOKMARK ASSIGNMENT

Instance: Directed graph G = (V, E) and positive integer k < |V|.

Task: Find a bookmark set B C V of size k¥ maximizing G(B).

Theorem 2. The problem BOOKMARK ASSIGNMENT is NP-hard.

Proof. The transformation is from the following NP-complete decision problem [23].
MINIMUM COVER
Instance: Collection C of subsets of a finite set S, positive integer K < |C].
Question: Does C contain a cover for S of size K or less, i.e., a subset C' C C
with |C'| < K, such that every element of S belongs to at least one member of C'?
Consider an instance of MINIMUM COVER, let C = {¢i,...,¢;} and construct
the following directed graph G = (V, E). Let A = {a1,...,a;}, X = {1, ..., 24} and
Y ={y1,...,y+} be sets such that A, XY, S are pairwise disjoint. Let 7 be an element
outside of AUXUY US. Define V. =AUXUYUSU{r}. The set E of arcs is defined
as follows (cf. Fig 2.2). By ={(a;,8) : s € ¢;,i=1,...,t}, By = {(x;,0;) i =1, ..., t},
Es ={(ysz;) :i=1,..,t}, By ={(r,y;) : 1 =1,...,t}. Finally, F = EyUE,UFE3UFE;.
The construction of graph G = (V, E) can be done in polynomial time. Now, let
k = K < t and solve BOOKMARK ASSIGNMENT for the instance G, k. Let B
be the obtained optimal bookmark set of size £ on G. Hence B has maximum gain
among all sets of size k. Observe that B C AU X U S (bookmarks placed in {r} UY
would be wasted). We now construct a bookmark set B* C AU S whose value is not

smaller than that of B. Suppose that b = x; € B. There are two cases.
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Figure 2.2: An instance of BOOKMARK ASSIGNMENT.

Case 1. q; € B. Since |B| < t, there exists an index j < t for which none
of the elements a;, z;,y; belongs to B. Replacing b by a; increases the value of the
bookmark set because a bookmark at a; contributes at least 2 to the gain, while a
bookmark at b contributes only 1 in this case.

Case 2. a; ¢ B. Replacing b by a; does not decrease the value of the bookmark
set. Indeed, let a be the number of elements in ¢; which do not belong to any set ¢
with a; € B and which are not in B. Then a bookmark at b contributes at most 2 + «
to the gain, while a bookmark at a; contributes 2(1 + «). Clearly, 2+ o < 2(1 + «).

A bookmark set B* can be obtained from B in polynomial time by a repeated ap-
plication of changes described above. It follows that if BOOKMARK ASSIGNMENT
can be solved in polynomial time then a bookmark set B* C AU S of maximum gain
among all bookmark sets of size k£ can also be obtained in polynomial time.

Now observe that, in fact, B* NS = (). Indeed, suppose that some s € S belongs
to B*. Since |B*| < t, there exists an index j < ¢ for which none of the elements

a;, x;,y; belongs to B*. There are two cases. If s belongs to some set ¢; with a; € B*
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then replacing s by a; increases the gain of the bookmark set because a bookmark at
s contributes only 1 to the gain, while a bookmark at a; contributes at least 2. If s
does not belong to any set ¢; with a; € B* then choose any ¢; such that s € ¢;. In this
case replacing s by q; increases the gain of the bookmark set because a bookmark
at s contributes at most 3 to the gain, while a bookmark at a; contributes at least
2 -2 = 4. Hence in both cases the gain of B* could be strictly increased which
contradicts the optimality of B*. This contradiction proves that B* NS = () and
consequently B* C A.

Suppose that B* = {ay, ..., ax}. We have G(B*) = 2(k + |¢c; U ... U ¢x|). Tt follows
that the family {ci, ..., ¢y} maximizes union size among all subfamilies of C of size
k. Consequently, C' has a subfamily C’ of size k or less covering S, if and only if
c1U...Ug¢, = S. Observe that ¢; U ... U ¢, can be computed in polynomial time
knowing B*. Hence MINIMUM COVER can be solved in polynomial time. This
proves that BOOKMARK ASSIGNMENT is NP-hard.

2.5 From Web Sites to Trees

We have seen that the optimal assignment of hotlinks (and bookmarks) is a NP-hard
problem for arbitrary directed acyclic graphs. In this dissertation we approach the
problem for trees. This approach consists in reducing the access cost of the Web site
by reducing the access cost of its leaves. Now, how do we determine which pages are
leaf pages? Some authors use “maximal forward paths” in their approach to improve
Web sites, e.g., [14], [52] and [7]. A forward path is a sequence of pages visited by a
single user in a single session until the user goes back to a previously visited page in
the same session. We may use maximal forward paths to determine which pages are

leaf pages. A leaf page would be a page that is at the end of a path which was visited
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home page

Figure 2.3: Equivalence of having weights on hyperlinks to having weights on pages.

at least a particular number of times. We also have the option of using an approach
similar to the one presented by Fu et al. [22]| to find leaf pages. Fu et al. classify
pages into “index pages” and “content pages” according to the number of hyperlinks
contained in a page. These methods for finding leaf pages are inaccurate and may
not provide the shortest path from the home page. We determine what pages are leaf
pages by performing breadth first search on the Web site beginning at the home page.
By performing breadth first search we ensure that the path from the home page to
the leaves is always the shortest one.

Suppose we found the set of leaf pages L = {l1,ls, ..., I, } of a Web site G = (V,, E),
such that L C V and no page [; € L is in the shortest path between the home page
and a page l; € L,Vi # j. If we dropped the edges that are not in the shortest
path from the home page to each leaf of L we would get a tree T'. Suppose that we
arbitrarily assign real weights to the leaves of T' and that the weight of a page v ¢ L is
equal to the sum of the weights of its descendant leaves. Observe that E[G] = E[T].

It is also possible to assign weights to the pages if we are only provided with
weights on the hyperlinks. In this situation the weight of a leaf page would be the
product of the weights of the hyperlinks traversed in the shortest path between this

page and the home page. This assignment of weights is illustrated in Figure 2.3.
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Chapter 3

Assignment of Hotlinks to Full

Binary Trees

3.1 Introduction

In this chapter we study the assignment of at most one hotlink per node in full binary
trees with different probability distributions over the leaves. We present hotlink
assignment algorithms and provide upper and lower bounds on the corresponding
access cost that can be achieved. We consider a full binary tree of N = 27! — 1
nodes with a probability distribution p over its leaves. The content of this chapter is

also presented in [8|.

3.2 Lower Bounds

A code alphabet is any nonempty set of letters. A code word in the code-alphabet is a
word (i.e., any concatenation) formed from letters of the code-alphabet; the number
of letters in the code-word is the length of the code-word. A code is any set of code-

words. The code is called a prefiz-code if no code-word in the code is a prefix of any
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other code-word in the same code.

To prove lower bounds we use Shannon’s theory and the entropy #(p) (see [1] for
a complete description of entropy) of the probability distribution p, which is defined
by Equation 3.1.

N 1
= Zpi log — (3.1)
i=1 pi
Shannon’s theorem states the following.

Theorem 3. Letpi,ps,...,pmbe a probability distribution. Given a prefizcode
Wi, Wa, . . . , Wy, Of TESPEctive lengths Iy, 1, ..., 1, in an alphabet of size s, the erpected

length Y i | l;p; of the code is at least H(p)/logs.

A binary tree can be thought of as the encoding of the leaves with the two symbol
alphabet 0,1. Adding a hotlink per node increments the alphabet by a single symbol
to form a three symbol alphabet.

Consider a tree T = (V, E). For a given hotlink assignment A, the distance of
the i-th leaf from the root in T4, d(i), is the length of the encoding of the i-th
leaf in this new alphabet. Notice that if two hotlinks are targeting the same node
then the shortest one can be omitted without changing the value of E[T4]. As a
consequence, E[T] is also the expected length of the “encoding” of the leaves of the
tree T4 represented as code-words in a three letter alphabet. Moreover, the resulting

encoding is a prefix code. In particular, Shannon’s theorem applies and we have that

m

1
_ pilog(1/p; 3.2
o3 z; 0g(1/p:) (3.2)

We have proven the following theorem.

Theorem 4. For any probability distribution p on the leaves of a full binary tree and

any assignment of at most one hotlink per source node the expected number of steps
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to reach a Web page located at a leaf from the root of the tree is at least H(p)/log3,
where H(p) is the entropy of p.

Theorem 4 is directly applicable. Straightforward calculations give lower bounds
for several distributions. For the uniform distribution we see that #(p) = n. For the

Zipt’s distribution,
H(p) =2t pilog(1/pi)
= g L 5+ log(Hip)
> % -logn + Q(loglogn)
= 2+ Q(logn)
In particular, this implies the n/(2log3) lower bound on the expected number of

steps for the Zipf’s distribution.

3.3 Geometric Distribution

Recall the geometric distribution, p; = a~%, fori =1,...,m — 1, and p,, = 2 — %,
where a > 1.

We can assign hotlinks by a simple bottom-up heuristic. The idea is to sort the
nodes in order of decreasing probabilities and assign to a leaf a source node not
assigned before which is the furthest from it so that the leaf is in the subtree rooted
at the source node. This simple heuristic will assign at most one leaf per node and
can be efficient if the probability distribution is concentrated in “a few” nodes, as is
the case of the geometric distribution. The algorithm is described in Algorithm 1.

A simple analysis of the performance of the algorithm is as follows. Let
li,la, ..., l,—1 be the n — 1 leaves of the 1st, 2nd,..., (n — 1)st highest probability
in the given probability distribution p. The resulting gain is
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Algorithm 1 bottomUpStrategy( 7" )

1. sort the m leaves, l;, by the size of the probability distribution p,, t.e., p;, > p
fori < m.

i+1

2. H=¢
3. forj=1toj=m-—1

(a) find an internal yet unassigned node u such that l; is a leaf in the subtree
rooted at u and the distance from u to l; is mazimized

(b) if u# ¢ and l; # ¢ then
i H=HU (ul)

GH) >n=-1p,+(n=2p,+---+(n—(n—-1)p, ,

=n Z?:_f by — Z?:_f 1py

In particular, the expected number of steps satisfies

E[TH] <n—n Z?:_f Du; + Z?:_ll 1Py,

o L (3.3)
=N (]. - Zi:l puz) + Zi:l "Pu;

Inequality 3.3 can already provide good bounds for probability distributions which

are heavily concentrated in “a few” nodes. In particular, we have the following result.

Theorem 5. Consider a rooted full binary tree on n levels with a geometric probability
distribution on its leaves. Algorithm bottomUpStrategy is linear in the number of
vertices of the tree and assigns at most one hotlink per node in such way that the

expected number of steps to reach a leaf of the tree is O(1).
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Proof. This follows from Inequality 3.3. In particular, for the geometric distribution

E[T"] <mn (1 - Z?:_f pui) + Z;’:ll 1Pu;
(=X ) + X e
(1)

I
Q 3

This completes the proof of the theorem.

3.4 Arbitrary Distributions

In this section we give an algorithm for arbitrary distributions. The algorithm is

described in Algorithm 2. The set of hotlinks H must be initially empty.

Algorithm 2 lengthTwoHotlinks ( 7,7 )

1. find the grandchild v of r of maximal weight whose parent has not been assigned
a hotlink

2. if v# ¢ then

(a) H=HU(r,v)

(b) let u be the parent of v

(c)

(d) if z has not been assigned a hotlink then
i. lengthTwoHotlinks( T,z )

(e) lengthTwoHotlinks( T, u )

(f) lengthTwoHotlinks( T, v )

let x be the sibling of u

Theorem 6. Consider a rooted full binary tree on n levels with any probability distri-

bution on its leaves. Algorithm lengthTwoHotlinks s linear in the number of vertices
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Figure 3.1: Assignment of hotlinks to subtrees. The leftmost tree is 7}, and the
rightmost tree is S,,.

of the tree and assigns a hotlink per node in such a way that the expected number of

steps to reach a leaf of the tree is (3n + 1) /4.

Proof. As mentioned before in O(N) time we can propagate the original weights on
the leaves of the tree through the entire tree using a bottom-up process. Once all
these internal node weights are assigned we use a top-down method to assign hotlinks.
Each hotlink is of length two, i.e., each time from level i > n — 2 to level 7 + 2. The
root is assigned the hotlink to the level two node of highest weight. By symmetry we
can suppose that this hotlink is to the leftmost descendant at distance two from the
root (cf. T;, in Figure 3.1).

The assignment of hotlinks is done recursively. The recursive process assigns
hotlinks to the two subtrees 7}, and S,, as depicted in Figure 3.1. Let a, b, c, d be the
probabilities at the second level of the tree 7;, and e, f the probabilities at the second

level of the tree S,,. Without loss of generality assume that

a>bc,dande > f,

We select the hotlinks from the root to the node with highest probability at the second

level of T, and S,, respectively. This leads to the hotlink assignments depicted
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Figure 3.2: The iteration of the assignment of hotlinks by algorithm lengthT-
woHotlinks, described in Algorithm 2.

in Figure 3.1. The overall algorithm is illustrated in Figure 3.2. Notice that by

assumption we have that
a+b+c+d=1

e+ f=1
Let s, (respectively, t,) be the expected number of steps to reach the leaves of the

tree S,, (respectively 7,,), We now have the recurrences

t, = 1+ (C + d)tnfl +at, o+ bSn,1
s, =1+et, o+ fsy o,

where ¢, and s, are the weights of the subtrees 7}, and S,,, respectively. We can prove
the following claim.

Claim:
tn, <3n/4+1/4

s$p <3n/4
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Proof of the claim: The proof is by induction on n. Cases n = 2, 3,4 can be proven

by inspection. First we consider s,.

S, =14et, o+ fs, o
<1l+e(B(n—2)/4+1/4) + f3(n—1)/4
=1+ (e+ f)3n/4—5¢/4—3f/4
<1+3n/4—(e+ f)3/4—¢/2
<1+3n/4-1
= 3n/4,

the last inequality being true because by assumption e > 1/2.

Next we consider %,,.

tn, =14at, o+ (c+d)ty 1+ bsy 1
<1+a(3(n—2)/4+1/4)+ (c+d)(3(n—1)/4+1/4)+3(n—1)/4
=1+ (a+b+c+d)3n/4—5a/4—3b/4— (c+d)/2
=1+3n/4—3a/4—b/4— (a+b+c+d)/2
=1/2+3n/4—3a/4—b/4

Now we have two cases depending on the size of a.
Case 1: ¢ > 1/3.

In this case, the claim follows from the inequalities

tn, <1/2+43n/4—3a/4—10b/4
<1/2+3n/4—1/4
<1/4+3n/4

Case 2: a < 1/3.
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In this case, write a = 1/3 — z, where z > 0, and notice that

b+c+d=1-a=2/3+x

and
c<a=1/3—z

d<a=1/3—-1z
Consequently,
b=2/34+x—c—d> 3.

It follows that
tn, <1/2+3n/4—3a/4—10b/4

<1/2+43n/4—-3/4(1/3 —z) — 3z/4
=1/4+ 3n/4.
This completes the proof of Case 2 and hence also of the claim. The proof of Theorem

6 is now complete.

3.5 Uniform Distribution

Recall the uniform distribution, p; = py = -+ = pp, = .

Consider the uniform distribution in a full binary tree. Adding a hotlink from the
root to a node at distance d will save exactly a fraction of (d — 1)27¢ of the total
weight of the tree. Moreover this saving is maximized at d = 2 or d = 3 and the
maximum value is 1/4. Similarly, any hotlink we add to a node can save at most
1/4 of the total weight of the subtree rooted at this node. This indicates that the
maximal gain attained by a hotlink on a given node is at most 1/4 of the weight of

the subtree rooted at this node. Therefore it is not difficult to see that by adding one
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hotlink per node on a tree with the uniform distribution we can never attain a gain
higher than (n — 1)/4. The previous discussion and Theorem 6 imply the following

result.

Theorem 7. Consider a rooted full binary tree on n levels with a uniform probability
distribution on its leaves. Algorithm lengthTwoHotlinks (Algorithm 2) is linear in
the number of vertices of the tree and assigns at most one hotlink per node in such a
way that the expected number of steps to reach a leaf of the tree is at most (3n+1)/4.

Moreover, (3n+1)/4 is a lower bound on any algorithm designed for the same purpose.

3.6 Zipf’s Distribution

Recall the Zipf’s distribution p; = ﬁ, where H,, = > """ 1/iis the harmonic number.

In this section we consider the sorted Zipf’s distribution, i.e. the i-th leaf of the
tree is assigned probability ﬁ, and prove an n/3+ O(y/nlogn) upper bound on the
expected number of steps to reach a leaf.

Recall the following estimate for the harmonic number H; = 7_, 1/i from [32)
(page 75),

T 11 1
R n —_— J—
P T S5 T 1952 T 12054 ©

where 0 < € < ﬁ and v = 0.5772... is Euler’s constant. Consequently we have
that
Yy+Inj<H; <1l+Inj

It follows that for [ < n we have the Inequalities

2l 2l

ol
[ 1 1 1 1  Hy l n
n+n_¥p —~ il Hmizzlz Hyn — 1 (n+2) (3:4)

We call our algorithm sortedZipfHotlinks. 1t is described in Algorithm 3.
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Algorithm 3 sortedZipfHotlinks( 7" )

1. define the sequence ro,71,...,7; of nodes, where j < n, such that o is the root
of the tree, then for each 1, r; is the left child of r;_1

2.1=0

3. while 1 < [ 57|
(a) H=HU/(ry,rf
(b) i=i+1

1)

-2
e o _ 34___ o

Figure 3.3: The iteration of the assignment of hotlinks by algorithm sort-
edZipfHotlinks, described in Algorithm 3.
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Theorem 8. Consider a rooted full binary tree on n levels with the sorted Zipf proba-
bility distribution on its leaves. Algorithm sortedZipfHotlinks is linear in the number
of vertices of the tree and assigns at most one hotlink per node in such a way that the

expected number of steps to reach a leaf of the tree is at most n/3 + O(y/nlogn).

li
Proof. The weight of the subtree rooted at 7, /2i+17 is equal to Z?:jl pi, Where [;11 =
n — [n/201]. Since n/2! < [n/277'] < 14 n/2""! we can use Inequality 3.4 to

obtain that

oli+1
1 n 1 1 2
1— — — < < | 1- = — 3.5
( 2z+1>n+2 n+2_;pz_( 21+1>+n (3:5)

In view of Inequality 3.5, it is not difficult to see that the gain resulting from adding

a single hotlink from the node r; to the node rp, 5i+17 is at least

20 1 1 5
n . n .
) Sz () (2w

The hotlink assignment is illustrated in Figure 3.3. By summing the terms in Equation
3.6 for i such that i < [n/2*!], we obtain that the gain resulting from all these

hyperlinks is at least

n 1 5 n 1 5 n 1 5

Z_1)- (=22 Z_9). (=2 —_3).(==2 .

(2 ) (2 n)+(4 ) (4 n>+(8 3) (8 n)+ (3.7)
Let k := [(logn)/3] — 1. Clearly, k satisfies k2**! < \/n < n. Summing Equation

3.7, we obtain that the total gain achieved from all these hotlinks is at least

k

SR R RV I

Let ¢ > 0 be the constant in Inequality 3.8. We now apply the previous hotlink
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assignment recursively to each subtree rooted at the node 7,91, Tespectively, for
i <1 = l|logn|. Using Inequality 3.8, we can see that the total gain achieved must

be at least

-1 ; k-1

27 . . 2

(n3 —c\/n/2’> > g E 27" —cy/nlogn > ?n—O(\/ﬁlogn)
0 i=0

7=

It follows that after adding these hotlinks to the tree the expected length of a path

to reach a leaf is at most
2n n
n= =+ O(v/nlogn) = 3+ O(v/nlogn)

Thus, we have proven Theorem 8.



Chapter 4

Assignment of Bookmarks to Full

Binary Trees

4.1 Introduction

An important way of improving the response rate of large, distributed documents is
via a careful and methodical design of bookmark assignments to Web pages. Recall
that a bookmark is a hotlink that connects the home page with any other page of the
Web site.

In this chapter, we study the assignment of & bookmarks to a full binary tree
with uniform probability distribution over the nodes'. Consider a full binary tree
T = (V,E) with |[V| = N = 2! — 1 nodes and a uniform probability distribution
over the nodes v € V. Our work on bookmarks is also presented in [17].

Consider a Web site consisting of a collection V' = {vy,...,vx} of Web pages
connected by hyperlinks. These hyperlinks have been placed a priori by design in

the initial construction of the Web pages. Assume that there exists a directed path

'Recall that in the optimal bookmark assignment problem we assume that the probability is
distributed over all the nodes of the tree.
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of hyperlinks from the home page r to any other page of the collection. A bookmark
is an additional hyperlink from the home page r to any other page of the domain.
Let p, be the probability that a user, currently located at r, wants to access page v.
Assuming this, we pose the following bookmark assignment problem (k-BAP): Find
an assignment of £ bookmarks in a Web site with known access probabilities, that
minimizes the expected number of steps required to reach any page of the domain

from the home page. See Section 2.2.3 for a full description of the problem.

4.2 Characterizing an Optimal Assignment of Book-
marks with Uniform Probability Distribution

We need some more definitions. Consider a set of bookmarks B assigned to tree
T = (V,E). We say that a bookmark z € V dominates node v € V, if on the path
(x = vg,v1,---,v = v) only x may belong to B. When a bookmark b dominates
v, the shortest path from root r to v uses the edge (r,b). The set of all nodes of
V dominated by b is called the domain of b. We say that two bookmarks b; and b,
are independent if there is no directed path from one to the other. Observe that the
domains of two bookmarks b; and b; are always disjoint and the family of domains
of the set B U r partitions V. We say that B covers T if each leaf v of T" belongs to
the domain of some b; € B. A bookmark b € B is called exposed in T'? if its domain
does not contain any other bookmark of B. For [ > 0, the level | of tree T consists of
all nodes at distance [ from r. If [ < q, we say that [ is above q or q is deeper than .
The depth of the tree is the number of its deepest level, n.

We construct an optimal assignment of £ bookmarks in the complete binary tree
of N > 15 nodes with uniform probability distribution, under some condition relating
k to N. First observe that if £ < 4 then the optimal assignment of bookmarks is

to place all of them on level 2, since bookmarks on level 0 and 1 would be wasted.
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Hence we may assume k > 4.

Theorem 9. For a complete binary tree T' of N > 15 nodes, a set B of k bookmarks,
such that 4 < k < /N + 1, is optimal, if and only if all of the following conditions
hold.

1. B covers T,
2. all bookmarks in B are independent,

3. all bookmarks in B are placed on two consecutive levels of T.

The existence of a set of bookmarks satisfying the above conditions is guaranteed

by the following lemma.

Lemma 3. For a complete binary tree T with m leaves and for any number k < m,
there exists a set of k independent bookmarks covering T, placed on at most two

consecutive levels of T

Proof. Let | = |log(k)]. If we take any set S of 21! — k bookmarks on level I, we can
place exactly 2k — 2! bookmarks independent on S on level [+ 1. They all cover 7.

Note that the distribution of bookmarks given in Lemma 3 is unique up to the
choice of its subset on level /. Thus in the remainder of this section we will suppose
without loss of generality that in the set of bookmarks from Theorem 9 the bookmarks
from the higher level are the leftmost nodes of T' on this level (cf. Figure 4.1).

Theorem 9 implies the following corollary.

Corollary 1. Under the assumptions of Theorem 9, an optimal set of bookmarks can

be constructed in time O(k).

In order to prove Theorem 9, we formulate several lemmas showing which trans-

formations of a bookmark set increase its gain.
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level |
level | + 1

Figure 4.1: The set B of bookmarks from Theorem 9. B covers 71" and all the book-
marks are independent and placed on two consecutive levels.

Lemma 4. Let B; be a set of bookmarks defined for a tree T. Suppose that B; has
been altered by replacing some of its bookmarks b, bi,, ..., b;, by bj ,bj,, ..., b; thus
forming a new bookmark set B;. For each node v which is not in the domain of any

node from X = {bi,, biy, .- -, bi,,bj;, 04y, . .., bj,. }, we have gp,(v) = g, (v).

Proof. The result follows because the shortest oriented path fromrtovinT?tandT?2must
use exactly the same edges.

Lemma 4 states that, when replacing one bookmark set by another, gg(v) may
change only for the nodes v which are in the subtrees rooted at the nodes of X. Let
E[T_x] denote the expected number of steps to reach a node in the tree 7" diminished
by the nodes of X and their descendants. Let G_x(B) denote the gain attained by the
set of bookmarks B in the tree diminished by the nodes of X and their descendants.
The statement of Lemma 4 then says that E[T%] = E[T”,] and G_x (B;) = G_x(B;j).
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level | X . level | X

7B T8
Figure 4.2: Transformation lift. If B' = B\ {y} U {z} then G(B') > G(B).

Lemma 5. Transformation lift. Suppose that for a set of bookmarks B on T there
exists a node x ¢ B on level | > 2, such that, among the descendants of x, the only
bookmark y € B is a child of x. Then for B' = B\ {y}U{z}, we have G(B') > G(B)
(cf. Figure 4.2).

Proof. Let w be the number of nodes in the subtree rooted at y and s be the distance
from 7 to x in T'5.

Note that if there is a bookmark on the oriented path from r to z then s < [,
otherwise s = . By Lemma 4, G_,3(B) = G_(4}(B’) because gg(v) = gp(v), for
each node v not in the subtree rooted at x. Therefore, to evaluate the change in
the gain function between the sets B and B’ we should consider only nodes in the
subtree rooted at x. Hence, gg(v) = [, for all w nodes in the subtree rooted at y
and gg(v) = — s, for x and all remaining w descendants of x, while gg (v) =1 — 1,
for all 2w + 1 nodes in the subtree rooted at z. Since [ > s > 2 we conclude that

GB)=G o B)+lw+(l-s)(w+1) <G nB)+(-1)2w+1)=G(B).
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level | %1 %o level | g *1 )

Figure 4.3: Transformation adopt. If B' = B\ {z1} U {z2} then G(B') > G(B).

Lemma 6. Transformation adopt. Suppose that TB contains two nodes z, and
Ty at the same level I, such that x1 € B and no other node in the subtrees rooted at x
and x4 belongs to B. Suppose that the last bookmark on the oriented path from r to x;
in the tree T is the node by € B on levelly <1 inT. Suppose as well, that if bookmark
by € B on level ly dominates xo, we have Iy > ly. Then for B' = B\ {z1} U {z2} we
have G(B') > G(B) (cf. Figure 4.3).

Proof. Let w be the number of nodes in the subtrees rooted at z; or x5, cf. Figure 4.3.

Let by denote the bookmark dominating x, or by = r if such a bookmark does
not exist, and let [, be the level of by in G. Again, G_(4, 4,1(B) = G_{a,,2,}(B’). We
have gg(v) = [ — 1, for each node v, descendant of z; and gg(v) =l — 1, for each v,
descendant of o (observe that, for this particular case, if b, = r then we have to make
gp(v) = 0). Similarly, gg (v) = I; — 1, for each v, descendant of z; and gg (v) =1 —1,
for each v, descendant of x,. Hence

G(B) =G (z1,5(B)+w(l—1)+w(lo—1) < G145, oy (B)+w(lh —1)+w(l—1) =
g(B".
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Figure 4.4: Transformation spread. If B' = B\ {y, 2z} U {x1, 22} then G(B') > G(B).

Lemma 7. Transformation spread. Suppose that for a set of bookmarks B on
T there exists a node x1 ¢ B on level | > 2 in T, such that the only bookmarks
contained in the subtree of T rooted at x1 are its children, y and z. Suppose as well
that there exists another node xo ¢ B on level I, such that the subtree rooted at xo
contains no bookmarks. Then, for B' = B\ {y,z} U {x1,22} we have G(B') > G(B)
(cf. Figure 4.4).

Proof. Let w be the number of nodes in the subtrees rooted at y or z, cf. Figure 4.4.
Again, G (4, 2,1(B) = G_{4, 4,1 (B'). For each node v, descendant of z; we have
gp(v) = [, while gg(z1) = | — dp(z1). For all w nodes in the subtree rooted at x5,

gs(v) = 1 — dp(xs). Similarly, gg(v) = 1 — 1, for all 4w + 2 nodes in the subtrees
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rooted at x; and z,. Since dp(z;) > 2 for i = 1,2, we conclude that

G(B) =9 {a1a2}(B) + 2w + (I = dp(z1)) + (I — dp(22)) (2w + 1)
< g*{wl,wz}(Bl) + (l - 1)(4w + 2)
=G(B')

Lemma 8. Transformation floor. If a set B of k bookmarks is optimal then each

bookmark is placed on level | = [logk| of T or on a level above I.

Proof. Let b be a bookmark at the deepest level [, among all the bookmarks of B.
We will prove by induction, that if I, > [log k], then we can always replace b by some
b', such that G(B) < G(B \ {b} UD). There are three possible cases:

1. Neither the parent nor the sibling of b belongs to B. We can apply transforma-
tion lift (Lemma 5) replacing b by ' on a level above [ in T5.

2. The node a which is the parent of b belongs to B. As for the level [, of a we have
la > [logk]|. Hence there are at least p = 2Mlogkl nodes on level I,. As p > k,
there exists a node u on level [,, such that the subtree of T rooted at u contains
no bookmarks. Thus the conditions of transformation adopt (Lemma 6) are
met, with by = a, 1 = b and 2o = u. We can choose b’ = u.

3. The parent of b does not belong to B, but its sibling ¢ does. Again, there
must exist a node u on level [, such that the subtree of T rooted at u contains
no bookmarks and the conditions of transformation spread (Lemma 7) are met

with y = b, 2 = ¢ and x5 = u. We take ' = u.

In each case, replacing b by b’ improves the gain of the bookmark set. This concludes

the proof.
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Figure 4.5: Transformation inherit. If B' = B\ {z} U {z} then G(B') > G(B).

Lemma 9. Transformation inherit. Suppose that for a set B of k bookmarks,
defined on the tree T of N > 15 nodes, there exists a pair of nodes y,x € B at levels
[ and 1 —1 respectively, such that 2 <1 < [logk]|. Suppose, as well, that y is the only
bookmark among the descendants of x. If k < /N + 1, then for B' = B\ {z} U {z},
where z is the sibling of y, we have G(B') > G(B) (cf. Figure 4.5).

Proof. Let w be the number of nodes in the subtree rooted at y, cf. Figure 4.5.

Again, Gi;1(B) = G_{43(B'). For each node v, descendant of y, we have gp(v) =
I — 1, while for all w+ 1 remaining nodes in the subtree rooted at z we have gg(v) =
[ —2. Similarly, g/ (v) = [ —1 for all 2w descendants of z, and gp/(z) =1 —1—dp(z).
We have to prove that

GB) = GmB)+(1-2)(w+1)+(-1w
< g_{m}(Bl) + 2(l — 1)11) + (l —1—dp (x))
Gg(B'),
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which is equivalent to

w+1>dg(x) (4.1)

Note that dg(z) < I. Observe also that, since the depth of T' equals log(N + 1) — 1,
we have w = 2'98(N+1)=t _ 1 Therefore, since k¥ < /N + 1, which for N > 15 implies
logk < A;-i—l, we have w + 1 > glog(N+1)—1 > 9log(N+1)—[log k] > glog(N+1)—logk—1 _

Nl > vEL > 18k 5 [log k] > | > dp(z)

Lemma 10. Transformation expose. Suppose that for a set B of k bookmarks on
T there exists b € B at level t > 3, such that the only bookmarks contained in the
subtree of T rooted at b, are B = {by,--+,bn}, and

1. {by,---,b,}, where 1 < p < m are placed on level [,
2. {bps+1,---,bm} are placed on level | + 1,
3. all bookmarks of B are independent,

4. each leaf of TB is in the domain of some bookmark from level | or | + 1.

If k < /N +1, then for B' = B\ {b,b;} U {c¢;,d;}, where b; € B is on level | and
¢, d; are children of b; we have G(B') > G(B) (cf. Figure 4.6).

Proof. As G_(3(B) = G_(53(B'), we need only to compute the gain function for the
nodes in the subtree rooted at b.

Let n be the depth of T. Observe that there are w = 2"! — 1 nodes in the
domain of each node b;,i = p+1,...,m, and for each of them gg(v) = [. Similarly
gs(v) =1 — 1, for each of 2w + 1 descendants of every node b;,i = 1,...,p. Finally,
for v being one of 2!"**! — p — 1 nodes in the domain of b, we have gz(v) =t — 1. In
the graph T#', there are p — 1 bookmarks which are descendants of b on level [ and
m —p+2 bookmarks on level [+ 1. Similarly as in T8, for each of 2w + 1 nodes in the

domain of some bookmark on level I, we have gg(v) =1 — 1 and for each of w nodes
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Figure 4.6: Transformation expose. “Exposing” a node from a higher level. If B’ =
B\ {b,b,} U{c;,d;} then G(B') > G(B).

from the domain of a bookmark of level I 4+ 1, gg(v) = I. The subtree of T rooted
at b has 2="*1 — p — 2 nodes, which are not in the domain of any of b;,i = 1,..., m.

For every such node gg(v) =t — dg(x). Thus we have to prove that

GB) = GmB)+t-1)C""" —p—1)+pw+1)(—1)+ (m— p)wl
< G@(B)+(t—dp®)2™"" —p)
+p—1)2w+ 1) —=1)+ (m—p+2)wl
= G(B)

or, equivalently, that (¢t — 1)(2""""' —p— 1) + Qw +1)(1 = 1) < (t — dg: (b)) (271! —
p) + 2wl. However, since 2 < dp/(b) < t and 1 < p < m, it is sufficient to prove
a stronger condition substituting dp/(b) = t and p = 1. For these values, the above
inequality becomes (t — 1)(2741 — 2) + (2w + 1)(I — 1) < 2wl, which is equivalent
to (t—1)(25" —2) +1 < 2w+ 1. As t > 2, it is sufficient to prove the stronger
condition (¢ — 1)2!="1 + (I — 2) < 2w + 1. The function f(t) = (¢t — 1)2"7+ + 1 -2

attains its maximum when f’(t) = 27 — (¢t —1)2""*1In2 = 0, i.e. when ¢t = ﬁ +1.
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Since t is a level number and f is an integer argument unimodal function, it follows
that that f(¢) obtains the same maximal value for ¢ = 2 and ¢ = 3. Hence, we can
strengthen again the inequality we have to prove, getting 28" + (I — 1) < 2w + 1.

Since w = 2"7' — 1 and N = 2"*! — 1, the condition becomes

24 (1-1) < (N +1)27 (4.2)

However, since 2'"* > [ — 1, once again we can strengthen the condition obtaining
< (N+1)27or
2% < (N +1) (4.3)

Observe that, since each leaf of T'? is in the domain of some bookmark from level
l or I + 1, each of 2! nodes on level I, or one of its children, must belong to B. As
b € B, we identified at least 2! + 1 bookmarks belonging to B, proving that k > 2.
Since £ < v/N + 1, we conclude that 2% < k2 < (IV 4 1), thus proving Inequality
4.3.

4.2.1 Correctness of the Characterization
In this section we prove the correctness of the characterization given in Theorem 9.

Proof. Let B be an optimal set of bookmarks. By transformation floor (Lemma 8),
we can suppose that each bookmark b € B is on or above the floor level | = [log k].
Take a bookmark b € B on the deepest level /,. Let ¢ be the sibling of b and let a be
its parent. Observe that at most one node among a and ¢ can belong to B, otherwise
we could improve B by means of transformation expose (Lemma 10). However, in
such a case, a ¢ B, since we could apply transformation inherit (Lemma 9), again

improving the gain of B. If ¢ ¢ B, we could apply transformation lift (Lemma 5),
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once again getting a better bookmark set. So ¢ € B and a ¢ B. Similarly, for any
other bookmark on level [, its sibling must belong to B and its parent must not.
Take any node z on level [, — 1, whose children do not belong to B. x € B, otherwise
we could apply transformation spread (Lemma 7) using z; = a and zo = z. So for
each node z on level [, either z itself or both its children belong to B. Consider the
deepest level bookmark y € B above level [, — 1. If y exists, y along with all the
bookmarks of B which are descendants of y verify the conditions of transformation
expose (Lemma 10). If y does not exist, the bookmarks of B are all independent,
cover 1" and are placed on two consecutive levels [, — 1 and .

The following proposition shows that the property of optimal bookmark sets de-

scribed in Theorem 9 does not hold for larger numbers of bookmarks.

Proposition 1. Let T be a complete binary tree with N nodes and let

k=2VvVN + 1+ 1. There exists a set B of k bookmarks in T such that:

1. B covers T,
2. all bookmarks in B are independent,

3. all bookmarks in B are placed on two consecutive levels of T,
but B s not optimal.

Proof. Consider a complete binary tree 7" of depth n = 2/ — 3 and let B be a set
of k = 2! + 1 bookmarks. Note that ¥ = 2/N + 1 + 1. According to Lemma 3 we
can place 2! bookmarks on level / and one bookmark on level (I + 1), so that the
bookmarks are independent and cover T. To show that B is not optimal, let B’ be
a set of 2! + 1 bookmarks consisting of all nodes of level [ and of one bookmark on

level two, cf. Figure 4.7. We have

G(B)—¢(B) = [(-)E@H2 " -1)+1(27-1)
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level [ +1

love 4= 21-3
18 T8

Figure 4.7: For Proposition 1. Suppose that B is optimal. Composing B’ of all nodes
at level [ plus a node at level 2 will make G(B') > G(B), proving that B is not
optimal.

—[(1 =12 =)~ —1) +21(2"7F = 1)]

= [+1>0

thus proving that B is not optimal.
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Chapter 5

Heuristic Algorithms for Hotlink

Assignments

5.1 Introduction

In this chapter we present heuristic hotlink assignment algorithms. We give a lower
bound, derived from Shannon’s theory, on the access cost of a tree with at most &

hotlinks per node. This work can be found in [16] as well.

5.2 Lower Bound

We generalize the lower bound discussed in Section 3.2.

Theorem 10. For any probability distribution p on the leaves of a tree of maximum
outdegree § and any assignment of at most k hotlinks per source node, the erpected

number of steps from the root of the tree to reach a Web page located at a leaf is at

#H(p)
log(d+k)’

least where H(p) is the entropy of p.

Proof. A tree of maximum outdegree § can be viewed as the encoding of the leaves

63
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with the § symbol alphabet 0,1, ...,6 — 1. Adding k hotlinks per node increments the
alphabet by k& symbols to form a § + k£ symbol alphabet.

Consider a tree T = (V, E). For a given hotlink assignment A, the distance of
the i-th leaf from the root in T, d(i), is the length of the encoding of the i-th
leaf in this new alphabet. Notice that if two hotlinks are targeting the same node,
then the shortest one can be omitted without changing the value of E[T4]. As a
consequence, E[T“] is also the expected length of the “encoding” of the leaves of the
tree T4 represented as code-words in a & + k letter alphabet. Moreover, the resulting
encoding is a prefix code. In particular, Shannon’s theorem (Theorem 3) applies and

we have that

1

A 1 _ .
E[T"] > ) -H(p) = Tog(d + k) ;pi log(1/p) (5.1)

5.3 One Hotlink per Page

In this section we present our hotlink assignment algorithms that assign at most
one hotlink per page. We also describe an algorithm by Kranakis et al. [35] called
hotlinkAssign. This algorithm is important because it guarantees an upper bound on

the access cost of a Web site according to the maximum outdegree of the site.

5.3.1 Algorithm simpleBFS

Algorithm simple BF'S, formally described in Algorithm 4, iteratively assigns hotlinks
in breadth first search order, starting with the home page. Consider a hotlink (s, ).
In each iteration of the algorithm, s corresponds to the next node in the breadth

first search order and t corresponds to a descendant of s that offers the biggest gain.
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The algorithm stops when there are no more possible hotlinks to assign. Algorithm
simpleBFS uses the function next in_BFS order, which returns the next node of

the tree in breadth first search order, starting from the home page.

Algorithm 4 simpleBFS( 7T")
1. H=¢

2. while( (s = next_in_BFS order ) # ¢ )

(a) t = v : v mazimizes Equation 2.4; and v is descendant of s; and v does
not have a hyperparent

(b) if t # ¢ then H = H|J{(s,t)}

In a variant of algorithm simple BFS, called greedyBFS, the target node can not
be a descendant of a node that already has a hyperparent. The only modification of

stmple BFS occurs in step 2a.

5.3.2 Algorithm greedyBFS

Algorithm greedyBF'S, described in Algorithm 5, assigns hotlinks iteratively in breadth
first search order starting from the home page. Consider a hotlink (s,¢). In each
iteration of the algorithm, s corresponds to the next node in breadth first search
order, and ¢ corresponds to the descendant of s that maximizes the gain, but is not a
descendant of a node z, which is at a higher level than s and already has an incoming
hotlink!. See Figure 5.1. The algorithm stops when there are no more possible
hotlinks to assign.

By comparing these two algorithms we will see that in practice, greedyBFS of-
fers the same or better performance than simple BF'S. This claim comes from the

assumption of “obvious navigation”. Obvious navigation consists in taking alwaysthe

! The levels of the tree are counted in increasing order starting from the root, such that the root
is at the lowest level.
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Algorithm 5 greedyBFS( T' )
1. H=¢

2. while( (s = next_in_ BFS order ) # ¢ )

(a) t = v : v mazimizes Equation 2.4; and v is a descendant of s; and v does
not have a hyperparent; and v is not a descendant of a node x, which is at
a higher level than s and already has a hyperparent.

(b) if t # ¢ then H = H|J{(s,1)}

? elegible candidates

i for t
non-elegible

candidates for t

Figure 5.1: In algorithm greedyBF'S, two hotlinks are not allowed to cross each other.
Consider a hotlink (s,t) to be assigned in an iteration of the algorithm. ¢ must be a
descendant of s that minimizes the cost but is not a descendant of a node x, which
is at a higher level than s and already has an incoming hotlink.
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Figure 5.2: Illustration of “obvious navigation” assumption. Suppose that a user is at
page = and wishes to reach a page descendant of w. We assume that, as the user does
not have a map of the site, the path (x, z) + 2z — w will be followed, even though path
x — y + (y,w) would have been shorter. Therefore, obvious navigation is efficient
only when x — y > z — w.

hyperlink or hotlink taking us closer to the desired page. This is the natural way
users navigate on the Web. Note that in some cases this kind of navigation can be
inefficient. SeeFigure 5.2.

If we took two hotlinks from an arbitrary path from the root to a leaf after running
simple BF'S, one of the following four cases would hold: a) one hotlink is “inside” the
other, or b) the two hotlinks are overlapped, or ¢) one hotlink starts exactly at the
end of the other, or d) otherwise. These four cases are illustrated in Figure 5.3.

Observe that obvious navigation can be inefficient only in case b). Furthermore,
the deepest hotlink will be wasted in this case and the source node will be unable
to accommodate an efficient hotlink from it. Case b) never happens in algorithm
greedyBFS. Therefore, under obvious navigation assumption, algorithm greedyBFS

performs at least as well as algorithm simple BFS.

5.3.3 Algorithm recursive

The basic principle of algorithm recursive, described in Algorithm 6, is to assign a

hotlink (s, t), where s is the home page and ¢ is the node that maximizes Equation 2.4,
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root root root root

Q
Q

leaf leaf leaf leaf
a) b) 0) d)

Figure 5.3: Four possible scenarios of two hotlinks on a path, after executing algorithm
simpleBFS. Each figure shows an arbitrary path from the root to a leaf. a) one hotlink
is “inside” the other, b) the hotlinks are overlapped, c) one hotlink starts exactly at
the end of the other, d) otherwise.

then split the original tree into subtrees, i.e., the subtrees rooted at the children of s
and the subtree rooted at ¢, and then proceed recursively for each of these subtrees.
Note that one of the children of s, si, will be ancestor of ¢, and the subtree rooted at
t will not form part of the subtree rooted at s;. Figure 5.4 illustrates the algorithm.

Assume that the set of hotlinks, H, is initially empty.

5.3.4 Algorithm hotlinkAssign

Algorithm hotlinkAssign was designed by Kranakis et al [35]. They prove the following
upper bound on the access cost of a Web site that is good for Web site trees of small

outdegree 9:

H(p) 0+1
E[T) < S ,
g6 +1) - () T 0

where H(p) denotes the entropy of the probability distribution on the leaves.

Algorithm hotlinkAssign is a recursive algorithm that works as follows. Let T
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Algorithm 6 recursive( 7" )

1. s=r
2. fori=1tok

(a) t = v : v mazrimizes Equation 2.4; and v is not a descendant of a node z,
which is at a higher level than s and already has a hyperparent; and v has
no hyperparent

(b) if t # ¢ then H=HJ{(s,?)}
3. for each children of s, s; (including hypersons)

(a) T = subtree rooted at s;
(b) recursive( T )

Figure 5.4: The first call to recursive( T ). The algorithm assigns a hotlink from
the home page s to the node ¢ that minimizes the access cost and then proceeds
recursively for T;, 7+ = 1,...,5. The recursive calls continue until it is not possible to
assign more hotlinks. Note that T3 is not part of T, and thus are treated as separate
trees.
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denote a tree rooted at page c. In the first call to the algorithm, ¢ is the home page.
Recall that § is the maximum outdegree of the tree and p, is the access probability
of page c. The algorithm partitions the original tree into subtrees and then proceeds
recursively for each of these subtrees until it is not possible to add more hotlinks.

The subtrees are:

1. The trees rooted at the children of ¢ minus:

2. The tree rooted at a node whose weight is between £¢ and gf;.

Algorithm hotlinkAssign is formally described in Algorithm 7. The set of hotlinks,

H | is initially empty.

Algorithm 7 hotlinkAssign( T )
1. if ¢ has grandchildren

6'pc
0+1

(b) if no such descendant exists let u be the descendant leaf page of maximum
b

(c) if distance from c to u is > 2

i. H=HU(c,u)

(a) find a page u, descendant of ¢ such that 513:1 <p, <

(d) else let u be the (any) grandchild of ¢ of mazimum p
i. H=HU/(c,u)

let v be the ancestor of u that is child of c

hotlinkAssign( T, — T, )

hotlinkAssign( T, )

for every child w of ¢, except v

i. hotlinkAssign( 7, )

(e
(f
(g
(h

~— ' N’ N
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5.4 Multiple Hotlinks per Page

The algorithms described so far are restrained to assigning at most one outgoing
hotlink per page. In this section we present an alternative version of algorithms
greedyBFS and recursive, where the maximum number of outgoing hotlinks allowed

per node is k. We also present a new greedy algorithm called greedyBFS*.

5.4.1 Algorithm k-greedyBFS

This algorithm is a mnatural variation of greedyBFS. Again, the function
next_in_ BFS order returns each of the nodes of the tree in breadth first search or-
der, starting with the home page. Algorithm k-greedyBFS is described in Algorithm
8. Observe that the call k-greedyBFS( T, 1) is equivalent to a call to greedyBFS( T

).

Algorithm 8 k-greedyBFS( T,k )
1. H=¢

2. while( (s = next_in_BFS order ) # ¢ )

(a) forj=1tok

i. t = v : v marimizes Equation 2.4; and v is a descendant of s; and
v does not have a hyperparent; and v is not descendant of a node z,
which 1s at a higher level than s and already has a hyperparent

. if t # ¢ then H = H|J{(s,t)}

5.4.2 Algorithm k-recursive

Algorithm 9 describes our k-hotlink version of algorithm recursive.
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Algorithm 9 k-recursive( 7',k )

1. s=r
2. fori=1tok

(a) t = v : v mazrimizes Equation 2.4; and v is not a descendant of a node z,
which s at a higher level than s and already has a hyperparent; and v has
no hyperparent

(b) if t # ¢ then H=HJ{(s, 1)}
3. for each children of s, s; (including hypersons)

(a) T = subtree rooted at s;
(b) k-recursive( T,k )

5.4.3 Algorithm greedyBFS*

We present another multiple hotlinks algorithm called greedyBFS*, which assigns at
most k£ hotlinks per page. This algorithm runs the algorithm k-greedyBFS( T,1 ) k
times but creates a new breadth first search tree between each iteration?, treating the
hotlinks as regular hyperlinks. The algorithm is formally described in Algorithm 10.
Figure 5.5 illustrates the operation of the algorithm.

Algorithm 10 greedyBFS*( T,k )
1. for 1 to k

(a) TH = k-greedyBFS( T,1 )

(b) delete the arcs of T™ that are not traversed in breadth first search starting
from the home page. Call this tree T

20bserve that k-greedyBFS( T,1 ) is equivalent to greedyBFS( T ), since k = 1.
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Figure 5.5: Illustration of the operation of algorithm greedyBFS*. Observe that

after assigning a set of hotlinks, those hotlinks are treated as regular hyperlinks in
subsequent iterations of the algorithm.




Chapter 6

Simulations and Case Study

6.1 Introduction

In Chapter 5 we present heuristic hotlink assignment algorithms. In this chapter we
evaluate those algorithms and present the results obtained. Some of these results can
also be found in [16]. All the simulations are implemented with Java. We evaluate
our algorithms on three different kinds of structures: random Web sites, real Web
sites with unknown access probability distribution, and an actual Web site with a
known access probability distribution.

In order to generate realistic random Web sites, we need to know how the pages of
a Web site are linked together. We also need to know how users access the Web sites in
order to emulate the popularity of the Web pages. For each Web page, we generate an
outdegree § and an access probability p according to theoretical distributions. Even
though the distributions of § and p are precise, they do not provide any information
on how they are to be distributed among the pages of the Web site. Given the huge
universe of possible combinations of § and p, we obtain 95% confidence intervals for
all the results that we present. We validate the correctness of the simulations by

showing that the outdegree § and the popularity p of the random Web sites actually

74
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follow the theoretical probability distributions.

6.2 Web Sites Used for Simulation

In this section we discuss some theory of Web site structure and discuss the difficulty

of generating accurate random Web sites.

6.2.1 Random Web Sites

Faloutsos et al. [21] point out that Internet topology can be modeled using power-
law relationships. They compare three snapshots of the Internet with power-laws and
observe a strong similarity despite the growth of the Internet between the snapshots.
In particular, we are interested in the power-law that governs the outdegree ¢ of a
Web page. The probability that a page has degree i is proportional to i %, for k > 1.

Broder et al. [11] have found that k£ = 2.72 is an accurate value for the outdegree.
Their experiments are based on a sample of over 200 million pages and 1.5 billion
hyperlinks.

Given a Web page v, the probability that v has outdegree 7 is determined by the

formula

P[6, = i] ~i 2™ (6.1)

6.2.2 Generation of Random Web Sites

There are many techniques for generating random graphs. Waxman [54] proposes
a random graph generator for modeling geographical networks. Calvert et al. [12]
discusses how graph-based models can be used to generate large graphs with specific

parameters of locality and hierarchy. Zegura et al. [56, 57| survey the generation of
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commonly used graph models. Zegura et al. also study the difficulty of generating
random graphs with a particular average degree and then propose a technique to
generate such graphs. Aiello et al. [3| describe a random graph model for reproducing
sparse gigantic graphs with particular degree sequences. The Aiello et al. model fails
to reproduce some characteristics of real networks. Watts [53] fully explains the
concept of “small world” graphs, which are clustered, sparse, and of small diameter.
There is an extensive literature about small worlds, e.g., [2, 50]. Hayes [27, 28]
analyses gigantic graphs such as the Web, and maintains that the Web is a small
world graph. Hayes points out how lattices andErdos-Rényi graphs fail to reproduce
small world graphs since lattices do not have small diameter and Erdés-Rényi graphs
are not clustered.

We generate random Web site trees T = (V, E) of size s = |V|. The outdegree
of a page is taken from a sample of outdegrees generated by the following power-law

formula, derived from Formula 6.1:

8 =sxi 27
The generation of a random Web site tree structure is described in Algorithm 11.
In Section 6.3.1, we discuss the assignment of access probabilities to the random Web

site trees.

6.2.3 Actual Web Sites

In Section 6.2.2, we briefly survey the efforts to generate random graphs with partic-
ular characteristics [54, 12, 56, 57, 3, 27, 28]. We know of no precise technique for
simulating “typical” Web sites.

Instead of simulating random Web sites, we could take a sample of Web sites from

the Internet. Henzinger et al. [29] suggest performing random walks on the Internet
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7

Algorithm 11 hyperlinksStructure( size )

1.
2.

3.

V=E=¢

let q be an empty queue
v =new Web page
V=VUv

enqueue v in q

while q is not empty

(a) if |V| = size then return T = (V, E)
(

)
b) v =dequeue q
)
) fo

(c

(d) fori=1toé,

i. w=new Web page
ii. V=VUw, E=EU(v,w) (ie,
pointing to a new Web page w)
iii. enqueue w in q

iv. if |V| = size then return T = (V, E)

assign a random outdegree d, to v (see Section 6.2.2)

insert in page v a new hyperlink
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in order to extract representative samples of Web pages. They point out that with
this random walk, pages with big indegree will have more chances to be visited than
pages with small indegree, which may not be true in reality.

In the absence of efficient techniques for generating Web sites, we test our algo-
rithms with the hyperlink structure! of the Web sites of eleven universities in Ontario.
Once we retrieve the hyperlink structure of a Web site, we convert it into a directed
graph G = (V, E), where each vertex v € V represents a Web page, and every
edge (v,w) € E represents a hyperlink going from v to w. We then generate a tree
T = (V, E') by performing breadth first search on G, starting with the home page.

In Section 6.3.1 we study the assignment of access probabilities to these Web sites.

6.3 Web Access Distribution

To perform the simulations, we need to assign access probabilities to the Web sites.
This information can be extracted from the access log files. However, sometimes the
log files are unavailable, either because the Web administrators prefer not to disclose
them or because the Web site structure has been simulated with a random graph.

We explain how to assign access probabilities to Web sites with and without the log

files.

6.3.1 Modeling Access Distribution

While it is possible to get the hyperlink structure of any Web site, it is not easy to
convince a Web site administrator to disclose log files in order to know the popularity
of the Web pages. When access logs are not available, we simulate the popularity of
a Web page using the Zipf’s popularity law.

Given Zipf’s observations of human behaviour [58], one could conjecture that the

!Note that the hyperlink structure of a Web site is different from its file structure.
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popularity of Web pages obeys Zipf’s popularity law. Glassman [24] prove experimen-
tally that the popularity of Web pages can actually be modeled with Zipt’s popular-
ity law. Glassman analyses 100, 000 requests from 300 different users of 40,000 Web
pages. Zipf’s popularity law is also found in the length of user’s navigation. Levene
et al. [36] show experimentally that Zipf’s popularity law explains user’s navigation,
in the sense that longer navigations are less probable than shorter ones. Pitkow [46]
provides a good survey on Web characterizations.

In Zipf’s distribution, the probability of the i-th most probable item is p; = ﬁ,
where H,, is the harmonic number, H,, = Z;”ZI% [33]. Thus, given the i-th most

popular Web page v of a Web site of m pages,

v — T 62
Po= (6.2)

In order to associate popularities to the m leaves of a Web site T, we generate
a popularity ranking-list of m elements based on Equation 6.2, where the i-th most
popular leaf page has popularity p; = ﬁ Each of these popularities is randomly
associated with a different leaf of T. This popularity represents the access probability
of a page. The access probability of an intermediate (i.e., non-leaf) page is the sum
of the access probabilities of the leaves descendant to it, in such a way that the home

page has access probability of 1. The assignment of access probabilities to the Web
pages of a Web site 7" is described in Algorithm 12.

6.4 Results of the Simulations

We evaluate the algorithms presented in Chapter 5 on random and real Web sites.
The maximum gain achieved with at most one hotlink per page is 35%, whereas the
minimum is 24%. We also compare the performance of algorithms greedyBFS and

hotlinkAssign with the theoretical optimal solution.
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Algorithm 12 accessProbabilities( 7’ = (V, E) )
1. create a popularity ranking-list rankingList of length m, where m s the number
of leaf pages of T (see section 6.3.1)

2. for each leaf page v of T

(a) take a random element from rankingList, p (not taken before), and make
Py =D

3. for each intermediate page (i.e., non-leaf) v

(a) py is equal to the sum of the leaf pages descendant to v

6.4.1 One Hotlink per Page
Algorithm greedyBFS Evaluated on Random Web Sites

Algorithm greedyBFS is described in Section 5.3.2. We show the results of the simu-
lations in Figure 6.1 and Table 6.1. We plot the average proportion of gain that can
be attained by the algorithm. The average proportion of gain has a 95% confidence
interval of at most F1.27. Observe that the gain of the algorithm oscillates between
narrow intervals, which indicates that the size of the tree does not greatly affect the

performance.

Algorithm greedyBF'S Evaluated on Real Web Sites

Algorithm greedyBFS is discussed in Section 5.3.2. The results of the simulations are
displayed in Table 6.2 and depicted in Figure 6.2. The average number of nodes of
the sample of Web sites is 9,669.2. Observe that the proportion of gain stabilizes
after assigning less than 1,000 hotlinks, which is approximately 10% of the average
number of Web pages.
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Figure 6.1: Gain obtained by applying greedyBFS to randomly generated Web sites
of size 1,000 to 17,000. The average proportion of gain has a 95% confidence interval
of at most F1.27.
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size of % of | standard | 95% confidence
Web site, |V| | gain | deviation interval
1,000 24.85 2.46 0.85
2,000 26.34 3.16 1.10
3,000 25.30 3.21 1.11
4,000 25.77 3.67 1.27
5,000 25.35 2.18 0.75
6,000 25.23 2.45 0.85
7,000 26.86 1.94 0.67
8,000 25.76 2.31 0.80
9,000 25.71 3.10 1.07
10,000 26.88 3.40 1.18
11,000 | 2470 | 2.38 0.83
12,000 25.82 3.61 1.25
13,000 25.70 2.86 1.00
14,000 26.57 2.59 0.90
15,000 25.89 2.52 0.87
16,000 27.04 2.90 1.00
17,000 26.96 2.49 0.86

Table 6.1: Proportion of gain on the access costs of randomly generated Web sites of
1,000 to 17,000 pages. The proportion of gain has a 95% confidence interval of at
most F1.27.
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% gain
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Figure 6.2: Average gain obtained by applying greedyBFS to actual Web sites. The
x axis are plotted in logarithmic scale base 2. The average proportion of gain for
each of the eleven Web sites has a 95% confidence interval of at most F5.53. The
proportion of gain decreases at some points due to the different assignments of Zipf’s
distribution in each sample.
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max total number | % of | standard
of hotlinks, |H| | gain | deviation

1 23.28 4.95

2 25.77 6.53

4 26.10 5.58

8 28.51 6.51

16 30.74 5.58

32 30.11 5.35

64 32.15 6.72

128 33.06 6.57

256 33.87 5.57

512 34.02 5.79

1024 34.79 5.81

2048 34.46 6.30

4096 34.68 6.64

8192 35.30 6.11

16384 34.86 6.25

Table 6.2: Average proportion of gain over the access cost of eleven real Web sites
when the total number of hotlinks is limited. The average proportion of gain for each
of the eleven Web sites has a 95% confidence interval of at most F5.53.
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Figure 6.3: Comparison of greedyBFS with hotlinkAssign and the theoretical optimal
solution (from Theorem 10) when applied to random Web sites of size 10,000 and
maximum outdegree from 3 to 19. The average proportion of gain for greedyBFS,
hotlinkAssign and the optimal solution have a 95% confidence interval of at most
F1.49, F71.68, and F0.29 respectively.

Algorithms greedyBFS and hotlinkAssign and the Optimal Solution Com-
pared on Random Web Sites

We present, the results of comparing the performance of algorithms greedyBFS, de-
scribed in Section 5.3.2, and hotlinkAssign, described in Section 5.3.4, with the the-
oretical optimal solution given in Theorem 10. The performance is compared on
randomly generated Web sites of size 10,000 with maximum outdegree 3 to 19. Fig-
ure 6.3 and Table 6.3 illustrate the results of the simulations. The average proportion
of gain for greedyBFS, hotlinkAssign and the optimal solution have 95% confidence
intervals of at most F1.49, F1.68, and F0.29, respectively.
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maximum | % of gain with | % of gain with | optimal % of
outdegree, ¢ greedyBFS hotlinkAssign gain
3 84.83 89.88 97.86
5 81.14 81.87 95.35
7 78.05 76.04 94.17
9 77.07 73.47 93.91
11 75.69 69.91 93.32
13 74.96 67.08 93.04
15 73.49 64.81 92.95
17 72.98 64.16 92.85
19 73.89 62.41 92.71

Table 6.3: Comparison of the performance of greedyBFS with hotlinkAssign and the
theoretical optimal solution (from Theorem 10) when applied to random Web sites of
size 10,000 and maximum outdegree from 3 to 19. The average proportion of gain for
greedyBFS, hotlinkAssign and the optimal solution have a 95% confidence interval of
at most F1.49, F71.68, and F0.29 respectively.

6.4.2 Multiple Hotlinks per Page
Algorithms k-greedyBFS and greedyBFS* Evaluated on Random Web Sites

Algorithms k-greedyBFS and greedyBFS* are described in Sections 5.4.1 and 5.4.3.
The results of the simulations are depicted in Figure 6.4 and Table 6.4. Observe that
for values of k > 5, greedyBFS* outperforms k-greedyBFS.

6.5 Validation of the Simulations

To validate the correctness of the simulations, we use the model validation techniques
presented by Jain [30]. According to Jain, the three key aspects to validate the model

are:

1. Assumptions.

2. Input parameter values and distributions.
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Figure 6.4: Performance of k-greedyBFS and greedyBFS*. Observe how greedyBFS*
outperforms k-greedyBFS when k > 5. The proportion of gains for k-greedyBF'S and
greedyBFS* have a 95% confidence interval of at most F0.91 and F0.99 respectively.

max. hotlinks

% of gain with

95% confidence

% of gain with

95% confidence

per page, k k-greedyBF'S interval greedyBFSF interval
2 34.18 0.91 32.75 0.79
4 41.77 0.84 40.92 0.99
6 46.48 0.80 46.97 0.87
8 48.27 0.62 49.89 0.67
10 50.52 0.74 53.13 0.80
12 50.92 0.75 54.78 0.68
14 51.31 0.69 56.90 0.74
16 51.34 0.41 57.92 0.64
18 51.50 0.64 59.23 0.72
20 52.15 0.80 60.72 0.69

Table 6.4: Performance of k-greedyBFS and greedyBFS®. Observe how greedyBFS*

outperforms k-greedyBFS when k > 5.

The average proportion of gain for k-

greedyBFS and greedyBFS* have a 95% confidence interval of at most F0.91 and
F0.99 respectively.
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3. Output values and conclusions.
In our particular case, we tested the following:

1. The correctness of the implementation of the algorithms.

2. The generation of Web sites with realistic popularity on the Web pages and

realistic hyperlink structure.

3. The consistency of the results as we vary the number of hotlinks allowed in
the Web site, the number of hotlinks allowed per Web page, and the maximum
outdegree of the Web pages.

Correctness of the Algorithms

In order to verify the correctness of the implementation of the algorithms, we check
that the outcomes of algorithms greedyBFS and recursive are exactly the same, since
the latter is a recursive version of the former. With this test, we can be confident
that the implementation of greedyBFS is correct since it is unlikely that different
(logical or syntactical) errors in the implementation of both greedyBF'S and recursive
algorithms produce the same results. Since algorithms k-greedyBFS and greedyBFS*
are variations of algorithm greedyBF'S, we can also be confident that these algorithms

are correctly implemented.

Correctness of the Generation of Random Web Sites

According to our criteria, a random Web site has a realistic structure if the outdegree
follows Equation 6.1. Figure 6.5 plots the outdegree frequencies that characterize our
random Web sites. To validate the correct assignment of access probabilities to the
intermediate, i.e., non-leaf, pages, we verify that the access probability of the home
page is 1, since each node’s access probability is the sum of the probabilities of the

leaves descendant to it.
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Figure 6.5: The correctness of the structure of the random Web sites is proven by com-
paring their outdegree frequencies with a power-law distribution (given by Equation
6.1) in a loglog scale.



CHAPTER 6. SIMULATIONS AND CASE STUDY 90

6.6 Case Study

6.6.1 Hotlink Assignments to the scs.carleton.ca Domain

We are able to use the scs.carleton.ca domain for testing, since we have access to
both its hyperlink structure and its access logs, which contain information about the
popularity of the Web pages.

To test an algorithm, we convert the structure of the scs.carleton.ca domain into
a directed graph G = (V, E), where each vertex v € V represents a Web page, and
every edge (v,w) € E represents a hyperlink going from v to w. We then construct
a tree T = (V, E') by performing breadth first search on G from the home page. We
call this process link structure and it is described in Section 7.3.1.

We use the access log files of the domain to assign access probabilities to the pages.
The log files used are over 57.2 MBytes in size and contain the access logs for 7 days,
for a total of 602, 879 file requests. The process that assigns popularities to the Web
pages is called access probabilities and its description can be found in Section 7.3.1.

Figure 6.6 illustrates the gain obtained in the experiments. The scs.carleton.ca
domain contains 798 pages. Observe that the maximum gain of greedyBF'S and
recursive is achieved at |H| = 53 < 798, which represents less than 10% of the

number of pages in the site.
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Figure 6.6: Gain attained by greedyBFS, and recursive in the scs.carleton.ca domain.
For |H| < 53 greedyBFS and recursive differ in performance. Observe that this
behaviour is due to the different order on which each algorithm assigns the hotlinks;
however, in the end they will always converge, as the latter is the recursive version
of the former. Note that again the maximum gain is achieved with few hotlinks, as
53 < |V| = T798.



Chapter 7

The Hotlink Optimizer

7.1 Introduction

In Chapter 6 we looked at the efficiency of the hotlink assignment algorithms and
found that we can reduce the access cost of a Web site by as much as 35%. This
result suggests that the development of a hotlink assignment tool would be useful. In
this chapter we present the architecture and user interface for the Hotlink Optimizer
(HotOpt), a powerful software tool that assists Web administrators and designers in
restructuring their Web sites according to the needs of users. HotOpt is also presented
in [34].

By analysing the hyperlink structure of a Web site, and looking at the user’s
patterns, HotOpt is able to suggest a set of hotlinks to be added to the Web site. This
is a semi-automatic process in the sense that the hotlinks are found automatically,
but they are not automatically added to the Web site. For the moment, we want to
assist Web designers, not to replace them.

HotOpt can find a set of hotlinks, H, that reduces the access cost of the Web site.

The inputs are the home page file* and the access log files, and the output is the set

1Observe that from the home page we can perform breadth first search on the Web site.

92
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inputs | home page

log files
HotOpt - Hotlink Optimizer
outputs | set of hotlinks

% of savings

Figure 7.1: Inputs and outputs of HotOpt.

of hotlinks H along with z, the proportion of gain offered by H. Figure 7.1 depicts a

macroscopic view of HotOpt.

7.2 The User Interface

HotOpt has a user interface that displays the tree-shaped hyperlink structure of the
Web site (cf. Figure 7.2). The user has to provide the location of the home page and

the access log files.

7.2.1 Initial Set Up

In order to run HotOpt, the Web administrator needs to have both the html source
files and the log files in an explicit path on his or her system. It is important to
remark that HotOpt will not delete or modify any existing file of the Web site nor
delete any hyperlinks.
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Figure 7.2: User interface of HotOpt.

7.2.2 Input

The user needs to provide the home page and the log files (top left corner of Figure
7.2). If no log files are available, HotOpt will use an arbitrary Zipf’s popularity
distribution. Refer to Section 6.3.1 to see how Zipf’s distribution is used. The user
may (optionally) specify the output file where the set of hotlinks is to be stored.
The user can also limit the overall budget of hotlinks to be assigned, as well as
the maximum number of hotlinks per page (top center part of Figure 7.2). The
optimization process starts by pressing the “HotOpt” button located in the top right

corner of the interface. See Figure 7.2.
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Figure 7.3: Output of HotOpt.

7.2.3 Output

HotOpt takes the hyperlink structure of the Web site and transforms it into a tree.
This tree is displayed in the main window of the user interface along with the
hotlinks, as depicted in Figure 7.2. The hotlinks are easily identified by assigning
a unique number to each of them. For example, in Figure 7.2, we can see that there
is a hotlink going from “kranakis|indez.htm to “kranakis|513.html, a second one
going from “kranakis|teach.html to “kranakis|523-refs.html, and a third one from
“kranakis|518.html to “kranakis|513-projects00.html. HotOpt displays the original
access cost and the new cost, along with the proportion of gain (see the top right
corner of Figure 7.2). The set of hotlinks are saved in the file specified by the user
(cf. Figure 7.3).
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7.3 Architecture

The tasks performed by HotOpt can be summarized as follows (cf. Figure 7.4). First,
the Web site is transformed into a graph and then into a tree. Secondly, a probability
distribution is assigned to the leaves of the tree. Finally, the optimization algorithm

is applied.

7.3.1 Processes of HotOpt

HotOpt performs four basic processes.

1. Link structure (graph). Beginning at the home page file, build a directed graph
G = (V,E), where V is the set of Web pages and E is the set of hyperlinks
between the Web pages.

2. Link structure. Construct a tree T' = (V, E') performing breadth first search on
the graph G. The root of the tree is the node associated to the home page.

3. Access probabilities. Assign probabilities to the leaves of the tree by counting

the number of times, according to the log files, that each leaf was requested.

4. Optimization algorithm. Find an assignment of hotlinks to 7. Based on the
simulations of Chapter 6, we conclude that the best hotlink assignment algo-
rithm known so far is algorithm greedyBFS. This algorithm is implemented in
HotOpt. Finally, output the set of hotlinks along with the proportion of gain

that those hotlinks can achieve.

We describe these four processes in detail.
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inputs home page log files
link structure _ N optimization
(graph) link structure access probabilities algorithm
P 5 process 2 process 3 process 4
HotOpt hl
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@

outputs | H={h, By, b}
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Figure 7.4: HotOpt performs four basic processes. Process link structure (graph)
constructs a directed graph, where the nodes are Web pages and the edges are the
hyperlinks that connect the pages. Process link structure builds a Web tree in breadth
first search order with the home page as the root. Process access probabilities assigns
probabilities to the leaves of the tree based on the access log files. Process optimization
algorithm is crucial since it is responsible for applying the optimization algorithm.



CHAPTER 7. THE HOTLINK OPTIMIZER 98

Link Structure

In this section we explain the link structure process, which transforms a Web site into
a tree.

Consider a Web site as a directed graph, where Web pages are nodes connected by
hyperlinks. The transformation of a Web site into a graph is performed by the process
called link structure (graph). In Chapter 2 we prove that the hotlink assignment
problem is NP-hard. Therefore, we approach the problem for trees. However, the
tree must be constructed without braking the semantic structure of the Web site, and
keeping the shortest path from the home page to all the other pages of the site.

We construct a tree in breadth first search order so that the root is the node
associated to the home page. The process is formally described in Algorithm 13. The
algorithm receives as parameters a graph G = (V, E) and a distinct node r associated
to the home page of the Web site. The output will be a breadth first search tree
T = (V, E') rooted at node 7.

It is convenient to identify each node by the path and file name of the source file

of the Web page, so that the hotlinks can be easily identified.

Access Probabilities

In this section we describe the process of assigning a probability distribution to the
leaf pages of the tree. The access probability of a Web page is determined by its
popularity. We compute the popularity of a Web page by counting the number of
times, according to the access logs of the Web site, that this page was visited by the
users.

Consider the access log of a Web site (c.f. Figure 7.5). Each entry in the access
log contains information about one request: requester’s IP address, time of request,
file requested, protocol used, http code, and size of the file in bytes. Not all of the

entries represent an actual hit to a page, since some represent the request for a file
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Algorithm 13 websitetoBFStree( G = (V, E),r )

1.
2.

3.

7.

let g be an empty queue
B =¢
Yv € V, mark v as not wisited
mark r as visited
enqueve r in q
while q is not empty
(a) u =dequeue q

(b) for each edge (u,v) € E : v has not been visited

i. enqueue v in q
ii. mark v as wvisited
iii. B'=E'U{(u,v)}

return( T = (V, E'),r )
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0O | XedPlus: logs.txt | X

File Edit Jump Search Special Commands Pipes ~Insert=
Fad & B
5 134,117,5.8 - - [06/Jan/2001:06:00:04 05001 "GET /" 200 5000°H

216,35,116,93 - - [06/Jan/2001:06201:23 -0500]1 "GET Arobots,txt HTTRSL,0" 200 43907°H

216,35,116,92 - - [06/Jan/2001:06201:27 -0500]1 "GET / HTTR/1,0" 200 5000°M
203,247,40,204 - - [06/Jan 2001:06:02:08 -0500]1 "GET M maheshwadindex html HTTRAL.0" 200 B370°M

24,28.6.80 - - [06/Jan 2001306106323 06001 "GET images HTTRAL,0" 301 314°M

24,28,6,80 - — [0B/Jan 2001: 068506122 —0500] "GET /images/ HTTP/L,0" 200 B5H

24,28,6,80 - - [0BAJan /2001206206424 -05001 "GET / HTTPA1,0" 200 50007H

24,28,6,80 - - [0B/Jan 20013 06:06125 -05001 "GET Ateachingdjavacourse HTTR/L,0" 404 2837°H
24,28,6.80 - - [06/Jan 2001306506125 -0500]1 "GET Ateaching/pizzadindex.html HTTRAL,0" 404 295°M
24,28,6,80 - — [0BATan/2001:068:06126 —0500]1 "GET Ateaching/sortandzearchdindex, html HTTPAL,0" 404 203°H
24,28,6,80 - - [0BATan /2001106206427 -0500]1 "GET /mizc/degrassisdegrassi html HTTR/L,0" 404 2977
24,28,6,80 - - [06/Jan/2001:06:06:27 05001 "GET /cegedresources/pdc.html HTTRAL.0" 200 B219°M
24,28.6.80 - - [06/Jan 2001306506128 —0500]1 "GET Acsgedresources/cg.html HTTRAL.0" 200 11463°M
24,28,6.80 - - [06/Jan 2001306106328 08001 "GET Areports/reductions.ps HTTR/L,0" 404 291°H
24,28,6,80 - - [0B/Jan /2001106506428 -05001 "GET Areports/honours,.ps HTTRAL.0" 404 2887H
24,28,6,80 - - [06/Jan 2001306506123 -05001 "GET Areports nzercl336,.ps HTTRAL.0" 404 2307H
24,28,6.80 - - [06/Jan 2001:06:06:23 -0500]1 "GET Areports nsercl338,.ps HTTRAL.0" 404 2307H

24,28,6,80 - — [06/Jan/2001306:06:29 05001 Jreports/pdf.ps HTTPAL.0" 404 2847H

216,306,103,52 - - [0B/Jan /2001306309505 05001 "GET Jpublications/tech_report=/1993 HTTRP/L1,0" 301 338°M
202,124,214 - - [0B/Jan/2001:06:09:08 ~05001 "GET #“csgs/resourcessgaal .html HTTR/L,0" 200 B7E47M
203,124,214 - - [06/Jan/2001106:09:10 -05001 "GET #“csgadresourcesswave.gif HTTPAL1.0" 200 B031°H
202,86,166,17 - - [0B/Jan 200130630950 08001 "GET /“morindmizc/sortalgd HTTR/L,1" 200 2492°H
202,86,166,17 - - [0B/Jan/2001:06:09:57 05001 "GET /“morindmisc/sortalgs/Sortlten.class HTTRSL,1" 200 2070"H
216,30,103,52 - - [0B/Jan/2001:06:09:57 05001 "GET /publications/tech_reports/1993/ HTTR/L,0" 200 9127H
142,206,2,12 - - [06/Jan/2001306:10:02 -05001 "CET #“kranakisz/B13-notes/cruptol3,pdf HTTPA1,.0" 304 —"H
202,86,166,17 - - [0/ Jan 200106310503 -0800] "GET /“morin/mizc/sortalg/SortPanel,class HTTPAL, 1" 200 3403°H
192,172,127 .75 - - [06/Jan 2001306510232 -0500]1 "GET /“teourtisd HTTRAL,1" 200 4846°H

192,172,127,75 - - [06/Jan /2001306510235 -05001 "GET /“tcurtis/picsfwip.png HTTRAL,1" 200 741°M

)

=

193,172,127,75 - - [06/Jan 2001:06:1036 -0500]1 "GET Atourtis/picssdecss-now.png HTTRAL,1" 200 2701°H

24,112,458,227 - - [06/Jan/2001:06:11:19 05001 "GET / HTTPA/L,0" 200 Go00~H

24,112,158,227 - - [06/Jan /2001306511219 -0500]1 "GET Agraphics/header.gif HTTR/L,0" 200 5440°H

24,112,158,227 = - [06/Jan /2001206511219 -05001 "CGET Agraphics/help.gif HTTR/L,0" 200 288°M
!24'112'158'22? = = [06/Jan/2001:06:11519 -0500] "GET Agraphics/splash,jpg HTTR/L.0" 200 255637H

Shomes7 0usersimyargasisniogs bt Read - Write.

Figure 7.5: Example of an access log file of a Web site. The fields are as follows:
requester’s IP address, time of request, file requested, protocol used, http code, and
size of the file in bytes.

embedded in a page and others indicate an unsuccessful attempt to download a page,
i.e., due to client or server errors. Therefore we need to filter the entries and extract
only the actual hits to Web pages. We are interested on the entries with http code
200 or 304, i.e., “ok”, and “not modified” respectively since they are the only ones
that indicate an actual access to the page. Refer to [26] for a complete description
of the http 1.1 protocol and [25] for a complete description of log files. Algorithm
extractHits, given in Algorithm 14, receives as inputs a tree T and a log file. After
the execution of the algorithm, each leaf of the tree will have a popularity associated
to it, depending on the number of times the leaf was visited.

Once algorithm extractHits, given in Algorithm 14, has been executed, we compute
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Algorithm 14 extractHits( 7', logFile )
1. for each entry of logFile

(a) if code= 200 or code= 304 and file requested is a leaf v of T

i. increment by 1 the number of hits to leaf v

the access probability distribution of the leaf pages based on their popularity. Let
a; be the number of times that leaf page | was requested, and let A = )", a;, be the
total number of times all the leaves were requested. The access probability of leaf [
is defined by p; = %.

After the access probability distribution has been computed, we need to assign
weights to the internal nodes of the tree in a bottom-up fashion, such that the weight of
page v, denoted as p,, is the sum of the probabilities of the leaves that are descendants

of v. Observe that for the home page r, p, = 1.

Optimization Algorithm

This process runs the hotlink assignment algorithm. Among the algorithms tested
in Chapter 6, algorithm greedyBFS performed best. This algorithm is described in
Section 5.3.2. Algorithm greedyBFS is the optimization algorithm implemented in
HotOpt.

7.3.2 Modular Structure

Figure 7.6 illustrates the main structure of HotOpt. The tree constructor module
takes the home page and the access log files as input. It is responsible for running link
structure (graph), link structure, and access probabilities processes. These processes
are depicted in Figure 7.4. The tree constructor module outputs a Web site tree,

T = (V, E) with a probability distribution p over its leaves.
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Structure agorithm H
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log files access tree
probabilities characterizer

hotlink optimizer

Figure 7.6: Main structure of HotOpt.

The optimization algorithm sub-module applies the best hotlink assignment al-
gorithm depending on the characteristics of the tree 7. Such characteristics are
extracted by the sub-module tree characterizer. Currently, HotOpt applies the al-
gorithm greedyBFS to any Web site, regardless of its characteristics, as we have
not finished determining which characteristics are significant. Moreover, algorithm
greedyBFS has proven to be the best in all situations we have examined so far. See
Chapter 6 to see the performance of algorithm greedyBF'S. The final outputs are the
set of hotlinks H and the proportion of gain, %, offered by H.



Part IV

Optimizing the Expected Data

Transfer
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Chapter 8

Heuristic Algorithm for Hotlink

Assignments

8.1 Introduction

One factor that slows down Web performance is the inevitable downloading of infor-
mation that does not interest users. This problem happens to anyone who surfs the
Web searching for information. For example, suppose we are on page v and want to
get the information located in page w. Among the hyperlinks of v, however, there
is no hyperlink (v, w) that takes us directly to w. Inevitably, we have to “download”
others pages until we find a page = with the desired hyperlink (z,w). Given a Web
site, we want to find an assignment of hotlinks that minimizes the expected data
transfer, i.e., the necessary amount of bytes to be downloaded to reach one of its
pages.

The previous chapters dealt with the problem of improving Web performance by
optimizing the average number of steps required to reach the pages of a Web site. As
a consequence of minimizing the number of steps, we certainly reduce the amount of

irrelevant information that needs to be transferred, yet, that was not the aim. In this
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chapter we study the assignment of hotlinks for optimizing the average data transfer.

We restrict the problem to assigning at most one hotlink per node.

8.2 Notation and Terminology

A good way of measuring the access cost of a Web site is to consider the average data
transfer generated for reaching a Web page. Under this perspective, we define the
weight (in bytes) of a page v, w,, as its own size plus the size of its embedded files.
The access weight of a page v, w(v), is equal to the sum of the weights of the pages
contained in the shortest path between the home page and v. Consider a tree T" with
maximal outdegree 0 and m leaves numbered 1,2,...,m. Every node u of the tree
has a weight w, associated to it. To reach the Web page at u from the home page
we must download all the Web pages in the path from the home page to u. Hence, if
II(r, u) is the shortest path from the home page r to u then we have that the access

weight, w,, at u is given by the formula

ww)= > w, (8.1)

vell(r,u)
Without loss of generality, we may normalize the costs w,,.
At the same time, we have the access probabilities p, at the nodes. This access
probability is the frequency with which the node u may be visited from the home

page. We have that

Dy = Z Do (82)

vchild ofu
The access cost of page v is c(v) = w(v) - p,.
The expected data transfer for accessing a random leaf page from the root of a tree

T with a probability distribution p on its leaves is given by the following equation.
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u is a leaf
Define I14(r, u) as the path from 7 to u given the hotlink assignment A. We have
the following:

wA(U,) _ Z w, (8.4)
vellA(r,u)
G(A) = Eu[T,p] - B, [T p] =) (w(i) —w'(5)) - ps (8.6)

i=1

8.3 Lower Bound

We want to find a lower bound on the right-hand side of Equation 8.3. We will prove

the following theorem.

Theorem 11. The expected data transfer necessary to access a random Web page

from the root of the tree T satisfies

Di

1 = w(i) 1
Pl 2 o 2 iy 18 ()

where w(i) is the weight at i-th leaf as defined by FEquation8.1, p; is the access proba-
bility at the i-th leaf, § is the mazimum degree of the tree, and d(i) is the distance of
the i-th leaf from the root.
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Proof. Define:

(4) - (@) - ps

ol
~
=3
[
S

1
1
w(i) - p; - log (—)
1 Di

Let the tree T have maximum degree § and m leaves. With the normalization of the

1

x
g
=
i

1

costs w,, we can assume:
e D<w; <1
[ w1+w2+---+wm§1

The leaves of the tree T represent an encoding with base alphabet of size ¢, i.e., the

maximum degree of the tree. By McMillan’s theorem [1]:

1
Z i <1 (8.7)
=1
It follows from Inequality 8.7 that
m . 1 m ' )
wli)pietog () < 3 w() - 0g(o0) (5.
i=1 ! i=1

To prove Inequality 8.8 we argue as follows. Define 7; := 6%, Then we have:

Zm:w(i) p; - log (%) = ﬁzm:w(i) -p; - In (;—)

i=1 ¢
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IA
o

Therefore Inequality 8.8 is proven. Now we have the following:

Zw(i) - p;i - log (l> < Zw(i) - p; - log(6"™)

i1 Di

Hence, we have proven the inequality

Hu®) _ p T, p] (8.9)

Now we turn to proving a lower bound on E,[T]. Note that

BJT,p = S uw(i)-p,

m
=1
m

> d0) (52) 5

Next, normalize the weights w(¢) by defining the new weights
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Observe that w'(i) <1 and

E,[T,p] = i w—;))-pi

By Inequality 8.9:

m (i Ho
Eu[T,p > (Z dg;) lOg((z;)
d

This completes the proof of Theorem 11.

Theorem 11 implies the following lower bound

1 w(u) 1
S R R G (810

u 1s a leaf

E[T4,p] >

Note that this generalizes Shannon’s lower bound for noiseless channels. Indeed, if
w(z) = d(i) for all 4, then the right-hand side of Equation 8.3 is the expected number
of steps to reach a random leaf of the tree T" from the root, in which case Theorem 11
gives F,,[T,p| > Té(pa In general, w(i) > d(7) for all ¢, and hence the quantity in the
right-hand side of the equation in Theorem 11 is bounded from below by % 10 . Also,
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note that in view of the definition in Equation 8.1, w(i) > (d(¢) + 1)c, where c is the

minimum size of a file at a node of the tree. Hence, we obtain the following corollary.
Corollary 2. The expected data transfer generated for accessing a random Web page
from the root of the tree T satisfies

C
E,[T, p] > Togd - H(p),

where ¢ is the minimum size of a Web page at a node of the tree.

8.4 Algorithm weighted-greedyBF'S

One is tempted to pursue a similar idea to that of [35] in order to find a balanced
partitioning of the tree. Inevitably this will lead to a recursive algorithm like in [35].
However there are some difficulties to this approach. In this section we present a
heuristic algorithm called weighted-greedyBFS.

Algorithm weighted-greedyBFS, described in Algorithm 15, operates in the same
way as algorithm greedyBF'S, presented in Section 5.3.2. The difference between these
two algorithms is that the former attempts to maximize Equation 2.6, whereas the
latter attempts to maximize Equation 2.4. Algorithm weighted-greedyBFS assigns
hotlinks iteratively in breadth first search order beginning with the home page. Con-
sider a hotlink (s,¢). In each iteration of the algorithm, s corresponds to the next
node in breadth first search order, and ¢ corresponds to the descendant of s that
maximizes the gain, but that is not a descendant of a node z, which is at a higher
level than s and already has an incoming hotlink. See Figure 5.1. Recall that func-
tion next_in_ BFS order returns each node of the tree in breadth first search order,
starting from the home page. The algorithm stops when no more hotlinks can be

assigned.
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Algorithm 15 weighted-greedyBFS( 7" )
1. H=¢

2. while( (s = next_in_BFS order ) # ¢ )

(a) t = v : v mazrimizes Equation 2.6; and v is a descendant of s; and v does
not have a hyperparent; and v is not a descendant of a node x, which is at
a higher level than s and already has a hyperparent.

(b) if t # ¢ then H = H|J{(s,t)}

8.5 Algorithm weighted-recursive

This is a recursive version of algorithm weighted-greedyBFS, described in Section 8.4,
and its operation is similar to algorithm recursive, described in Section 5.3.3. Observe
that the only difference between algorithm recursive and algorithm weighted-recursive
is that the former attempts to maximize Equation 2.4, whereas the latter attempts to
maximize Equation 2.6. The basic principle of algorithm weighted-recursive, described
in Algorithm 16, is to assign a hotlink (s,t), where s is the home page and ¢ is the
node that maximizes Equation 2.6, then split the original tree into subtrees consisting
of the subtrees rooted at the children of s and the subtree rooted at t, then proceed
recursively for each of these subtrees. Note that one of the children of s, s, will be
ancestor of ¢, and the subtree rooted at ¢ will not form part of the subtree rooted at

sg- In the algorithm, we assume that the set of hotlinks, H, is initially empty.
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Algorithm 16 weighted-recursive( 7 )

1. s=r

2. fori=1tok

(a) t = v : v mazrimizes Equation 2.6; and v is not a descendant of a node x,

which is at a higher level than s and already has a hyperparent; and v has
no hyperparent

(b) if t # ¢ then H=HJ{(s,?)}
3. for each children of s, s; (including hypersons)

(a) T = subtree rooted at s;

(b) recursive( T)




Chapter 9

Simulations and Case Study

9.1 Introduction

In Chapter 8 we present the heuristic hotlink assignment algorithm
weighted-greedyBFS. In this chapter we use simulations to evaluate this algorithm.
The simulations are implemented in Java. The algorithm is evaluated on three dif-
ferent kinds of structures: random Web sites, real Web sites with an unknown access
probability distribution, and an actual Web site with a known access probability
distribution.

In Chapter 6 we study the simulation of a random Web site along with the pop-
ularities of its pages. In this chapter, we need to assign file sizes (in bytes) to the
pages of the random Web sites. Recall that the size of a page is equal to its own
size plus the size of its embedded files. We associate a random size to each page and
obtain 95% confidence intervals for all the results that we present. We validate the
correctness of the simulations by showing that the file sizes of the random Web sites

actually resemble the theoretical file sizes distribution.
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9.2 Web Sites Used for Simulation

For the simulations, we use the same kind of Web sites discussed in Chapter 6, namely,
random Web site trees and real Web sites. To test algorithm weighted-greedyBFS we
need to enhance those Web sites by associating weights to the Web pages. The weight
of a Web page represents the size in bytes of the Web page plus its embedded files,
e.g., images, audio, etc. An interesting question arises: What is the distribution of

file sizes on the Web?

9.2.1 The Distribution of File Sizes

Arlitt et al. [4] carefully analyse the traffic of a Web server. They prove experimentally
that the file size distribution is heavy tailed (see [49] for a background of heavy tail
models). The assertion of Arlitt et al. was confirmed by Crovella et al. [15], who show
experimentally that file sizes greater than about 1, 000 bytes can be well modeled with
a Pareto distribution. Barford et al. [6] show experimentally that file sizes can be
modeled with a hybrid distribution. Files of “small” size can be well modeled with a
lognormal distribution, whereas “big” files can be modeled with Pareto distribution.
According to Barford et al., the body of the distribution is modeled with lognormal
distribution for values smaller than 133KBytes. Downey [19] creates a model that
suggests that file sizes are modeled only by a lognormal distribution. Mitzenmacher
[40] points out why the arguments of Downey yield only a lognormal distribution.
Mitzenmacher corroborates the results of Barford et al. and suggests a double Pareto
distribution for the body of the curve and a Pareto distribution for the tail.
Assuming that the model proposed by Barford et al. [6] is correct, we create a file

size distribution as follows:
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;267(11”67”)2/202 if z < cutoff point
Plw, =x] = *7ver (9.1)

akez(@+1) otherwise,

where w, is the size in bytes of page v and its embedded files. The values of y, o and
« are taken from the observations of Barford et al. [5] on the requests of over 40,000
files from over 500 users in 1998. The values of k£ and the cutoff point are calculated
to fit the results of Barford et al. [5] who observe that 83% of the files fall in the body
of the distribution. See Figure 9.3. The values used in Formula 9.1 are displayed in

Table 9.1.

‘ parameter ‘ value ‘

7 7.796
o 1.625
k 8,863
« 1.47
cutoff point | 10,790

Table 9.1: Parameters used in Formula9.1.

For the case of random Web sites, we assign weights to the pages in a random
fashion, according to the distribution of Formula9.1.

The straightforward solution for getting the actual weights of real Web sites would
be to download the entire Web sites, however this action would require enormous
storage capacity. One alternative would be to process the information contained in
the log files, however the log files are usually undisclosed to the public. Therefore we
use random file sizes. We search the number of embedded files on every page and for

each of them we withdraw a size from the distribution given by Formula9.1.
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9.3 Results of the Simulations

We simulate the operation of algorithm weighted-greedyBF'S, discussed in Section 8.4,
on random Web sites. The maximum proportion of gain on the access cost is 30%,

whereas the minimum is 11%.

9.3.1 Algorithm weighted-greedyBFS Evaluated on Random
Web Sites

The results of the simulations are plotted in Figure 9.1 and displayed in Table 9.2.
We plot the average proportion of gain that can be attained by the algorithm. The
average proportion of gain has a 95% confidence interval of at most F2.27. Observe
that the gain of the algorithm oscillates between narrow intervals, indicating that the

size of the tree does not greatly affect the performance.

number of pages in | % of | standard | 95% confidence
Web site, |V| gain | deviation interval
1000 12.71 6.54 2.27
3000 13.76 5.12 1.78
5000 14.73 6.10 2.11
7000 13.21 4.03 1.40
9000 13.75 5.37 1.86
11000 11.10 3.51 1.22
13000 11.86 4.06 1.41
15000 12.30 3.81 1.32

Table 9.2: Proportion of gain on the access costs of randomly generated Web sites of
1,000 to 15,000 pages. The proportion of gain has a 95% confidence interval of at
most F2.27.
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Figure 9.1: Gain obtained by applying weighted-greedyBFS to randomly generated
Web sites of size 1, 000 to 15, 000. The average proportion of gain has a 95% confidence
interval of at most F2.27.
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Figure 9.2: Average gain obtained by applying weighted-greedyBFS to actual Web
sites. The x axis are plotted in logarithmic scale base 2. The average proportion of
gain for each of the eleven Web sites has a 95% confidence interval of at most F7.40.
The proportion of gain decreases at some points due to the different assignments of
probabilities and file sizes in each experiment.

9.3.2 Algorithm weighted-greedyBFS Evaluated on Real Web
Sites

We show the results of the simulations in Figure 9.2 and Table 9.3. The average
number of nodes in the sample of Web sites is 9,669.2. Observe that the proportion
of gain stabilizes after assigning less than 500 hotlinks, which is roughly 10% of the

average number of Web pages.
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max total number | % of | standard
of hotlinks, |H| | gain | deviation

1 21.36 8.40

2 21.42 9.33

4 23.88 11.26

8 24.92 11.04

16 25.23 9.85

32 26.21 11.14

64 28.01 12.17

128 28.55 12.30

256 28.97 11.24

512 30.10 13.54

1024 29.35 12.75

2048 28.53 11.93

4096 29.25 11.88

8192 29.28 13.57

16384 29.45 13.40

Table 9.3: Average proportion of gain over the access cost of eleven real Web sites
when the total number of hotlinks is limited. The average proportion of gain for each
of the eleven Web sites has a 95% confidence interval of at most F7.40.
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9.3.3 Validation of Simulations

To validate the correctness of the simulations, we observe the model validation tech-
niques presented by Jain [30], which are summarized in Section 6.5. We evaluate both
the correctness of the implementation of the algorithm and the generation of realistic
file sizes. The correctness of the structure and popularity of Web sites is validated in

Section 6.5.

Correctness of the Implementation of the Algorithm

In Section 6.5 we check that the results of algorithms greedyBFS and recursive are
the same to ensure that the implementation is correct. Here, we perform the same
test with algorithms weighted-greedyBFS and weighted-recursive and confirm that the
outcomes are equal. This evidence indicates that the implementation of weighted-

greedyBFS is correct.

Correctness of the Generation of File Sizes

To validate the correctness of the generation of file sizes, we plot the distribution
of file sizes of the Web sites used in our simulations and verify that they follow the
hybrid distribution discussed in Section 9.2.1. The distribution of file sizes used in

the simulations is plotted in Figure 9.3.

9.4 Case Study

We are able to test our algorithms on the scs.carleton.ca domain because we have all

the necessary information, i.e., the hyperlink structure, access logs, and file sizes.
The case study is conducted in the same way as described in Section 6.6. In this

case, we need to associate real weights to the Web pages. The weight of a Web page

is its own size plus the size of its embedded files (in bytes).
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Figure 9.3: The correctness of the file sizes used in our simulations is proven by
plotting the cumulative distribution function of the hybrid (lognormal-Pareto) distri-
bution, given in Formula9.1. The file sizes are plotted in log scale. The cutoff point
is such that approximately 83% of the file sizes fall in the lognormal distribution.
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Figure 9.4: Gain attained by algorithm weighted-greedyBFS in the scs.carleton.ca
domain. The domain contains 798 pages and the maximum gain is attained at |H| =
52 hotlinks, which indicates that we can get good gain with just a “few” hotlinks.

Figure 9.4 illustrates the proportion of gain obtained by the algorithm. The
scs.carleton.ca domain contains 798 pages. Observe that the maximum gain of
greedyBFS and recursive is achieved at |H| = 53 < 798, which represents less than
10% of the number of pages in the site.



Chapter 10

Conclusions and Extensions

In this dissertation we studied the assignment of hotlinks for improving the access
cost of Web sites. Two measures were used to determine the access cost of a Web site,
namely, the expected number of steps and the expected data transfer. We started
by formulating the corresponding optimization problems, proving NP-hard results,
and then explaining what our approach would be. We presented the mathematical
background for the study of hotlink assignments and provided hotlink assignment
algorithms for special cases of Web site structures. We also introduced hotlink as-
signment algorithms for arbitrary Web sites. These algorithms were tested using
simulations on random and real Web sites. After that, we developed a software
tool that implements our most efficient hotlink assignment algorithm and provides a
friendly user interface.

In Part I we presented the necessary background for the study of hotlinks. In
Chapter 1, we provided an overview of our work by discussing the problems and their
solutions in an intuitive manner. In Chapter 2 we formally defined the problems,
proved NP-hard results and discussed our approach.

In Part II we presented our work for full binary trees. In Chapter 3, we studied

the assignment of hotlinks and bookmarks in full binary trees. We presented a lower
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bound derived from Shannon’s theory. We introduced hotlink assignment algorithms
for special cases of access probability distributions, namely, geometric, arbitrary, uni-
form, and Zipf’s. In particular, we presented a hotlink assignment algorithm which
is optimal for uniform distributions. It would be interesting to find better algorithms
for other distributions and to tighten the upper and lower bounds. In Chapter 4 we
studied the assignment of bookmarks, which are a special case of hotlinks, to full
binary trees. We introduced an optimal bookmark assignment algorithm for uniform
access probability distributions. It would be of interest to study the assignment of
bookmarks with other access probability distributions.

In Part III we studied the optimization of the expected number of steps to reach
the pages of a Web site. In Chapter 5 we presented a theoretical lower bound on
the minimum number of steps required to reach a page of a Web site, and presented
heuristic hotlink assignment algorithms. Extensions to this work include the design
of new hotlink assignment algorithms, especially for the case of multiple hotlinks per
page, where many possible heuristics arise. In Chapter 6 we evaluated the perfor-
mance of the hotlink assignment algorithms presented in Chapter 5. We found that
the expected number of steps in a Web site can be reduced by at least 24% and as
much as 35%. These results, however, are theoretical because it is assumed that users
would use the hotlinks to navigate on the Web site. It would be interesting to see to
what extent users actually use the hotlinks to determine what is the real reduction on
the number of steps. In Chapter 7 we introduced the Hotlink Optimizer (HotOpt),
a software tool that assists Web administrators and designers on restructuring Web
sites by assigning hotlinks, according to user access patterns. HotOpt has a friendly
user interface and is able to display a tree visualization of the Web site including the
suggested hotlinks. HotOpt implements our best hotlink assignment algorithm, but
HotOpt can be upgraded if a better algorithm is found.

Finally, in Part IV we studied the optimization of the expected number of bytes
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that must be transferred by the Web server when a user visits one of its pages. In
Chapter 8, we presented a theoretical lower bound and a heuristic hotlink assignment
algorithm. We believe that better algorithms can be designed. In Chapter 9 we
evaluated the hotlink assignment algorithm presented in Chapter 8. We found that
the data transfer can be reduced by at least 11% and as much as 30%. Again, it would
be interesting to see to what extent users actually use the hotlinks and to determine

the real reduction in data transfer.



Appendix A

Glossary

Access cost of a Web page Equals the access probability of the page times the
cost of the shortest path from the home page.

Access cost of a Web site Equals the access costs of all the Web pages of the Web

site.
Access patterns The manner in which users navigate the Internet.

Access weight of a Web page Equal the access probability of the page times its

size in bytes.

Data transfer Number of bytes that need to be transferred when accessing a Web

page.

Descendant Web page In a tree structure, page v is descendant of page u if there

is a path of hyperlinks from u to v.
Distance Number of hyperlinks in the shortest path from one page to another.

Expected data transfer Average number of bytes that need to be transferred to

access a random page of a Web site.
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Expected number of steps Average number of hyperlinks that need to be taken

to access a random page of a Web site.

Gain of a hotlink assignment Savings in the access cost obtained by placing

hotlinks in a Web site.

Home page Starting page of a Web site. It is assumed that every other page of the

Web site can be reached from the home page.

Hotlink Shortcut in the shortest path between the home page and another page of
a Web site.

Hyperlink Link between two Web pages that is not a hotlink.

Hyperparent The hyperparent of page v is the page containing a hotlink that goes
directly to v.

Hyperson A hyperson of page u is the end point of one of its hotlinks.
Indegree Number of hyperlinks pointing to a particular page.

Latency of a Web page Time elapsed from the moment when the user requests a
page on his or her navigator to the moment when the page is completely shown

on the screen.
Latency of a Web site Average sum of the latencies of the pages of the Web site.
Outdegree of a Web page Number of hyperlinks in a page.

Web caching Consist on storing Web documents in the local memory for future

reference.

Web diameter Average distance between two random Web pages of the Internet.
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Web mirroring Consists on keeping one or more copies of a Web site (or part of it)

in different strategic locations.

Web page Block of information put together in a document and made accessible
through the Internet. This document usually has hyperlinks to other Web

pages, and may contain embedded files, e.g., text, audio, video, and images.

Web site Collection of Web pages administered by the same authority which are

linked together to form a unified source of information.

Weight of a Web page Size in bytes of the page plus its embedded files.
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List of Symbols

symbol meaning
0 maximum outdegree of the pages of a Web site
Oy outdegree of page v
II(r, u) a minimum shortest path between the home page r and page u
% (r,u) | minimum shortest path between the home page r and page u
given the hotlink assignment H
A; i-th partition of the leaf pages
b bookmark
B set of bookmarks
c minimum size of a page in a Web site
i) minimum size of the pages that belong to the tree induced by
the i-th partition of leaf pages
cA0) given the hotlink assignment A, minimum size of the pages
of the subtree of T# induced by the i-th partition of the leaf
pages
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c(v) access cost of page v
d(v) minimum distance between the home page and page v
E[T] expected number of steps of a Web site T (with implicit
access probability p)
E,[T,p] | expected data transfer of a Web site 7' with access probability p
g(h) gain attained with hotlink A
g(b) gain attained with bookmark b
9v(B) gain attained for a page v in the tree T2
Gg(B) gain attained by the set of bookmarks B
G(H) gain attained by the set of hotlinks H
G_x(B) | gain attained by the set of bookmarks B in a tree diminished by
the pages of the set X and all its descendants
h hotlink
H set of hotlinks
H, harmonic number with respect to m
H(p) entropy of the probability distribution p
H(p) entropy of the probability distribution p in a weighted Web site
k usually, maximum allowed number of hotlinks leaving a Web
page
K total number of hotlinks in a Web site
l usually denotes a level of the tree
log x logarithm base 2 of x
m number of leaf pages in a Web site
n number of levels in a full tree
N number of pages in a Web site
P probability distribution
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p probability distribution computed for the leaves of the i-th
partition
Do access probability of node v
r home page of a Web site
s usually, the starting point of a hotlink (s, t)
S; sum of the probability of each leaf page of the i-th partition
t ending point of a hotlink (s, ?)
T = (V,E) | atree T with the set of nodes V' and the set of edges E
T8 tree T augmented with the set of bookmarks B
TH tree T augmented with the set of hotlinks H
Wy size in bytes of page v and its embedded files
w(v) access weight of page v
w(v) access weight of page v given the hotlink assignment A
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