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Abstract

Intrusion detection is the art of detecting inappropriate, incorrect, or anomalous
activities. There are two types of Intrusion Detection Systems (IDSs) such as: misuse
detection systems and anomaly detection systems. When used in a wireless system,
IDS is designed to capture the malicious use of available services so that it protects
availability and security for legitimate users. Several intrusion detection technologies
such as calling patterns on application layer, Radio Frequency Fingerprinting (RFF)
on physic layer, and detection on the network layer are designed to protect wireless
networks.

As a complement to the above technologies, employing User Mobility (UM) profil-
ing, this thesis addresses the following open question: how to identify abnormal users
efficiently with low false alarm rate in the anomaly detection system.

This thesis provides a feasible solution to this question with two classification
frameworks, Instance Based Learning (IBL) and Hidden Markov Models (HMMs). It
also describes details of design and implementation of the frameworks. The perfor-
mance of two frameworks were evaluated by simulating the IBL with location data,
and the HMMs with both location data and other mobility features (e.g., transmission
time, speed, and course). The True Detection Rate (TDR), True Acceptance Rate
(TAR), and False Detection Rate (FDR) were examined. The IBL framework has
better success rate and is easy to implement. The HMMs framework could produce
precise results if it has enough data from profiled users.

Moreover, this thesis analyzes a performance of the true detection rate and false

alarm rate with authentic UM position data and other related mobility features.
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Chapter 1

Introduction

This chapter starts by introducing the context in which this thesis has been writ-
ten, followed by the motivation for this research. Then, the thesis contributions are

summarized, and finally an outline of the thesis is presented.

1.1 Context of the Work

Mobile wireless networks, unlike wired networks which have several cables installed,
can offer a multitude of services such as making calls using a mobile phone, receiving
a message on a pager, or checking email on mobile devices. Besides these services
for civilian use, wireless networks are also employed in many other fields such as the
military or police force. For example, the military or police may use the network
to relay information for situational awareness on the battlefield and to coordinate
emergency disaster relief personnel after a natural disaster [JM96].

The wireless networks can be classified according to the following types based on

their region of coverage. The first type of wireless network is called Wireless Local



CHAPTER 1. INTRODUCTION 2

Area Networks (WLANS). In this case, Local Area refers to a small geographic region
such as a cafeteria, or an office, and can also refer to larger places such as a whole
university campus. People can form a network or gain access to the Internet in these
areas. Sometimes without an access point, several devices can form a temporary
network if people only want to share the resources they already have and they do not
need to access other networks such as Internet.

The second type of wireless network is called Wireless Personal Area Networks
(WPANs). With two current approaches used, Infra Red (IR) and Bluetooth (IEEE
802.15), people can create a small network to connect personal devices within an area
of about 30 feet. However, IR requires no barriers between any two connected devices
and its link range is less than Bluetooth.

The third type of network is called Wireless Metropolitan Area Networks (WMANS).
This is the technology that uses wireless connection to cover a geographic area such as
a city or suburb. WiMAX (IEEE 802.16) standard is developed to solve this problem.

The forth type of network is called Wireless Wide Area Networks (WWANS). This
type of networks can be used to cover large areas such as cities, via multiple satellite
systems or antenna sites operated by an ISP.

Compared to wired networks, wireless networks have many advantages. First,
they will never have the problems of cable. Second, people with wireless devices can
easily take advantage of this service at any convenient place. The benefit is significant
to the service providers who do not need to install cable. Instead, an ISP only needs
to provide access points or stations in some places.

However, wireless networks have their own disadvantages. For example, the Qual-
ity of Service (QoS) is not guaranteed if there is any interference with the link. But the

most serious problem with wireless networks is security. Unlike the wired networks for
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which it is difficult to obtain physical access, the wireless signal can be intercepted
easily by anybody with corresponding devices. That is, it is easy to eavesdrop on
wireless network communications. Wireless devices are also vulnerable to hacking,
due to the capability of the devices. In recent times, the media has reported an in-
crease of the problem of personal information being stolen from cellular phones. One

problem in particular is identity theft and intrusion in the cellular networks.

1.2 Motivation

With the development of mobile networks, it is clearly evident that the use of wireless
devices and cellular phones is becoming a computing platform of choice. While this
trend had been forecast some years ago, what is crucial today is the need for robust
Intrusion Detection Systems (IDSs) in wireless and mobile networks. Although nu-
merous commercial anomaly-based detection systems are currently available, they all
suffer from a high false detection rate. This outstanding problem can be addressed by
comparing an observed event or behavior against multiple profiles, namely calling pat-
terns, hardware characteristics of devices (e.g., hardware fingerprint of transceivers)
and others, prior to rendering a decision. This thesis mainly focuses on these afore-

mentioned problems.

1.3 Thesis Contribution

This thesis contributes to the design, implementation, and performance evaluation

of two IDSs with different classification framework such as: Instance Based Learning

(IBL) and Hidden Markov Models (HMMs). In addition, we present a novel scheme to
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integrate the User Mobility (UM) profiling with the IDSs. As we know, UM profiling
is a technology that has been used by cellular network providers to minimize the cost
of paging. To the best of our knowledge, it is the first time that UM profiling is being
used for IDS.

The main contributions of this thesis are as follows:

1. Design of an IBL framework based on UM profiling. First, an implementation
of the IBL model is developed with a simulation tool, MATLAB. Second, the
performances of this model, such as the True Detection Rate (TDR) and the

True Acceptance Rate (TAR), are provided.

2. Design of a framework for the detection of anomalous trajectories of mobile users
in wireless communication networks. This approach is based on UM profiling
and HMMs classification method. The implementation results for this model

are also provided.

By analyzing the experiment results, we demonstrated that the use of mobility
profiles of wireless users for anomaly-based intrusion detection is technically feasible.
Second, we also provide a better solution for IDSs by adding more mobility features
into UM profiles. Third, we also identified a performance bottleneck for the true
acceptance rate in both IBL and HMMs implementation. For that problem, we
provide a solution by padding location coordinates into the missing place. Through

simulation this process demonstrated that the performance is improved.
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1.4 Road Map

The rest of my thesis is organized in the following manner: Chapter 2 reviews and
characterizes the background and the related work on intrusion detection techniques
for wireless networks. We introduce our first experiment with the IBL framework,
perform a simulation, and analyze results in Chapter 3. Chapter 4 also offers enhanced
implementation with a more precise classification approach: that is HMMs. Detailed
analysis of the results from HMMs method are included in Chapter 4 as well. The
conclusion of the thesis and the opportunities for future work are addressed in Chapter

3.



Chapter 2

Background and Related Work

This chapter offers a survey of some existing intrusion detection strategies for wireless
networks, and an introduction to our test environment. We start by introducing two
main intrusion detection technologies, anomaly-based detection and misuse-based de-
tection, in Section 2.1. In Section 2.2, we discuss some related IDS work for wireless
networks on different layers, including using RFF, Network Layer Detection and Call-
ing Patterns. Section 2.3 introduces two classification approaches that are used in

our IDSs. Finally, we give a short introduction to our test environment in Section 2.4

2.1 Intrusion Detection Technologies

When any intrusion is attempted, intrusion prevention (e.g., via authentication) is the
first line of defense against malicious activities. However, only relying on prevention is
not sufficient to protect wireless networks. There are always exploitable weaknesses in
the systems due to design and programming errors. For instance, if the authentication

merely relies on a property of the hardware technology (e.g. IMEI code for cellular
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phones), then intrusion based on cloned hardware will not be identified. So intrusion
detection technologies were developed as the second line of defense to protect the
resources of the legitimate users. Numerous intrusion detection technologies have
been developed over the last few decades. The conventional technologies for IDSs can
be classified in two groups: misuse detection and anomaly detection, each of which
has its own methodology to identify intruders.

The misuse detection method [KS94| first finds all possible attack patterns, and
then puts these patterns into a database. Whenever an observed action from a user
is received, the misuse detection system compares this incoming observation with
patterns stored in the database in order to classify it as normal or abnormal behavior.
For example, a distinctive pattern for a guessing password attack can be "there are
more than three failed login attempts within a short time". Rogers Communications
Inc. uses this technique to protect a user’s web account. If a person’s activities match
the pattern, the user’s account is locked for 24 hours.

In contrast, anomaly detection [LB99| uses another approach, which stores the
user’s history behavior into a database, and compares any incoming observation with
the patterns in the database to identify intruders from legitimate users. For example,
the normal profile of a user may contain the daily operating sequence and the averaged
frequencies of some system commands after his/her login. If these activities are
monitored, and the sequence or the frequencies are significantly different than the
profile, then an anomaly alarm is raised. Since misuse and anomaly detection have
their own properties, some IDSs, for example, IDES [LTG"92] and NIDES [AFTV94],

use both anomaly and misuse detection techniques.
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2.1.1 Misuse Detection

Misuse intrusion detection has been clearly understood in the literature as the de-
tection of specific, precisely representable attacking modes. In other words, misuse
detection is basically a pattern matching method which is well developed for the detec-
tion of such offenses. A user’s activities are compared with known signature patterns
of intrusive attacks. Each specific mode of offense can be considered as a pattern and
many of these can be matched simultaneously against the audit logs generated by
system. Although research on anomaly-based detection for IDSs has been done for
years [LSM99, JV91, LS00], most commercial systems focus on misuse detection (i.e.
pattern matching for known attacks), requiring frequent updates when new attacking
modes are developed. Many current commercial network IDSs [AT00, CS99, ISS99]
are capable of automatically responding to network attacks through increased logging,
firewall reconfiguration, termination of connections, and even automatic blocking of
suspicious networks.

The main advantage of misuse detection is that it can accurately and efficiently
detect instances of known attacks. The main disadvantage is that it lacks the ability

to detect the truly innovative (i.e., 'zero day’) attacks.

2.1.2 Anomaly Detection

Unlike misuse detection techniques, anomaly detection is based on an assumption that
the behavior of an intruder is different from a normal user’s behavior. Furthermore,
people also assume that these differences can be measured quantitatively. Relying
on these assumptions, [LSM99, JV91, FHSLI6| studies many techniques to analyze

different data sources. For example, [LSM99| uses data mining for network traffic,
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[JV91] uses statistical analysis for audit records, and [FHSL96| uses sequence analysis
for operating system calls. In particular, [LS00| described a framework for network
intrusion detection, which offers some guidelines to extract related features from data
records.

The main advantage of anomaly detection is that it does not require prior knowl-
edge of intrusion and can thus detect new intrusions. The main disadvantage is that
it may not be able to describe what the attack is and may have high false alarm rate
because they are not capable of discriminating between abnormal patterns triggered
by an authorized user and those triggered by an intruder [LJ00]. A successful anomaly
detection system must overcome many challenges. As a rule of thumb, the user’s be-
havior might change over time. Learning algorithms should track user behavior and

adapt to a changing environment to allow for consistently evolving systems.

2.2 Related Works on Wireless Networks

In the previous section, we described two approaches for intrusion detection. We now
review other related designs and implementations of intrusion detection on different

layers of wireless networks.

2.2.1 Radio Frequency Fingerprinting

Due to the infrastructure of ISO/OSI networks, IDSs, which are developed for wired /wireless
networks, can be applied on all of the seven layers from the application layer down
to the physical layer. Hall, Barbeau and Kranakis [HBK03, HBK04]| have developed
an approach that exploits the phase characteristic of signals for intrusion detection

at the physical layer with RFF technique.
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Their proposals are based on the assumption that every piece of transceiver hard-
ware (e.g., 802.11b transceiver) has its own unique radio frequency fingerprint (the
transient portion of the signal the hardware generates), which can be used to identify
each transceiver and protect network resources from intruders. In many other IDSs,
Media Access Control (MAC) address is also used. However, unlike RFF technique,
which reflects the hardware characteristics, The MAC address can be acquired over
air and reused to gain access to the network (MAC address spoofing).

The key objective is to successfully detect the start and end of the transient and
extract three components, such as amplitude, phase and frequency. A technique such
as Discrete Wavelet Transform (DWT) [Mal99] can be used. [CPAH95, HP96| state
that the Daubechies filter can be used to acquire the DWT coefficients with lower
computational complexity. In order to improve results, [HBKO03| also applied the
Bayesian filter to increase TDR by reducing the impact of noise.

A performance evaluation of RFF shows that classification success rates range
from over 90% to 100%. Based on simulation results, this anomaly based intrusion
detection technology is feasible. However, we notice that the success rate can be
improved by optimizing the composition of the transceiverprint. Future investigation

is required to examine the scalability of such a system.

2.2.2 Network Layer Detection

Zhang and Lee [ZL00] proposed the first node-based anomaly-based intrusion detec-
tion architecture, in which a local anomaly detection engine is created on a rule based
classification algorithm RIPPER [Coh95|. In this architecture, local response is ac-

tivated when a node locally detects an anomaly or intrusion with high confidence.
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Its primary goal is not only to make each node in a wireless network responsible
for detecting the intrusion independently, but also neighboring nodes can collaborate
to probe the malicious activities in the border area. However in a wireless ad hoc
network, there may not be a clear separation between normalcy and anomaly. For
example, a node that sends out false routing information might be compromised, or
merely has temporarily outdated routing information.

In the system each node attempts to detect anomalies or intrusions in the wireless
network. If any intrusion is identified with weak evidence, the node with the intrusion
detection agent initiates a global intrusion detection procedure through a cooperative
detection engine.

Huang and Lee [aHLO03] extended their previous work on local anomaly detection
and developed a cross-feature analysis technique to explore the correlations between
features using a classification decision tree induction algorithm C4.5 [Qui93|. Their
detection engine uses features extracted from the routing table, such as route add
count, route removal count, route find count, etc. However, due to the use of network
layer statistical features, their system is unable to localize the attack source unless

the identified attack occurred within one hop.

2.2.3 Calling Pattern

Another user profiling method that uses calling patterns in cellular networks has
been developed. This approach [BNO1, BN02, FHK*95| classifies the mobile phone
calls into two main groups (e.g., normal ones and anomalous ones) according to their
log files. The assumption is that all users’ phone calls can be characterized with

time and location of the calls. Whenever the phone call is finished, the time and its
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location are compared with the stored user pattern profile. If the probability of an
intrusion is high, a warning message is sent to the client’s own cellular phone. This
immediate notification can help the legitimate users to reduce their losses if their
phones have been cloned. Moreover, to satisfy this design goal, [ BN02| used a Radial
Basis Function (RBF) network to divide the users into different groups and build the

log files.

2.3 Brief Introduction to Two Classification Meth-
ods

In this thesis, we applied two classification methods into our IDS. One is IBL, and
the other is HMMs. Each classification method has its own property. Mainly with
k-nearest neighbor method, IBL decides how similar two instances, which can be
points in an n-dimensional space, are. IBL stores all examples in the training set.
When a new example arrives, retrieves those examples similar to the new example and
looks at their classes. In contrast, HMMs can calculate the probability with only one
attribute (that is, the hidden state). Since HMMs show the relation between observe
signals and hidden states, they are used in many fields, e.g., speech recognition and

bioinformadtics.

2.3.1 Instance Based Learning

When we employed the IBL [LB99| framework in our implementation, we also brought
several important concepts such as: similarity measure, similarity measure to the

profile, noise suppression, and decision rule.
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1. Similarity Measure: Similarity measure is a mathematical value to describe how

close or similar two sequences of location coordinates are.

To calculate this similarity measure, we define the following formula:
sim (X,Y) =) w(X,Y,i) (2.1)

with:

0, ifx <0orax; #y;
w(X,Y,i) =

l+wX,Y,i—1), ifz; =y
Here X, Y are two mobility sequences, each of which consists of [ (i.e., 10)
location coordinates, and ¢ is the index of the sequence of location coordinates.
The similar value of each location coordinate at the same index between two
sequences, w(X,Y,1), is zero, while these two location coordinates are not the
same. Otherwise, the similar value is the former similar value plus one. The
purpose for applying this formula is that we want to represent the value con-

necting with the order of location coordinates in sequences.

2. Similarity Measure to the Profile: The UM profile stores a set of training se-
quences from the stream of the UM sequence. The former method only shows
how we compute the similarity value between two sequences of location coordi-
nates. So we need to apply it for the all sequences stored in the UM profile to
calculate the similarity measure to the profile, which is the rule to describe how
similar the test sequence and the sequences in the profile are. In other words,
it is also a standard to classify the user’s observation movement as normal or

abnormal.
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To achieve a test sequence of similarity measure to the profile, we simply cal-
culate its similarity measure by comparing it with each sequence of location
coordinates in the profile, and select one of the largest values to stand as its

similarity measure to the profile. It is defined as:

simp(X) = mazyepsim(Y, X)

The maximum value of simp(X) is:

I(1+1)
2

l
1=

1

Calculation of Similarity Measure
Lol el e e ]

? 2 = ? ? ?
vl lwlwlw[w [y [w|[w [L]
1 + 2 +3 +0 +0 +0 + 1 + 0+ 0 + 0= 7

e

I
1
1
3

Calculation of Similarity Measure to Profile
| Training Sequence 1 | SM Value 1

- ‘ Training Sequence 2 ‘ SM Value 2

Max Value

1 Training Sequence n ‘ SM Value n —

Figure 2.1: IBL Concept

3. Noise Suppression: In a realistic experiment, some degree of deviation of the
UM sequence from the sequences in the profile (which is considered as noise)

might happen for some unexpected reasons such as traffic conditions or weather.
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However, this kind of noise can be suppressed. In doing so, the average of
similarity values to profile of W number of test sequences is used. So, we give

the following formula:

%

vp (i) = Wj:i_zwﬂsimp ()

4. Decision Rule: To make a decision whether a set of incoming observation se-
quences belong to a legitimate user or are from an intruder, we need to establish
two thresholds for each legitimate user: the minimum threshold and the max-
imum threshold. Any degree of similarity values that fall between these two
thresholds, which we named the acceptance region, represents the normal be-

havior. Otherwise, we would say that the mobility sequence is from an intruder.

2.3.2 Hidden Markov Models

Extended from the Markov Chain model, the HMMs [Rab90] which is a statistical
model has a finite set of states, each of which is not visible directly to an external
observer. However, with statistics, these states show some association that can be
represented with a set of probability distributions with other observation symbols.
For example, in the experiment in Chapter 3, the report location coordinates from
user devices are observation symbols; user’s location coordinates in real are hidden
states. Since the wireless interference, or message delay during data transmission,
the data received in database sometimes are not exactly the real location coordinates
where users are at that transmission time. When we applied HMMs, we want to find

out the probability distribution between the real location coordinates and the report
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location coordinates. As well, we can use the probability distribution to evaluate how
close or similar the incoming sequences and the sequences stored in the profile.

The HMMs is composed of the following components defined in Table 2.1:

N The number of hidden states which are as S = {s1, s2,..., sy}

M The number of observation symbols which are as O = {01, 09,...,0x}

A ={a;;} The state transition probability matrix

B = {bj(k)} | The observation symbol probability matrix

IT = {m} The initial state probability distribution

Table 2.1: HMMs components

a;; = P[th = Sil¢ = S,-], 1 <,j < N is a transition probability from state i to
state 7, and the state at time ¢ as g;.

bi(k) = P[Oy at tlg = S;],1 <j < N,1<k< M is the observation proba-
bility with the observation symbol k in state j at that time ¢.

mi = Plg1 = S;],1 <1 < N is the initial probability of state i.

With these probability distributions, three problems can be solved with HMMs.

e The evaluation problem: for given HMMs and an observation sequence, to
calculate the probability that the observation sequence was produced by the

model.

e The hidden state sequence problem: for given HMMs and an observation se-
quence, to find the most probable hidden state sequence to represent by the

observation sequence.

e The training problem: to determine the parameters of a given model.

Correspondingly, Rabiner [Rab90]| shows three solutions to solve these problems. In
this thesis, we are only interested in how to employ these solutions on the evaluation

problem and training problem, which are relevant to our project, to build the IDS.
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Solution to the evaluation problem

To calculate the probability of the observation sequence produced by a given
model, a procedure called the forward procedure is applied. In the procedure, a
forward variable oy (7) is defined as the probability of the partial observation sequence,

010, ...0y, and state S; at time ¢ produced by the given model A.
(i) = P(010;...0¢, g = Si|))
We can solve for a,(7) inductively with following formulas:

at+1 [Z at a”L]

P(O[\) = Z ar(i (2.4)

In initialization step, Formula 2.2 is used to initialize the forward probabilities as
the joint probability of state S; and initial observation O;.

After that, Formula 2.3 is used to calculate the probability of the partial obser-
vation sequence until time ¢ + 1 and state S; at time ¢ + 1 for the given model based
on the former result. Figure 2.2 illustrates how state S; can be calculated at time
t + 1 from the N possible states, S;, 1 < i < N, at time ¢. Because (i) is the
probability of the joint event that 0,0, ...0O; are observed, and the state at time ¢
is S;, a4 (%)a;; is the probability of the joint event that 0105 ... O, are observed, and
state S; is reached at time ¢ + 1 via state S; at time ¢. Adding all the products over

N possible states S;, 1 <4 < N at time t obtains the probability of S; at time
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t + 1 with the previous partial observations. When this result is multiplied with the

probability b;(O;41) (that is, observation O, in state j), oy11(j) is obtained.

t t+1
(1) o1 ()

Figure 2.2: Illustration of the calculation of the forward variable ayy(j)

Finally, Formula 2.4 gives the calculation of P(O|)) as the sum of the terminal
forward variables a (7). In other words, P(O|)) is the sum of the ap (7).

Solution to the training problem

Training problem is the most difficult part of HMMs. To determine the model
parameters (A4, B,7), one more auxiliary variable §,(7) is defined as the probability
of the partial observation sequence from ¢+ 1 to the end, and state S; at time ¢ and

the model .
/Bt(i) = P(Ot+10t+2 .. -OT|CIt = 5;, )\)

Then the probability of being in state S; at time ¢, and state S; at time ¢t + 1,

given the observation sequence O and the model A can be defined as &(i,j) = P(q =
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Siyqey1 = S;|0, A). The term &(7, j) can also be written in a following form:

Lo Oét( )afw (Ot+1)5t+1( )
ft(l,]) = (O|)\)

_ (i )aw i(Op41)Bi1(9) (2.5)
Sy Yoy (8 aijhi(Or) Braa (4)

al]b_](ot+1)

t+1 t+2

Figure 2.3: Illustration of the sequence of operations required for the calculation of
the joint event that the system is in state S; at time t and state S; at time ¢ + 1

Also the probability of being in state S; at time ¢, given observation sequence O,
and the model A, v;(i) = P(q; = S;/O, ), can be expressed in terms of the forward-
backward variables. That is,

_ au(i)Bi(5)
"O="pony

_ th(l)/@t(l) | (2.6)
Zizl (673 (l)ﬂt (Z)

The relationship between ,(7) and &(4, j) can be expressed as y;(i) = Zjvzl (1, 7).
So, summation of v;(i) over the time index ¢ can be interpreted as the expected
number of times that state S; is visited, or the expected number of transitions made

from state S;. Similarly, summation of &(z, ) over the time index t can be interpreted
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as the expected number of transitions from state S; to state S;. That is,

Z v:(7) = expected number of transitions from S;

T-1
Z &:(1,j) = expected number of transitions from S; to S;
t=1

With the previous formulas, a set of reasonable reestimation formulas for deter-

mining the parameters of HMMs (A, B, 7) are

7; = expected number of times in state S; at time (¢ = 1) = v, (¢) (2.7)

expected number of transitions from state S; to S;

ij = expected number of transitions from state .S;
Zt 1 'Yt()
(k) = expected number of times in state S; and observing symbol vy,
I expected number of times in state S;
_ Zt 1 ot _— Y2(4) (2.9)

Zt 1 Vt()

Based on the above formulas, we iteratively use A in place of A and repeat the
reestimation computation, we update the HMMs parameters until some limiting point

is reached.

2.4 Introduction to Test Environment

We built our test environment based on the Automatic Position Reporting System
(APRS) [Fil04] and collected experiment data from APRS. APRS was developed

by Bob Bruninga for capturing and reporting radio operator’s position and other



CHAPTER 2. BACKGROUND AND RELATED WORK 21

information such as weather reports and geographical information.

Figure 2.4 illustrates the APRS infrastructure. A station can receive messages
broadcasted from users directly if the distance between users and station is within
the transmission range of the radio. Alternatively, the messages can be relayed to a
station by other user’s radio, if the distance between users and station is larger than
the transmission range of the radio. After a station receives the message updates,
it stores these records into a database chronologically. Figure 2.5 shows the cables
connected to receiver and antenna. The big black box is the power supply for the
receiver. Figure 2.6 illustrates what receiver, the TNC, looks like. Figure 2.7 shows
the trajectories belonging to different users who are identified with their call signs

reflected on a map of Ottawa.
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transceiver T Computer A which runs
the APRS software

Computer B which
Repeater - runs the simulator

R

Figure 2.4: Infrastructure of APRS system

Figure 2.5: Antenna for receiving data
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Chapter 3

Intrusion Detection System with

Instance Based Learning Framework

In this chapter, we mainly focus on how we design and simulate the IDS with the
IBL method. Section 3.1 introduces our design architecture of IDS based on the IBL
framework. Section 3.2 offers a description of collecting the experiment data. We
also explore the method applied to minimize the deviation of data in Section 3.3.
The details of creating UM profile is discussed in Section 3.4. In addition, during
the preliminary testing, we present our performance measure in Section 3.5. Finally,

conclusions are made in the last section.

3.1 Intrusion Detection System Design

In this section, we illustrate the architecture of our IBL-based IDS (see Figure 3.1).

The whole system is composed of four components:

e Data Collection

24
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e High Level Mapping

e Feature Extraction and Definition of UM Profiling

e (lassification

Data collection is designed to gather the experiment data from mobile users. When
this process is done, high level mapping is used to minimize the deviation of data
caused by traffic jam, interfering in transmission, etc. After we conduct the mapping
for experiment data, we extract features and make UM profiles based on these data.

The last component of our IDS is to make classification based on these UM profiles.

Data Collection
User Mobility Profiling
High-level | Feature Definition of
Mapping Extraction UMP
||
|
Test Set IParameter Set ¢ Training Set
. T~ T T
(\Eaﬁneﬁ :) 4 —_ Proﬁlj_r >4--
3 A l
Classification
Periodic Updates
Normal/Anomalous - -

Figure 3.1: The architecture of IDS with IBL framework
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3.2 Data Collection

Before we start this project, the first step is to collect data that shows the UM
characteristics from different users. The purpose of this step is to obtain sufficient
UM data and combine it with the following steps to build the UM profile and their
mobility patterns. For collecting UM data, we use the APRS, which is introduced in
Chapter 2.

To build an IDS for mobile networks, we use the assumption by Markoulidakis
[MLTS95]|, which states that approximately 75% of mobile users can be well charac-
terized in terms of their mobility patterns. These users, such as working people and
housekeepers, have their unique daily routines which can be used to identify them
from other users.

When we apply the data collection phase, we face two types of problems:

e irregular transmissions: Due to the interference or other reasons, the station

might not receive all broadcasts from users.

e lack of information: Since user can choose different message formats for their

radio, the broadcasts may not include all pieces of information.

However, these situations may not be bottleneck in wireless systems, since all

transmission periodicity and message formats are obliged.

3.3 High Level Mapping

After we receive all location coordinates and related data from users, the second step

is to conduct high level mapping, converting a location coordinate into a small grid
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by rounding the last two digits from the raw data. Due to traffic, weather, and
interference, location coordinates that users broadcast for the same trip might not be
exactly the same. Even if we compare one user’s testing set with location coordinate
sequences in his/her own UM profile, we could not obtain too many highly matched
sequences. This bottleneck prevents from achieving high performance for the TDR.
Figure 3.2 shows details of how high level mapping functions. It is possible that a
user might take two similar paths but not the same ones, so that the broadcast loca-
tions are close. For example, after rounding these location coordinates, two different
coordinates can be considered in the same grid with latitude as j+3 and longitude
as i+2. As we explored, this process also minimizes the deviation between different
users. Suppose the dashed line (see Figure 3.2) represents a trajectory from another
user, the same logic is applied, which means that two trajectories would be thought

of as the same one. In other words, a potential impersonation attempt is successful.

| j+8| latitude
A j+7
.vcje\f\f;ﬂ] / j+6
) L’ )
e N, li+s|
o N jt+4
K‘ veleff{10 j+3
l .
L i+2]
AL li+1]
J
i i+1|i+2|i+3|i+4|i+5|i+6]i+7|i+8

longitude : ; ;
5 x Location broadcast during trip

Figure 3.2: High level mapping
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3.4 User Mobility Profiling

This section serves as an introduction of how we develop UM profiles using the mod-
ified data produced by high level mapping based on the location coordinate feature

only.

3.4.1 Feature Extraction

Each row of messages in users’ broadcast data set has a significant amount of in-
formation, including the user’s identity, transmission time, receiving time, location
coordinates, speed, and course (that is, direction). These messages are stored in a
database according to the order in which the server receives them. In this implemen-
tation, however, we only extract location coordinates from the database following the
order of receiving time.

After all location coordinates are extracted, they are stored in memory as a stream
of location coordinates. Figure 3.3 shows the structure of stream of location coordi-
nates in a logical view. To build UM profile, the next step is to transform the stream
of location coordinates to a set of UM sequences, each of which contains ten location
coordinates. The process of making UM profile takes the first ten location coordinates
from the stream, and stores them into a UM profile as the first UM sequence (see
Figure 3.3). To make the second UM sequence, the process shifts the starting point
by one, and then takes another following ten location coordinates. This process is
repeated until it exhausts all the location coordinates in the stream. All resulting
UM sequences are saved as a component of the UM profile that serves as input to the
profile and the classification phases. The purpose of using an overlapping window is

to permit each location coordinate to become a starting point of a mobility sequence.
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Stream of location coordinates
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Figure 3.3: Structure of stream of location coordinates
3.4.2 Components of User Mobility Profile

Not only is a set of mobility sequences stored into the UM profile, but also other
components are stored. The following is a list of components that compose a UM

profile, and are employed during the classification phase.
e (Call sign: specify the user’s identification

e Training sequences: the UM sequences used for setting minimum threshold and

maximum threshold
e Test sequences: the UM sequences used for classification

e Minimum threshold: the lowest similarity value obtained from comparing train-

ing sequences with the UM profile

e Maximum threshold: the highest similarity value obtained from comparing

training sequences with the UM profile
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e Window size: deviation on the UM sequences might happen during the user’s
moving due to some factors. To normalize this kind of deviation, the concept
of window size (that is, the number of sequences to be used to normalize the
sequences) is introduced into our implementation. By calculating the average

of the similarity values, the deviation of sequences is reduced.

3.5 Simulations

This section describes how to classify the users as either legitimate or abnormal
based on sequences of location coordinates in the test set. In doing so, we use the
IBL classification method.

The objective of the simulation is to evaluate the performance of our IDS with two
performance criteria such as: the TAR and the TDR. To obtain these two criteria, we
select five users from the user database, and use these users to build the UM profiles
and apply them in the experiment. The reasons we choose a small cluster size of users

(five of them) are as following:

1. Not all of users in the database are moving. Some users who only report weather
information are stationary. Some moving users broadcast few location coor-
dinates, which are difficult to build UM profile to characterized these user’s

mobility patterns.

2. We apply these users not only on IBL framework, but also on HMMs framework.
So we expect these users are suitable for both IDSs, and then we can compare

the performance of two IDSs.

3. Besides the performance comparison, We also need to analyze the experiment
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results. Five users can help me to identify the reasons that effect the TAR and
TDR.

4. The goal of our experiment is trying to prove the feasibility that accurately
characterized UM profiles can be used in IDS for wireless networks. More users
but without correctly UM profile will not help us to make the right decision on
what cause the low performance. Of course, after we find out the factors that
effect the performance, we can try more users to see what results are for users
with highly consistent mobility behaviord, or users with more chaotic mobility

behavior.

3.5.1 Simulation Results

To obtain simulation results, another key performance parameter r, which is the pre-
established acceptable false alarm rate, is used to obtain an acceptance region on
the user’s similarity distribution. In this experiment, r is set to 20%. To obtain
the acceptance region for each user, r/2 quantizes is applied on the upper and lower
distribution separately to achieve the minimum and maximum thresholds. If the
similarity value of the sequence comparing to the UM profile falls in an acceptance
region (between the minimum and maximum thresholds), it is classified as normal.
Otherwise, it is considered as an intrusion. The following five plots show the minimum
and the maximum threshold for five different users (see Figure 3.4 - 3.8). We also use
these five users to identify the performance criteria considered.

True Acceptance Rate

To discuss the performance of IDS, we apply TAR to examine the level of reliability

of the system. The TAR specifies how correctly a system is categorizing mobility
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Figure 3.8: Distribution for user dhlgd

sequences as normal (originating with the profiled user). So the TAR is the proportion
of the numbers of successfully identified incoming sequences and the total numbers
of incoming sequences.

However, in our experiment, the data from users are broadcasted voluntarily. We
don’t know when we will receive the messages from users. To obtain the TAR, we
take part of the history data as test sequences from one user and use them to compare

with his or her UM profile. It can be written as:

TAR — the numbers of mobility sequences correctly categorized as normal

total numbers of mobility sequences from one profiled user

Figure 3.9 presents results of the simulation. The x-axis of the bar chart shows

five users we use in this simulation, and the y-axis of the bar chart represents the
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TAR for each profiled user.

True Detection Rate
Another metric we use to evaluate the system performance is TDR which specifies
how successful a system is in detecting attacks when they happen. Compared to TAR,

TDR can be written as:

TDR — the numbers of intrusion successfully identified as abnormal

total numbers of intrusion happened

However, in our circumstance, all experiment data are from profiled users. By
definition, we don’t have the really happened intrusions. To obtain the TDR results,
we simulate the happened intrusion by comparing four users’ test sequences against
the remaining user’s profile. If the similarity measure of a sequence from one of the

four users’ profile falls outside of the acceptance region (that is, less than the minimum

W Falze Detect Rate
| : B True Accept Rate

dhigd  wk3ur  wkdag wdogow  wdsro

Figure 3.9: True acceptance rate for 5 users



CHAPTER 3. INTRUSION DETECTION SYSTEM WITH INSTANCE BASED
LEARNING FRAMEWORK 36

threshold or greater than the maximum threshold), it is successfully detected as from

an intruder. We can obtain the TDR by comparing the number of accurately detected
sequences with the total number of the test sequences.

Figure 3.10 illustrates the TDR for the same five users. The x-axis of the bar
chart shows five users we used, and the y-axis of the bar chart represents the TDR

for each profiled user.

mdhlgd
@ vkaur
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Ol d o
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whkiaur vkdan wied oy wid 5o

Figure 3.10: True detection rate for 5 users

3.6 Conclusions and Analysis

We illustrate the TDR and the TAR in Figure 3.9 and 3.10 for anomaly-based IDS
based on UM profiling. Besides these two TAR and TDR we get form the experiment,
we also check the performance of our IDS from another point of view. In Section

2.3.1, we have introduced how we calculate the simulation value between two mobility
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sequences by comparing each item in the sequence and accumulate these sub-similar
values. This step is the key operation to obtain comparison values which are used
to classify intruders and profiled users. From the example in the Figure 2.1 and the
Formula 2.1, we know this process is a linear computation. In other words, the time
complexity for that process is O(n).

The task of our IDS is to find out whether the claimed person is the profiled user;
it doesn’t perform the identification process. In other words, we are only interested
in a yes/no question instead of to find out who the user really is. From this point
of view, this IDS has a good scalability that can be extended from five users (in our
simulation) even to thousands of users. However, we also realize when the IDS does
the classification, it compares the incoming sequence with all the sequences stored
in UM profile which grows with the time. The longer time we collect data from this
user, the larger the UM profile is. A large profile definitely effects the performance
time. So profile updating and refining is necessary for this IDS.

The following shows the advantages of our IDS framework that:

performs 100% the TDR

performs high TARs ranged from 80% to 100%

offers an efficient comparison between the test sequences and the UM sequence

stored in UM profiles

is practical and easy to implement

Therefore, our anomaly-based IDS based on UM profiling is technically feasible.
When we check the TAR, the 4 of 5 users obtain a high success rate. However,

for the remaining user, the TAR is less than 60%. The reasons caused that low
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performance are the irregular transmission and a small data set for this user. Due to

these factors, the UM test sequences could not match the UM sequence in the UM
profile. Also our IDS obtained 100% TDR, for all of 5 users. Because these users
have their particular UM sequences in their UM profile with respect to other users’

UM profiles, our IDS can successfully identify them from other users.



Chapter 4

Intrusion Detection System with

Hidden Markov Models Framework

In this chapter, we extend our discussion on how an IDS can be used in wireless
networks by applying UM profiling. In the following sections, we give new definitions
of UM profile and UM pattern. In addition, we modify the approach, which extracts
UM patterns from this new type of UM profile. Finally, we conduct our simulation
by using a new classification method based on a model called the HMMs, and make

our conclusions based on the simulation results.

4.1 Framework of Intrusion Detection System

To distinguish abnormal users from legitimate users, we first need to build an UM
profile for each legitimate user, and then extract UM patterns belonging to this user
according to his/her own UM profile. In this chapter, we bring a totally different

definition of UM profile and UM pattern, with respect to Chapter 3. Following this

39
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new definition, we store the UM profile and UM patterns into two different files. We
assume that we only have data from legitimate users. For simulation purposes, we
apply one user’s UM profile against the same user’s UM patterns in our IDS to acquire
the TAR. To obtain another performance metric of IDS, the TDR, we merely apply
other users’ UM profiles against one user’s UM patterns in our IDS. These two rates
are the performance criteria of the simulation. This IDS can also be extended to a
real time situation. When a user moves, a new observed mobility sequence arrives in
the system. Whenever the system receives a new mobility sequence, it automatically
compares the incoming sequence with UM patterns, which belong to the associated
user, by applying the HMMs classification method. If the incoming sequence matches
any one of the mobility patterns stored in the UM profile, the system believes the
observation sequence comes from the legitimate user; otherwise, the system is set to
either trigger an alarm to report this as an intrusion, or just to raise a system alarm
level to determine whether there is a real intrusion or this observation sequence is
merely a new path that the legitimate user takes.

As shown in Figure 4.1, the architecture of our IDS consists of following compo-

nents:
e Data Collection
e Data Normalization
e Building UM Profile and UM Pattern with Features

e (Classification with HMMs

To satisfy these designed requirements, we implement a simulation by using C++

on Linux. From an implementation point of view, our program can be divided into
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Figure 4.1: Architecture of IDS with HMMs framework

two parts:

e UM Profile and UM Pattern Maker

e (Classification Part

The function of the UM profile and UM pattern maker is to read raw location
updates from a stream of location coordinates along with other corresponding infor-
mation, eliminate noise according to UM properties, extract other mobility features
bound with location coordinates from the data stream, and then make the UM profile
and UM patterns based on these features.

The classification component is used to identify users with the HMMs classification
method according to the UM profile and UM patterns that are created in previous

step. This component compares each observation sequence in the UM profile with
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every UM pattern. If the observation sequence matches any one of the mobility pat-
terns stored in the UM profile, in other words, if the probability of this observation
sequence coming from the mobility pattern is larger than the pre-established thresh-
old, then this observation sequence is considered to belong to one legitimate user.
Otherwise, the IDS is trigged and report this as an intrusion.

Before we jump into the details about how the new IDS is designed, how the UM
profile and UM patterns are defined, as well as how we implement system functions;

we need to make the following assumptions:

1. If mobile devices are active, they will broadcast a signal periodically. But from
the real data we collect, the interval duration between two sequential messages
may be different from interval to interval. To deal with this irregularity, we
assume that some messages are missing during the transmission. To improve
performance, we pad the missing location coordinate message in intervals to

make message transmission appears periodic.

2. If mobile users follow their normal mobility patterns, the time spent on the road
from a start point to an end point will be roughly same. The normal mobility
pattern here is the sequence of locations that occur most frequently each day. If
things change too much, for example a big traffic jam, even if the user takes the
same path from the same start point to the same end point, our system might

still classify this sequence as an anomaly.

3. Because of the transmission speed of radio signals, we make the assumption that
the receiving time time_ rz is exactly the same as the transmission time time_ tz.

We don’t take into account the delay between transmission and reception.
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4.2 Data Collection

The first step of this project is to collect data that show UM characteristics from
different users is for the same purpose as in the previous chapter. However, in this
experiment, not only location coordinates are collected from user broadcast messages,
but also other related information (e.g., transmission time, speed, and course) is
extracted.

The purpose of this step is to acquire enough UM data to build the UM profile

and patterns.

4.3 Data Normalization

The data collection processing is done in the same manner as in the first experiment.
All user message data are stored in a database (see Table 4.1). For each user the
message data can be considered as one big data stream. Figure 4.2 shows a logical
view of this structure. Each square represents a specific location coordinate in a chain
linked with other squares in chronological order. Different square shows the mobile
property at the current specific location coordinate. The square with a cross inside
stands for moving, and the square without anything inside stands for stationary.

We choose the following features extracted from Table 4.1 to determine and elim-

inate noise. These features are also used to create the UM profiles and UM patterns.

e Location coordinates (lat & lon)
e Call (user identity)

e Receiving time (time_ rz)
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e Speed

e Course (direction)

‘ Field ‘ Type ‘ Field ‘ Type ‘
Cnt int(11) Icon char(2)
time_rz | Timestamp | Speed | decimal(4,1)
time_tx | Datetime | Course | decimal(4,1)
Call char(10) Raw int(11)
Lat float(8,5) | Altitude int(11)

Lon float(9,5)

Table 4.1: Data fields in database

Figure 4.2: Stream of location coordinates in logical view

In this data preparation phase, we assume that all the data received is from
legitimate users. When checking the location coordinates, none of the messages are
considered from intruders. Either it is normal data we need, or it is some type of

noise, which we need to eliminate from the data stream. When we analyze the data



CHAPTER 4. INTRUSION DETECTION SYSTEM WITH HIDDEN MARKOV
MODELS FRAMEWORK 45

collected from the previous process, there are three types of errors that influence the

performance of our IDS.

e Irregular Transmission

According to the design requirements, users should broadcast their location up-
dates periodically. However, in the real-world situation, the broadcast messages
coming from users are usually irregular. For example, if one user’s broadcast
periodicity is set as 60 seconds, the time interval sometimes occurs to be up to
10 minutes between two sequential location updates. Irregular message trans-
mission affects the accuracy of UM profiles and extracting UM patterns, and is

the main cause of high false detection rates.

e Information Lost during Message Relay

Some location updates relayed by other radios may have lost part of the infor-
mation, because not all users apply the same broadcast message format. If these
radios relay messages, part of the messages, such as speed, course, and other
information are lost with respect to the original. We use speed to determine
UM status, timestamp to calculate the broadcast periodicity, and course to pad
the missing location coordinate. Any lost information can affect the precision
of the UM profile and UM patterns we create. This type of lost information

limits the ability of IDS’s to accurately classify legitimate users and intruders.
e Messages Duplication during Relay and Message Interference during Transmis-
sion

Since other users’ devices can relay the messages they receive, the server might

receive two or more messages containing exactly the same information; only the
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receiving time marked by the server will be different. This is one type of noise
we defined. The other type of noise is interfering messages. We discuss these

in detail in Section 4.3.1.

For the first two errors, irregular transmission and information lost during message
relay, there is no a good solution, because these events have already happened. We
can not set the clock back to see what actual data was sent at that time. However, to
solve the third error, we can filter out the duplicate messages and interfering messages

by browsing the raw data stream and comparing these messages with normal data.

4.3.1 Eliminating Data Noise

The UM data we received from the radios is full of noise. Quite obviously, if we can
not remove noise from the raw data, this noise will interfere with the ability of IDS to
correctly distinguish between legitimate users and intruders. In other words, the TDR
will drop and the false alarm rate will rise. The purpose of data normalization is to
improve the system performance by applying one of the mobility features, broadcast
periodicity.

After we analyze the data that we obtain from database we define two types of
noise for our IDS.

Type I Noise

Users can set their radios to relay other users’ messages to help extend the range
of these messages. After setting this property, when users’ radios receive location
updates from other users, the radios repeat these reports automatically. For example,
when user A broadcasts his location updates, if another user B stands between the

station and user A, and the distances between station and these two users are within



CHAPTER 4. INTRUSION DETECTION SYSTEM WITH HIDDEN MARKOV
MODELS FRAMEWORK 47

the transmission ranges of both users’ radios, the station can receive the location
reports of user A more than once. One copy is from user A directly, and the other
copy is from user B. The station can not tell the difference between these two messages,
but records them into the database. This situation is even worse, if more than one
user stands between user A and the station. The resulting redundant data can be
considered to be a type of noise, since this duplicate data alters user trajectory (see

Figure 4.5 - 4.6).

. (te1)
| “,/
k s
User A
Antenna an
transceiver Computer A which runs
the APRS software

Figure 4.3: Type I noise

Receive Time | Location | Speed | Course

T1 L1 S1 C1
T2 L1 S1 C1
T3 L3 S3 C3
T4 L4 S4 C4

Table 4.2: Type I noise representation in database

Type II Noise
Because of the inaccuracy of users’ GPS receiving devices or due to interference
during the message transmission, part of the information in messages, such as location

coordinates, speed and course, can be changed dramatically. As shown in Figure 4.4,
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the user’s trajectory may appear completely different due to this type of noise.

T

Figure 4.4: Type II noise

Receive Time | Location | Speed | Course

T1 L1 S1 C1
T2 L2 S2 C2
T3 L3 S3 C3
T4 L4 54 C4

Table 4.3: Type II noise representation in database

Figure 4.5 and Figure 4.6 show the comparison between raw data and the data
after eliminating the noise.

It is important to eliminate these two types of noise before we create the UM
profile and UM patterns. First we need to calculate the user’s broadcast periodicity.
This is achieved by observing all the time intervals between the sequential broadcasts
and determining the one most frequently appearing for each user. Different users may
have different broadcast periodicity according to their own choice, so this interval time
is an important feature used to classify different users. When we read each update
from the stream of messages, which includes location coordinates, transmission time,

speed and course, we record every interval time between two sequential updates and
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Figure 4.5: User trajectories before eliminating noise

count how often these intervals show up. After all location updates have been read,
we select the interval time that has shown up most frequently as user’s broadcast
periodicity. In the rest of the implementation, this periodicity is used to build UM
profiles and UM pattern files, to make user classification.

Once the broadcast periodicity has been determined, the next step is to eliminate
noise from the raw data stream. To erase duplicate messages (type I noise), the
process needs to go through each row of messages and check the interval time between
two sequential messages. If any interval time is less than 75% of the broadcast
periodicity, we review recent messages to see whether there is one message which
contains the same location coordinate, speed, and course. If it exists in the data
stream, we mark the second one as noise and delete it from the data stream. We
limit the checking range to within 6 time periodicity or within the last 6 minutes,
since the user may pass the same location coordinate at the same speed and course

on different days, but it is improbable for this to occur within such a short period.
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Figure 4.6: User trajectories after eliminating noise

This process is repeated until it reaches the last record in the data stream.

For type II noise, we can only determine that one message is noise after we do a
calculation based on the broadcast periodicity and other mobility features, such as
speed and interval time between these two sequential location updates. We can do

the elimination process for type II noise in one of two possible places:

1. By processing type II noise right after finishing handling type I noise. After
that we extract UM sequences from the data stream without any noise and

store them into an UM profile.

2. We can eliminate type II noise while building the UM profile.

If we choose the first method, we need to perform extra calculations on the station-
ary location coordinates. Therefore, the second method was chosen to save processing

time.
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4.4 Building User Mobility Profile and User Mobil-

ity Pattern with Feature Extraction

After finishing type I noise elimination, in order to create an UM profile for each
user, we extract mobility sequences from the data stream. Once created, we use this
profile to build the UM patterns. Meanwhile, we also eliminate type II noise from

the mobility sequences.

4.4.1 Definition of User Mobility Profile and User Mobility

Pattern

A UM profile is defined as a set of mobility sequences containing location coordinates
which represent user TRAJECTORIES with respect to other corresponding mobility
features (e.g., transmission time, speed, and course). A UM pattern is defined as a
general sequence of location coordinates, which is abstracted from all similar TRA-
JECTORIES to represent each unique PATH this user has taken. Each user has one
mobility pattern file that stores a set of UM patterns. The broadcast periodicity is
also stored in this file, which is useful to identify users.

Since the whole data stream for users is actually a long sequence of location
coordinates with other corresponding information, to extract the UM profile we only
need to find the start and the end points for each TRAJECTORY. All location
coordinates between the start and end point are stored as one record in the profile
with the start and end points. Other related features collected as the same time as
the location coordinates are also stored.

The following tables (Table 4.4 - 4.5) describe the format of the UM profile and
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the UM pattern.

| Components | Description |
Call sign User’s Identification, file name with suffix ".ptt"
Data | Transmission time | The time when user sends the message out

record

Location

The location coordinate. latitude/longitude

Speed The speed at that location coordinate
Course The direction at that location coordinate
an angle from 0 to 360 degrees
Table 4.4: Structure of UM profile
‘ Components H Description ‘
Call sign User’s Identification, file name with suffix ".pan"

Broadcast periodicity

The time elapsed between messages

Data record ‘ Location

The location coordinate. latitude/longitude

Table

4.5: Structure of UM pattern

The relationship between TRAJECTORY and PATH here is that each TRAJEC-

TORY is a sequence of location coordinates which represents a single trip a user has

made, and each PATH is a sequence of location coordinates which is compiled from

data gathered from a series of similar trips. In other words, there can be more than

one similar or even identical TRAJECTORIES in the UM profile, but only one unique

PATH to represent these similar TRAJECTORIES.

From an implementation point of view, we extracted the user’s TRAJECTORIES

first, and then abstracted the specific PATH based on these related TRAJECTORIES.

We combine the PATH and TRAJECTORY together to acquire the observations to be

used as input to our HMMs. More detail will be included in the next section which

introduces the relationship between hidden states and observations in the HMMs

method.
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4.4.2 Feature Extraction

The feature extraction process finds the first location coordinate where user velocity
is greater than zero in the data stream. Then the process monitors the user’s speed
moving from one location coordinate to the next until the velocity again equals zero.
Of course, users may have stopped half way to their destination due to traffic lights or
stopping for gas, so we defined the end location coordinate of one mobility sequence
to be the point when the duration of zero velocity exceeds a pre-established threshold.
Hence, all location coordinates between these two points are considered as one record
of a UM sequence. This process is repeated until all the data in the data stream was
exhausted. All resulting sequences are stored in a temporary file and are applied as
input to create the UM pattern and for the classification phase.

We extract each specific sequence of location coordinates with other features.
In this project, we are trying to prove that normal mobile device subscribers have
their own mobility patterns, and these patterns can be used to identify each wireless
subscriber. However, users often stay in one place for a long time, and usually spend a
short time on the road. In other words, if users’ devices report their location updates
during the whole day, most of the updates will be stationary. Table 4.6 shows the

proportion of moving location coordinates and total numbers of location coordinates.

Call sign | Total number of | Number of moving location | Proportion
location coordinates | coordinates (Speed > 0)

wagew 13855 1419 10.24%
wdsrc 19534 2285 11.70%
vkdag 10673 481 151%
vk3ur 14734 1300 8.82%

Table 4.6: Relationships between total number of location coordinates and moving
location coordinates
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Figure 4.7: Raw data stream

The reasons behind eliminating the stationary location coordinates from the data
stream are the following. First, we build our IDS based on UM patterns. Our
framework can not make any claims about the legitimacy of a user based on stationary
coordinates. Second, these repeated stationary location coordinates only offer one
piece of information such as: from time A to time B the user stays at place C. We
don’t have to store redundant location data in the database.

The following figures (Figure 4.7 and Figure 4.8) show the comparison between
the raw data stream and the data sequences after eliminating the stationary location
coordinates. Notice that Figure 4.7 is identical to Figure 4.8. No useful information
has been lost.

After we obtained all sequences of location coordinates that represent the users’
TRAJECTORIES, the next step was to remove the type II noise from the sequences.
The result generated by Formula 4.1 and 4.2 are compared. To identify type II

noise, we first compute the distance between two consecutive location coordinates
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Figure 4.8: Data stream after eliminating redundancy data

using Formula 4.1 then compare this distance with the product of the speed and
the interval time between these two location coordinates using Formula 4.2. If the
two calculated distances differ by more than some threshold, the Data Normalization

process marks this location coordinate as type II noise, and eliminates it from the

sequences.
. . laty lats laty lats long — lony
[ ) 3 5] o ) o) o )|
is = | sin (zo075) s (zr50eg) | + | 08 (57 5058) "< (573088) ~* (T57 2558 )
(4.1)
Dis = speed - (time _rzy — time_rxy) (4.2)

4.4.3 Standardizing the End Points

So far, we eliminated noise and also extracted all mobility sequences of location
coordinates from the data stream. Now, we can store these mobility sequences into

one file as the UM profile. In order to create UM patterns and make classification,
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one more step is needed. We need to identify which sequences of location coordinates
can be represented as one PATH to abstract the UM patterns. In other words, we
need to cluster similar sequences together. How can we determine whether sequences
are similar? In this phase, we say two mobility sequences are similar, if the two have
the same start and end points. More details are covered in the next section.

To abstract the same path, we first cluster similar sequences of location coordinates
together. However, due to the inaccuracy of GPS receiver systems, location data in
the message may not be correct. Even data collected from stationary users may
contain errors. These errors, depending on the various GPS devices, can exceed 20
meters and can even reach 50 meters. For clustering purposes, when we acquire the
set of all location sequences, we need to conduct the conversion processing on the
start and end points of each sequence to eliminate these deviations.

This conversion process applied on each start and end point of a user’s trajectory
can be described as follows. The subroutine reads the start and end points from
all the sequences, and stores them into two identical data structures. We take the
start points as an example. The subroutine calculates the difference between any two
points. If the distance is smaller than a pre-established threshold, (e.g., 20 meters)
then these two points will be considered potentially to be the same point. When
all points have been examined, the center point is determined from the set of points
within the threshold distance. The same process is done for the end points. The
distinction between start and end point is important since this distinction can be used
to differentiate trips with similar trajectories but taken in the opposite direction.

Figure 4.9 shows raw start points and the grouped start points. Figure 4.10 is for
the end points.

After we convert the start and end points, each sequence of location coordinates
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can be stored in the UM profile with corresponding information, (e.g., transmission
time, speed, and course). This UM profile will be used to create the UM patterns,

and as input for the classification in the next phase.
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4.4.4 Making User Mobility Patterns

As we mentioned in the previous section, each UM pattern is one abstraction for all
similar UM sequences in the UM profile. The purpose of building an UM pattern is to
use one single location sequence to represent all similar trips. There are two benefits

to do that.

1. Tt can save storage. An IDS only needs few memory to store highly condensed

patterns.

2. When a pattern has been created faithfully, it can help the IDS to make the

correct classification decision.

The procedure of making UM patterns is to find all similar sequences from the UM
profile and then extract a general sequence of location coordinates as a representative
UM pattern. This is an iterative process, and the term similar here has two levels of
meaning.

In the first step, the similar sequences are defined as any two sequences that have
the same start and end points. If any number of sequences are clustered as similar
sequences, the procedure also records all location coordinates of each sequence and
employs the K-mean clustering method on this set of location coordinates to calculate
K mean values. Here K is the mathematical mean value of the number of broadcasts
for these similar sequences. It will also be used to describe the number of hidden

states in the next section.

B, +By+Bs+...+B,

K= ~

]
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with:

B; = number of broadcasts in the sequence 1

We store this K-mean sequence together with the group of similar sequences, and use
it as a representative for these grouped sequences. After all sequences are clustered, a
set of K-mean sequences are retrieved, and then they are ordered by the number of the
sequences stored in each group and the length (number of the location coordinates)
of each K-mean sequence, or the K value. The greater the number of sequences in
one group and the larger the K value of the K-mean sequence, the higher order we
put it in a temporary file.

It is not precise to say that similarity of sequences is based on the same start
and end points. Two mobility sequences that are similar but without the similar
start point or end point will not be classified into the same group. In the second
step, we solve this problem by changing the definition of term similar. If the number
of location coordinates of a K-mean sequence that has fallen into a virtual region
composed of another K-mean sequence is greater than 75% of its own K value, we
say these two K-mean sequences are similar. This means that all of the mobility
sequences represented by these two K-mean sequences are similar. The procedure
starts comparing remaining of K-mean sequences with the first K-mean sequence. If
any K-mean sequence can match the first K-mean sequence by more than 75%, the
procedure will consider this K-mean sequence to be similar to the first one. Then
the procedure merges the latter group of sequences into the former one, and does the
same thing in the first step to make a new K-mean sequence. This procedure repeats
itself until it goes through all remaining of K-mean sequences in the temporary file.

The final K-mean sequence is saved as one UM pattern. Then the procedure starts
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the same process from the next K-mean sequence available in the temporary file
until there is no K-mean sequence left. All the final K-mean sequences are the UM

patterns, which will be used for the user classification.
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Figure 4.11: A UM pattern and the UM profile it represented

4.5 Classification

In the file preparation phase, we create the UM profile and UM patterns. The final
step is to make classification between legitimate users and intruders based on these

two files. In this experiment, we employ a new classification method, the HMMs.

4.5.1 Hidden Markov Models with the Project

In the ideal situation, we know a user broadcasts K message updates for each trip.
Ideally, the broadcast sequence generated should be the same whenever the user

takes the same trip. In this case, user’s mobility states can be represented with
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these location updates directly, and the transition probabilities among these states
can also be obtained. After that, a Markov Chain model based on these transition
probabilities can be created to calculate the probability of UM sequences produced
by the given model.

In reality, the message broadcasts are distributed all along the entire path (see
Figure 4.11) and the K broadcast locations can not be determined precisely. There-
fore, it is difficult to make one to one mapping between broadcast locations and UM
states as in the ideal situation. Since the UM states are not observable, they are called
as hidden states. However, we can find the relationship between the UM states and
the observation symbols that represents the region in which the broadcast locations

fall (see Figure 4.12).

Observation 8

Observation 2 Observation 5

x,T«

Observation 3

Observation 4 Observation 7

Observation 6
Observation 1

@ Start point @ End point © Hidden states

Figure 4.12: Making observation sequence

To obtain the observation symbols, any two consecutive location coordinates in
the UM pattern are used to compose a virtual rectangular region that has a observa-

tion number according to the position in the UM pattern. If a location coordinate of
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the UM sequence in the UM profile is within an observation region, the correspond-
ing number will be used to represent this location coordinate. Otherwise, if this
location coordinate falls outside of any regions composed of these K-mean location
coordinates, it is assigned a value one as its observation symbol.

The type of HMMs we use in our project is called the left-right model or the Bakis
model (see Figure 4.13), because the underlying state sequence associated with the

model has the property that as time increases the state index increases (or stays the

(L

same).

Figure 4.13: An example of four-state left-right model

Our classification procedure consists of two parts which are training the HMMs
with UM patterns (Baum-Welch method in Section 2.3.2, Formula 2.7, 2.8, 2.9),
and the evaluation of the observation sequences in UM profile (Forward-backward
procedure in Section 2.3.2, Formula 2.2, 2.3, 2.4) with the HMMs we create. In this
project, we are not interested in how to find the corresponding hidden state sequence
for the observation sequence from the given model. We use the variants [Rab90| from
Rabiner’s HMMs notation. The number of hidden states for each HMM is K, which
is defined as the average number of broadcast updates during a PATH.

We create HMMs which have K number of hidden states for each mobility pattern

belonging to user. The sequences in the UM profile are the data we gathered from
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user directly, so we combine these sequences with UM pattern to obtain observations
by the same method we used in the previous section. Each location coordinate in the
sequence from UM profile contributes for one observation symbol. After that, a UM
sequence is converted to an observation sequence.

In the classification phase, if the calculated probability result of an observation
sequence produced by the given HMMs (solution for evaluation problem) is smaller
than a pre-established threshold, then our IDS claims that the observation sequence
is not coming from this particular HMMs.

However, HMMs have a major shortcoming. To build HMMs (solution for training
problem), a large amount of data is needed. Normally, over one hundred iterations
are needed to make stable probability transition matrices, depending on the precision
required. Each iteration needs one UM sequence as input. For our experiment, the
time (one and a half months) was insufficient to collect enough data to satisfy this
requirement.

Due to the lack of data, we can not design our IDS framework as we implemented
(divide the UM profile to 3 parts) in Chapter 2. However, the goal of our project is
to prove that the UM patterns extracted from the UM profile can be used to identify
each distinct profiled user. Following this idea, we found it is not necessary to divide
the UM profile to 3 parts; one for user profile, one for getting parameters, and the
last one for testing in this simulation. The entire UM profile can be used as a test
set. For the training set, we just selected one UM sequence from UM profile for each
corresponding UM pattern, and then use this one as input for training HMM. The
training process repeats as many times required with the input to make three stable
transition probability matrices (e.g., A, B, IT). There are three reasons why we were

doing that:
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e First of all, we don’t have enough data for training HMMs.

e Secondly, this action is based on the assumption that users repeat the daily
routines. So it is reasonable that we take one UM sequence from UM profile

and then use it many times.

e Thirdly, if we can prove these HMMs created on fake data can be used to identify
users from the test set, we also can believe these HMMs can be used to identify

users in the future.

To train HMMs for one UM pattern, firstly, we selected one UM sequence that can
be converted to a sequential observation sequence without any missing or repeated
observation symbol from the UM profile. For instance, if one UM pattern has nine
hidden states, and after we apply this UM sequence on the pattern, we can obtain
the observation sequence 2, 3, 4, 5, 6, 7, 8, 9, 10.

Secondly, we set initial values as random for three matrices: the state probability
matrix, the observation probability matrix, and the initial state distribution, and
then take the observation sequence as input to adjust these three matrices using the
solution to the training problem in Section 2.3.2. This process is repeated until the
difference between this iteration and last iteration is smaller than a pre-established
small value (|A4;11 — A4;| < o).

Finally, once the three matrices are obtained, we use them to set the threshold

and perform the classification.
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4.5.2 Obtaining Threshold and Probability Distribution

Setting a threshold for classification is another problem because of lack of data. Asyou
may recall, to build HMMs for each UM pattern, we select a UM sequence which can
be converted to an observation sequence without any missing or repeated observation
symbols. To set a threshold for the HMMs, we reused this observation sequence,
except that we modified 25% of the values in the observation sequence. Table 4.7

illustrates how to get a sequence for threshold setting.

Original Sequence 2, 3,
1,1

4,5,6,7,8,9,10 | P(O|)\) = 0.99999
Modification sequence ,1,4,5,6,7,8,9

.10 | P(O|X) = 3.45204FE — 12

7 bl 7 I I’

Table 4.7: Example of original sequence and modification sequence

Then we apply the modified sequence on the corresponding HMMs to acquire
the probability value using the solution to the evaluation problem in Section 2.3.2
(Formula 2.2, 2.3, 2.4). This probability value is used as a threshold for the HMMs.

To obtain the probability distribution on the sequences in the UM profile, same
methods are applied on the similar UM sequences. Figure 4.14 shows the probability
distribution of 31 similar UM sequences applied on its corresponding UM pattern.
The x-axis stands for the UM sequences, and the y-axis is the log of probability value
for the UM sequence on that given UM model. If the probability value is smaller
than the threshold, then this sequence is classified as from an intruder. In this case,

it will be marked as the false detection.
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Figure 4.14: The UM profile probability distribution on its mobility pattern

4.5.3 Padding Missing Location Coordinates

At the beginning of this chapter, we mention the problem of missing message updates.
So to improve the accuracy of results, it is helpful to pad missing location coordinates
into the observation sequence by using speed, course, and other location coordinates.

Figure 4.15 shows how the padding of location coordinates is calculated. Suppose
the interval time between location coordinate 3 and 5 is greater than 1.5 times the
broadcast periodicity. According to our assumption given in Section 4.1, we determine
that at least one location update was lost during transmission.

The padded location coordinate (L,) is the mean value of two calculated location
coordinates using Formula 4.8; one location coordinate (Ly) is calculated with the
previous speed and course using Formula 4.3, 4.4, and 4.5, and the other location
coordinate (L4») is the orthogonal point on the line formed by the previous location

coordinate (L3) and the next one (Ls) using Formula 4.6 and 4.7.
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1
Figure 4.15: Padding a missing location coordinate
Ad4’3 = S3 X Tperz’odicity (43)
L4I = Ad413 + L3 (44)

Ly .lon — Ls.lon

0 = C3 = arct 4.5
3 are an( L4I.l0,t — L3.lat ( )

L4”.lat = L3.lat + k % (L5.lat — Lg.lat) (46)

Ly .lon = Lg.lon + k x (Ls.lon — Ls.lon) (4.7)

with:

J— (Ls.lat — Ls.lat) x (Ly.lat — Ls.lat) + (Ls.lon — Ls.lon) x (Ly.lon — Ls.lon)

(Ls.lat — Ls.lat)? x (Ls.lon — Ls.lon)?

_ L4I + L4”

Ly 5

(4.8)

Here Adysy is the distance between Ls and Ly, Ss is the speed at Ls, Tperiodicity 1S
periodicity, and Cj is the course at Lj.

Table 4.8 shows the probability changing before and after padding. From this
table we can see if we pad two missing location coordinates into an observation se-

quence with eight observation symbols (the first and second row), the probability of
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the observation sequence from a given model (the same as the given model in Section
4.5.2) would rise efficaciously from 10 1% to 10 °. We also need to consider whether
this padding process would increase the possibility that an observation sequence gen-
erated by an intruder is accepted as legitimate user. Suppose the process pads two
coordinates into an observation sequence from another user (the third and fourth
row), the probability increases from 10~24 to 102! that the observation sequence will

still be identified as from a different user.

| Sequence length | Observation sequence | P(O[\) |

8 22341618 1.261348E-10
8 22345678 6.312796E-05
8 11115171 4.079319E-21
8 11111111 1.049020E-24

Table 4.8: Probability before and after padding location coordinates

4.6 Simulation

The objective of this simulation is to assess the performance of the HMMs framework.
To illustrate the effectiveness of HMMs framework, we use the same principle to obtain
the performance criteria, the TAR and the TDR, for the same five users from the last

simulation.

4.6.1 Details of Simulation

The simulation is carried out for each user in the IDS using his/her profile and pat-

terns.
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1. Select a user and compare his UM profile against his UM patterns in the IDS

to obtain TAR.

2. Select a user and compare his UM profile against other users’” UM patterns in

the IDS to obtain TDR.

3. Get the final statistics.

4.6.2 Results of Simulation

True Acceptance Rate
Figure 4.16 presents the results of the second simulation. In this simulation we
use the same five users as in last one. The x-axis of the bar chart shows call sign of

the five users, and the y-axis of the bar chart represents the TAR for each profiled

EFalse Alarm Rate
: : B Ture Accept Rate

user.

dhigd wk3ur  whkdag wdgow wadsre

Figure 4.16: True acceptance rate
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We apply one user UM profile against his own UM patterns to produce the TAR.

From Figure 4.16 it can be seen that the TAR range from over 65% to 90%. The
differences of the TAR among these users depends on how the UM profile made. The
more specific UM profile is, the higher TAR we obtain.

True Detection Rate

Figure 4.17 illustrates the TDR for the same five users. Like the previous plot,
the x-axis of the bar chart shows the call signs of five users, and the y-axis of the bar

chart represents the TDR for each profiled user.

mdhigd
Evhk3ur
Ovk4dag
Owd oo
WA s

whaur whdan Wil O Chwt wed e

Figure 4.17: True detection rate

To obtain the TDR from each user, we compared the remaining four users’ UM
profile against this one user’s UM pattern.

As in Figure 4.17 shown, the TDRs are 100% for all five users. These results are
expected since, to each user, the UM patterns are different. Our IDS can correctly

pick out the mobility sequences that do not belong to legitimate users.
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4.7 Conclusions and Analysis

Same with the first experiment, we also check the complexity of the IDS with HMMs.
Suppose we have already built HMMs for each UM pattern. The main computation
for this IDS is to calculate the probability value of incoming UM sequence, a given
model. As we mentioned in Section 2.3.2, to calculate the probability of a sequence,
the forward-backward procedure (Formula 2.2, 2.3, 2.4) is applied. It requires on in
order of N2L calculations [Rab90]. Here N is the numbers of the hidden states, and
L is the length of the sequence. In this experiment, L and N are in the same order
of magnitude, so the time complexity is O(N?).

From former sections, we know only abstraction of UM sequences are stored into
UM profile. So when IDS makes the classification, it only needs to compare the
incoming sequence with these abstraction sequences, instead of comparing with all of
the UM sequences the user has. However, UM patterns change sooner or later. It
is necessary to update the UM patterns in the profile every period of time to reach
better performance.

From the plots above (Figures 4.16 - 4.17), not surprisingly, we find the results
from HMMs framework are worse than the results from IBL framework. To build a
useful HMMs framework, a large amount of data is required. In our circumstances,
lack of data causes the performance to be poor because the built models can not reflect
the UM pattern faithfully. Also, in the HMMs framework, only mobile data can be
used to create UM profiles and UM patterns. However, we analyze our experiment
data for these five users, (see Table 4.6), only around 10% data can be employed in
our simulation, which makes the situation worse.

Another factor which reduces performance is users’ irregular location updates.
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Although we have a procedure which helps to improve the TAR to some degree

by padding location coordinates. The true missing location coordinate can not be

recovered.

However, in real wireless system, these two problems might not occur because the

location updates with the same format are transmitted periodically.



Chapter 5

Conclusions and Future Work

5.1 Concluding Remarks

With the increasing use of wireless networks, a proper mechanism is needed to iden-
tify intruders from legitimate users quickly and correctly so as to protect legitimate
users’ properties from malicious activities. Therefore, researches on IDS over wireless
networks have been a popular topic. An efficient intrusion detection mechanism need
to balance its performance against its cost in the context of wireless networks. The

work of this thesis can be summarized in the following aspects:

e Design and implement the IDS framework by employing two different approaches:

IBL and HMMs, respectively.
e Develope a UM profile and UM patterns for the IBL and the HMMs frameworks.

e Conduct simulations of these two frameworks based on the authentic data from

five different users as input.

73
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e Analyze performance in the TAR, the TDR, and the false alarm rate of IBL

based and HMMs based implementation.

A summary of the performance evaluation for different strategies is given in Section

3.6 and Section 4.7.

5.2 Future Work

After we give the design and implementation of one IDS with an IBL classification
method in Chapter 3, the other IDS with a HMMs classification method in Chapter
4, and carry out the analysis of all these two framework combined with the simulation
results in Section 3.6 and Section 4.7, several interesting problems remain for further

investigation.

1. In the current IBL framework, the process for calculating the similarity values
between incoming sequence and sequences in the UM profile is not precise. It
might be extended by computing the similarity value with transition probability

between two states.

2. Presently, the IBL framework needs an effective method to make a UM profile,
because only location coordinates are used. From the analysis in Chapter 3, we
know location updates could be missing or duplicated. Therefore making an
efficient UM profile and UM patterns would definitely improve the TAR and

the TDR.

3. It worths finding a new approach to build HMMs using less data compared to
the original HMMs framework which takes a significant amount of data to train

stable probability matrices.
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4. One assumption is that all intrusions that happened in networks follow a uni-
form distribution such that the probabilities of the intrusion are equal. It would
be very interesting to study the case when intrusions have different probabil-
ities. For example, it could be more likely that intrusion happens during the

weekdays than on weekends.

Based on results from last two experiments, we know the TDR for both IDSs are
100%, which proves the feasibility of the system that, with different user mobility
pattern, IDSs can identify users with different mobility patterns. However, the TAR
for IBL and HMMs have difference in some degree; IBL has a better TAR results
than HMMs’. But the UM profiles in IDS with IBL framework are built only with
location coordinates which are not precise to describe user’s mobility. That brings
us another possibility if we can combine these two IDSs together, since each of them
has its own property. As we mentioned before, IBL can make the identification very
fast (time complexity is O(n)). On the contrary, in IDS with HMMs framework, the
UM profiles are built with not only location coordinates but time stamp, speed, and
direction. So, that will be an interesting question to join these two features together

to see if we can obtain better performance for the IDS for wireless networks.



Appendix A

(Glossary

APRS Automatic Position Reporting System
DWT Discrete Wavelet Transform

GPS Global Positioning System. Devices with a special receiver can determine their

geographic location by triangulation with a series of orbiting satellites.
HMDMs Hidden Markov Models
IBL Instance Based Learning
IDS Intrusion Detection System
IMEI International Mobile Equipment Identity
IR Infra Red
ISP Internet Service Provider

MAC Media Access Control

76
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7

QoS Quality of Service

RFF Radio Frequency Fingerprinting

TAR True Acceptance Rate

TDR True Detection Rate

UM User Mobility

WLANs Wireless Local Area Networks

WMANSs Wireless Metropolitan Area Networks

WPANs Wireless Personal Area Networks

WWANSs Wireless Wide Area Networks
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