Authentication of Wireless Devices using Radio Frequency Fingerprinting

by

Jeyanthi Hall

A thesis proposal submitted to

the Faculty of Graduate Studies and Research

in partial fulfilment of

the requirements for the degree of

Doctor of Philosophy

Ottawa-Carleton Institute for Computer Science
School of Computer Science
Carleton University
Ottawa, Ontario

October 2003

© Copyright 2003, Jeyanthi Hall

The undersigned recommend to

The Faculty of Graduate Studies and Research

 $acceptance\ of\ the\ thesis\ proposal,$

Authentication of Wireless Devices using Radio Frequency Fingerprinting

submitted by

Jeyanthi Hall

Dr.

(Director, School of Computer Science)

Dr. Evangelos Kranakis

(Thesis Supervisor)

Dr. Michel Barbeau

(Thesis Co-Supervisor)

Dr.

(External Examiner)

Carleton University

October 2003

Executive Summary

To be completed at the end.

Contents

Ι	Cı	irrent State of Wireless Network Security	1	
1	$\mathbf{W}_{\mathbf{i}_1}$	Wireless Network: An Overview		
	1.1	Introduction to Wireless Networks	2	
	1.2	General Threats and Countermeasures	2	
	1.3	Authentication Functions and Protocols	2	
2	Wi	reless Network: Wireless Wide Area Network: AMPS/GSM	3	
	2.1	Attacks and Countermeasures	3	
	2.2	Future Enhancements	3	
3	Wireless Local Area Network: 802.11b			
	3.1	Attacks and Countermeasures	4	
	3.2	Authentication Protocol	4	
	3.3	Weaknesses in Authentication Protocol	4	
	3.4	Potential Solutions	4	
	3.5	Future Enhancements	4	
4	Ad-	Hoc Network: Bluetooth	5	
	4.1	Attacks and Countermeasures	5	
	4.2	Authentication Protocol	5	
	4.3	Weaknesses in Authentication Protocol	5	

	4.4	Potential Solutions	5
	4.5	Future Enhancements	5
II	O	utstanding Problem with Device Authentication	6
5	Pro	blem to be addressed	7
	5.1	Disadvantages of Current Approaches	7
	5.2	Problem Statement	7
	5.3	Requirements for Robust Device Authentication	7
6	Pro	posed Solution	8
	6.1	Biometrics-based Authentication	8
	6.2	Use of Radio Frequency Fingerprinting	8
II p	I I rinti	Device Authentication using Radio Frequency Finger- ng	g
7	Rac	lio Frequency Fingerprinting	10
	7.1	Process	10
8	Det	ection of Start of Transient	11
	8.1	Current Approaches	11
	8.2	New Approach	11
	8.3	Comparison of Approaches	11
	8.4	Experimental Platform	11
9	Cha	racterization and Classification of Transceiverprint	12
	9.1	Objecivehyperlink	12
		Methodology	12

11 E	Bibliography	14
1	0.4 Experimental Platform	13
1	0.3 Validation	13
1	0.2 Methodology	13
1	0.1 Objecivehyperlink	13
10 I	mplementation of Authentication Protocol	13
9	.5 Experimental Platform	12
9	.4 Validation	12
9	.3 Current Approaches	12

List of Tables

List of Figures

List of Algorithms

Part I

Current State of Wireless Network Security

Wireless Network: An Overview

- 1.1 Introduction to Wireless Networks
- 1.2 General Threats and Countermeasures
- 1.3 Authentication Functions and Protocols

Wireless Network: Wireless Wide

Area Network: AMPS/GSM

- 2.1 Attacks and Countermeasures
- 2.2 Future Enhancements

Wireless Local Area Network:

802.11b

- 3.1 Attacks and Countermeasures
- 3.2 Authentication Protocol
- 3.3 Weaknesses in Authentication Protocol
- 3.4 Potential Solutions
- 3.5 Future Enhancements

Ad-Hoc Network: Bluetooth

- 4.1 Attacks and Countermeasures
- 4.2 Authentication Protocol
- 4.3 Weaknesses in Authentication Protocol
- 4.4 Potential Solutions
- 4.5 Future Enhancements

Part II

Outstanding Problem with Device Authentication

Problem to be addressed

- 5.1 Disadvantages of Current Approaches
- 5.2 Problem Statement
- 5.3 Requirements for Robust Device Authentication

Proposed Solution

- 6.1 Biometrics-based Authentication
- 6.2 Use of Radio Frequency Fingerprinting

Part III

Device Authentication using Radio Frequency Fingerprinting

Radio Frequency Fingerprinting

7.1 Process

Detection of Start of Transient

- 8.1 Current Approaches
- 8.2 New Approach
- 8.3 Comparison of Approaches
- 8.4 Experimental Platform

Characterization and Classification of Transceiverprint

- 9.1 Objecivehyperlink
- 9.2 Methodology
- 9.3 Current Approaches
- 9.4 Validation
- 9.5 Experimental Platform

Implementation of Authentication Protocol

- 10.1 Objecivehyperlink
- 10.2 Methodology
- 10.3 Validation
- 10.4 Experimental Platform

Test for a citation [4] and [3] and [1] and [2] this should do it.

Bibliography

Bibliography

- [1] Jen Hall. Overview: Wireless LAN Security. $http://www.cisco.com/warp/public/cc/pd/witc/ao350ap/prodlit/a350w_ov.html, 2001.$
- [2] Jen Hall, Tom Smith, and Vice Rioy. Title called testing. Some Journal, 1998.
- [3] HomeRF Working Group. A Comparison of Security in HomeRF versus IEEE802.11b, 2001.
- [4] Wireless Ethernet Compatibility Alliance. 802.11b Wired Equivalent Privacy (WEP) Security, 2001.