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To the ones who persist in striving for their better selves,
And the ones who battle trolls for the truth and light of day,
You are the heroes of every story.

Now boot up. Timmy Tortoise needs our help.
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Preface

This text is intended to serve as a companion resource for COMP 2404 (Introduction to Software
Engineering), offered by the School of Computer Science at Carleton University in Ottawa, Ontario.

COMP 2404 is not meant as a full software engineering course. While it does provide a general
introduction to the software engineering life cycle activities, it focuses mainly on object-oriented
design and implementation. A secondary goal of the course is to serve as an introduction to the
C++ programming language. This textbook captures the concepts covered in the COMP 2404
lectures, as well as the accompanying programming examples.

COMP 2401 (Introduction to Systems Programming) is the established prerequisite for COMP 2404,
as it covers C programming in the Linux environment. Readers are expected to be fully proficient
with the concepts covered in COMP 2401. This includes pointers, memory management, and dy-
namic memory allocation concepts, as well as C syntax and programming in a Linux environment.

Part | introduces the basics of software development in the C++ programming language on a
Linux platform. Chapter 1 reviews how program building works in Linux. Chapter 2 discusses the
basic C++ language features, including operators, control structures, variables and data types,
and functions and their parameters, as well as the concept of C++ references. Chapter 3 intro-
duces the organization and features of basic C++ classes, including constructors and destructors.
Chapter 4 covers the memory management concepts of pointers, double pointers, and dynamic
memory allocation with C++ objects.

Part Il focuses on the design of object-oriented (OO) software. Chapter 5 discusses the basic
OO design principles of data abstraction and encapsulation. Chapter 6 introduces the concept
of object design categories, which ensure than the objects in an OO design have a focused role
in a program. Chapter 7 covers how Unified Modelling Language (UML) diagrams are used to
graphically depict classes and the relationships between them.

Part Ill covers the essential techniques that are common to most OO programming languages,
and how to implement these techniques in C++. Chapter 8 discusses the encapsulation of object
data and behaviour in C++. Chapter 9 covers the implementation of inheritance hierarchies, and
it discusses the unique C++ features of multiple inheritance and the different inheritance types.
Chapter 10 illustrates how polymorphism, with virtual and pure virtual functions, is implemented
in C++. Chapter 11 discusses some of the well-known OO design patterns. Chapter 12 covers the
concept of overloading in C++, including operator overloading. Chapter 13 shows how generic
programming in C++ is implemented using function and class templates.

Part |V discusses some of the important C++ language features. Chapter 14 demonstrates the
exception handling (EH) mechanism. Chapter 15 covers the basic architecture and components
of the C++ standard template library (STL). Chapter 16 reviews the concepts of streams and files,
and how these are represented and implemented in C++.
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Chapter 1

Program Building in Linux

Program building is the process of converting the instructions of a program, written in a high-level
programming language like C or C++, to a format that is executable by a computer’s hardware.
Because large programs are normally separated into multiple files, possibly across multiple direc-
tories (as folders are called in Unix-type operating systems), program building is more complex
than issuing a single compiler command.

It’s understood that most modern software development occurs within an integrated development
environment (IDE). While an IDE is a great tool for simplifying and optimizing the programmer’s
task, the reality is that the development of some applications on certain platforms is restricted
to a command line interface. It is the position of this author that, if a programmer only learns to
code using an IDE, they will face tremendous obstacles (and possibly reduced employability) if
one day they are required to work from the command line. If a programmer learns to code from
the command line, adapting to the use of an IDE takes a trivial amount of time.

In this chapter, we review how program building works from the command line in a Linux program-
ming environment. All the programming examples in this textbook work with a GNU compiler [1]
and execute on an Ubuntu Linux operating system (OS).

1.1. Terminology

We begin by defining some of the terminology associated with program building.

1.1.1. Code

1.1.1.1. What is source code:

* A computer program is a complete set of instructions, written in a high-level programming
language like C, C++, or Java, that work together to provide a specific functionality.

» Source code is a generic term for computer program instructions.

* By convention, in Unix systems (including Linux), C++ programs are stored in files with a . cc
extension. In a Windows operating system, a .cpp file extension is often used. Because we
are programming in a Linux environment, we use the .cc extension in the coding examples
of this textbook.

* Source code cannot be directly understood by a computer’s central processing unit (CPU).
The CPU is the hardware "brain" of the computer, and it’s in charge of executing programs. It
can only process instructions in a much lower-level language called machine code.
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1.1.1.2. What is machine code:

* Machine code is the low-level equivalent of a program written in a high-level programming
language like C++. It consists of program instructions translated to numeric values.

* It can be understood by the CPU, but it is not readable by people.

* As a result, it's necessary for source code to be translated to machine code before the CPU
can execute the instructions in our C++ programs.

1.1.2. Executables

1.1.2.1. What is program building:

* Program building is the translation of source code written in a high-level language to the
corresponding machine code.

* It results in the creation of a program executable file from one or more source code files.

1.1.2.2. What is a program executable:
* A program executable is a file that stores the program’s machine code instructions.

* A C++ program can be made up of instructions stored into multiple source code files, which
must then be translated together into one executable file.

* The end-user runs the program by launching the executable, either by double-clicking on it
in a graphical used interface (GUI) based operating system or by entering the executable file
name from the command line in a terminal window.

1.1.2.3. Characteristics of a program executable:

* Machine code instructions are typically in a format that is both OS- and CPU-dependent. An
executable that is created on one platform, for example a specific type or distribution of OS
or a specific CPU manufacturer, cannot execute on a different platform. If we want a program
to run on multiple platforms, we must build a different executable for each one.

* An executable is made up of machine code from multiple source files. In a large project, source
code from many different programmers are combined together to build the executable. Even
if a program is contained within a single source file, it typically relies on library code for some
of its functionality.

* An executable must contain exactly one main () function. If it contained more than one, the
CPU would not know where to begin executing the program. If it contained nomain () function,
then it would be a library, and not a program executable.

Q NOTE: It's important to note that the separation of source code into multiple source files
is not a requirement of any OS or CPU. Rather, it is a very important coding convention
rooted in the basic principles of correct software engineering. By separating the code into
modular components, we ensure that it can be better maintained and extended in the future.
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1.2. Compilation and linking

We discuss the different steps of program building in a Linux programming environment. We also
provide a short overview of some common errors encountered during program building.

1.2.1. Concepts

1.2.1.1. Steps in program building:

* The two main steps for translating a C++ program from source code to an executable:
- compilation
- linking

* The programming examples in this textbook use the default GNU compiler provided with the
Ubuntu distribution of Linux. The compiler is invoked by launching the g++ executable from
the command line.

1.2.1.2. What is compilation:
» Compilation transforms source code into object code, which is an intermediate format.
* Every source code file is compiled into a corresponding object code file.

* There is a one-to-one correspondence between source and object files.

1.2.1.3. What is linking:

* Linking transforms object code into an executable.

All the object code files required for a program are linked into a single executable.
* There is a many-to-one correspondence between object files and the program executable.

 Linking is the step where library code, which is usually provided as object code, is added to
the programmer’s object code.

NOTE: In the context of program building, the use of the term object code is unrelated
to the concepts of classes and objects in OO programming.

1.2.1.4. Building a single source file:

* A single C++ source file, for example pl1-hello.cc, can be compiled and linked into an exe-
cutable file called p1 using the command: g++ -o pl pl-hello.cc

* The g++ compiler uses the same command line arguments as the gcc compiler used for C
programming in Linux. Important options for both g++ and gcc include:

- the -o option allows the user to indicate the name of an output file for the command
- the -c option stops the program building after the compilation step, as we see below

1.2.1.5. Building multiple source files:
» Several steps are required to compile and link multiple source files into an executable.

* Assuming that we have two source files, filel.cc and file2.cc, the following steps must be
taken to both compile and link the source code into an executable:

- compile filel.cc into object code using g++ -c filel.cc, which generates filel.o

- compile file2.cc into object code using g++ —-c file2.cc, which generates file2.o

- link filel.o and file2.o into an executable called p2 using g++ -o p2 filel.o file2.o
Figure-1.1 shows how a program comprised of three source files is compiled into three object files,

which are then linked into one executable.
©Christine Laurendeau Chapter 1. Program Building in Linux 15
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Figure-1.1: Program building

1.2.2. Coding example: Building a program with a single source file

/* L S R S . S S S S . S S S S 4

* Filename: pl-hello.cc *

1
2
T T S S T N T 74
4 #include <iostream>

5

using namespace std;

7 int main ()
8 {
9 cout << "Hello world!" << endl;

10 return O;
11 }

& L& Terminal — -csh — 80x24

Don't Panic g++ -0 pl pl-hello.cc
Don't Panic pl

Hello world!
Don't Panic a

Program-1.1: Building a program with a single source file

Program purpose:

* Program-1.1 prints out the string "Hello world!" to the screen.

* Because the program is contained in a single source file, compilation and linking can be
combined into a single call to the GNU compiler, as we see in the provided output.
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Line 4:

* This line copies the header file for the iostream library into our source file. The iostream
library provides the tools to perform user input/output (1/0).

Line 5:

* This line tells the compiler that our program uses identifiers from a predefined namespace
called std. Namespaces are essentially a predefined grouping of identifiers, and they are
discussed in section 8.5.

* The identifiers contained in std include objects and functions necessary to perform user 1/O.

Lines 7-11:

* These lines show the implementation of the main () function.
* Line 9 performs the actual output to the screen.

* On line 9, the cout object represents the standard output stream. In our coding examples,
this object is used for printing information to the screen.

* In the iostream library, the cout object and the endl function are declared inside the std
namespace. On line 5, the using keyword brings into scope everything from the std name-
space, so we can use cout and endl on line 9 without specifying that they belong to the
namespace. The alternative would be to use the scope resolution operator (: :) to explicitly
state this relationship everywhere we use the namespace content (for example, std: :cout
and std: :endl). The scope resolution operator is discussed in section 2.2.5.

* Line 9 uses the stream insertion operator (<<) to send the string "Hello world!" to the
standard output stream object cout. The same statement then calls the endl function to
insert a new line character into the standard output stream. The stream insertion operator
is further described in section 2.2.5.

* Line 10 returns the status code zero to the OS, to indicate that the program terminated
normally.

1.2.3. Coding example: Building a program with multiple source files

/* * * * * * * * * * * * * * * * *
* Filename: filel.cc *
X ok ok Ak A A A A A A A A A A A A A/

#include <iostream>

U b WN -

using namespace std;

~

void fool () ;
8 void foo2();

10 int main ()
11 {

12 fool();
13 foo2 () ;
14 return O;
15 }

17 void fool ()

18 {

19 cout << "Hello ";
20 }

21
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22 /% A A A A A A A A A A K A A A kK
23 « Filename: fileZ.cc *

24 X A ok A ok A A ok A A A A kA A A A/
25 #include <iostream>

26 using namespace std;

28 void foo2 ()

29 {
30 cout << "world!" << endl;
31 }
r 1l
[ N Terminal — -csh — 80x24

Panic g++ —-c filel.cc
Panic g++ -c file2.cc
Panic g++ -0 p2 filel.o file2.o0

Panic p2
world!
Panic ==> [

Program-1.2: Building a program with multiple source files

Program purpose:

Program-1.2 prints out the words "Hello world!" to the screen, by calling functions that are
packaged into two different source files.

Because the program spans more than one source file, it is standard practice to separate
the compilation and linking into different steps, to reduce the amount of recompilation in the
event of future code changes.

First, each source file must be compiled into its own object file, then both object files must
be linked into the program executable.

The provided output shows the three calls to the g++ compiler: once to compile filel.cc to
an object file, once to compile file2.cc to an object file, and a final time to link both object
files into an executable called p2.

Lines 4-20:

These lines show the contents of the filel.cc source file, which contains the implementation
of the main () and fool () functions.

Lines 7-8 each declare a forward reference for the functions that main () calls, but that are
declared either later in the same source file or in a different file.

Forward references are sometimes necessary to inform the compiler of the existence and
prototype of functions that it has not yet encountered as part of the compilation process.
Without lines 7-8 to inform the compiler of the fool () and foo2 () function prototypes, lines
12-13 would not compile.

Lines 10-15 show the implementation of the main () function, which calls the foo1 () and
foo2 () functions.

Lines 17-20 show the implementation of the foo1 () function, which prints the string "Hel1o".

NOTE: Another way to avoid compilation errors on lines 12-13 would be to position the
implementations of fool () and foo2 () before the main () function in the same source file.
This would be bad programming style. Other programmers expect to see the main ()
function positioned first in the file, because it’s the most important.
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Lines 25-31:

* These lines show the contents of the file2.cc source file, which contains the implementation
of the foo2 () function.

* Lines 28-31 show the implementation of foo2 (), which prints the string "worid!".

1.2.4. Makefiles

1.2.4.1. What is a Makefile:

* A Makefile is a simple text file called Makefile that contains compilation and linking com-
mands to build a program executable from source code. [2]

* Remember that files in Linux do not require any file extensions, and that files names are
case-sensitive.

» Makefiles have a very specific syntax that must be followed in order to work.

1.2.4.2. Why use a Makefile:

* A typical C++ program comprises many source files, and manually compiling each one is an
onerous and error-prone task. The program building process can be greatly simplified with the
use of Makefiles.

* The commands are executed by invoking make from the command line in the same directory
as the Makefile.

* If correctly laid out, a Makefile can also assist the programmer in managing dependencies
between files, for example only recompiling the source files that have changed.

* More information on Makefiles can be found in the Linux OS manual pages (using the man
command) and in the COMP 2401 course notes.

1 p2: filel.o file2.o0
gt+ -0 p2 filel.o file2.o0

4 filel.o: filel.cc
5 g+t+ —-c filel.cc
7 file2.0: file2.cc
8 gt+ —-c file2.cc
9
[ .
& L& Terminal — -csh — 80x24

Don't Panic ==> make

g++ -c filel.cc

g++ -c fileZ.cc

g++ -0 p2 filel.o fileZ.o

Don't Panic ==> p2
Hello world!
Don't Panic ==> [}

Program-1.3: Sample Makefile

Program-1.3 illustrates a simplified Makefile associated with Program-1.2.
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1.2.5. Build and runtime errors

It's an unfortunate reality that most of our programs will encounter errors as we try to get them
working correctly. It's important to recognize the categories of errors we may encounter, in order
to quickly narrow down the possible causes.

1.2.5.1. Terminology:

* The term compile time generally denotes when a program is in the process of being compiled
and linked. At this point, we cannot run the program because it has not yet been translated
into machine code. If compile time completes successfully, without errors, the outcome is a
program executable that can be launched.

* The term runtime denotes when a program is running, also called "executing". Program
runtime only begins once an executable has been launched.

1.2.5.2. Types of errors:
» Compiler errors occur during the compilation step, as seen in Figure-1.1.
» Linker errors are discovered during the linking step.

* Runtime errors happen after a program executable has been created and launched.

1.2.5.3. Compiler errors:
* Compiler errors occur in one specific source file, during compilation.
* They are often due to an error in using the C++ language syntax, or in organizing the code.

* The compiler usually reports the source file and line number where the error is found. This
information can help in narrowing down the problem.

 Common errors include misspellings of keywords or identifiers; inconsistent data types, where
variables are not used as they are declared; missing forward references; using undeclared
variables or classes, for example if we forget to include a header file; redeclaration of variables
or classes; using library classes where the header file has not been included; and many more.

1.2.5.4. Linker errors:

* Linker errors occur after all the source files have been compiled into individual object files,
and the linker is trying to connect each function call with the corresponding implementation.

* They are typically easy to fix, because there is ever only one thing wrong: some function is
used in the code, but its implementation cannot be found among the object code provided.

« Common errors include forgetting to compile a source file, or forgetting to bring an object file
or a library into the linking step.

1.2.5.5. Runtime errors:
* Runtime errors occur during execution, after a program executable is created and launched.

* Segmentation faults are the most common runtime errors. These occur when our program is
attempting to access a memory location that doesn’t belong to our program, i.e. it is outside
the program'’s virtual memory segments.

 Common errors include dereferencing or accessing a null or garbage pointer; allocating mem-
ory for a pointer but not for its data; accessing an array out of bounds; and many more.
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Chapter 2

C++ Basic Language Features

In this chapter, we discuss some basic C++ language features, including operators, control struc-
tures, variables and data types, user I/O, and functions and their parameters. Many of these
features also appear in other programming languages, for example C and Java.

Then, we introduce the concept of C++ references, which provide a new technique, not present
in C, for functions to pass parameters by reference. Some general programming conventions for
writing Linux-based C++ code are also discussed.

Several resources for the C++ language and the C++ standard library can be found online. [3][4]

2.1. Principles

We briefly introduce the C++ programming language. Then, we define some basic programming
terms that are necessary for understanding the more advanced concepts in later chapters.

2.1.1. Characteristics of C++

2.1.1.1. Origins of C++:

» C++ is a general-purpose, object-oriented (OO) programming language, and it is based on
the C language.

* |t was developed by computer scientist Bjarne Stroustrup [5] starting in 1979, and it has gone
through multiple language extensions since then.

* C++ was initially known as "C with classes" or "object-oriented C".

2.1.1.2. Characteristics of C++:

* C++ provides all the standard functionality of other OO languages, and more, including static
and dynamic polymorphism, inheritance, generic programming using templates, operator
overloading, multiple inheritance, and exception handling.

* |talso allows calls to low-level C functions and system calls, for example memory management
operations and bit-wise operators. Variations of essential C libraries are also available in C++,
including sockets and threads.

* C++ is a powerful language that combines both high-level and lower-level features, providing
programmers with a wide range of implementation choices.
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2.1.2. Terminology

We review some basic terminology relevant to programming in general.
2.1.2.1. What is a keyword:

* A keyword is a sequence of characters that has a special meaning in a programming lan-
guage. For example, while, int, and return are all keywords in C, C++, and Java.

* Akeyword is a reserved word, so a programmer cannot use it for another purpose, for example
to name a data type, a variable, or a function.

* A list of C++ keywords can be found here.

2.1.2.2. What is an identifier:

* An identifier is a word that is user-defined. In this context, the user of a programming lan-
guage is the programmer. So an identifier is a programmer-defined word in a program.

* For example, the names of variables and functions are considered identifiers.

2.1.2.3. What is a literal.
* Aliteral is a sequence of characters in a program that is meant to be interpreted literally.

* For example, a string value in double quotes like "Hello world" and a specific numeric value
like 77 are considered literals.

2.1.2.4. What is an expression:
* An expression is a sequence of variables, operators, constants, and/or function calls.
* Forexample:a + b - 3 x ¢

* Expressions always "return" a single value. We can also say that an expression resolves to or
evaluates to a returned value.

2.1.2.5. What is a statement:
» A statement is an expression that is terminated by a semi-colon.

* For example: tmpvalue = a + b - 3 % c;
- how many operators do we find in the statement above, 3 or 47
- it's 4, because the assignment operator (=) is also an operator

2.1.2.6. What is a block:
* A block is a sequence of statements positioned between a pair of matching braces { }

* For example:
- the body of a function or a loop is a block
- each branch of an if-statement is a block
- we can even have free-floating blocks!
* In a single-statement block, the braces are optional.
Q NOTE: Curly brackets is a colloquial term sometimes used for braces. While every pro-
grammer is familiar with the term, it’s far from canonical. C/C++ features only two kinds

of brackets: square and angle. "Round" brackets are called parentheses, and "curly"
ones are braces.
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2.1.2.7. What is scope:
* The scope of an identifier is the part of a program where the identifier can be used.

* An identifier with block scope is limited to the inside of a block:

- for example, a variable declared inside a function or loop has block scope inside that function
or loop; it does not exist outside that block

- a variable with block scope is often called a local variable
- any kind of block can have local variables

* An identifier with global scope (also called file scope) exists outside of any block:

- for example, a variable declared at file level outside of any block is called a global variable,
and it has global scope

- all functions in the C programming language have global scope

Q NOTE: It is correct software engineering practice to strictly limit the number of identifiers
declared at global scope, in order to best protect our data. The correct number of global
variables to use in a program is always zero.

2.1.2.8. What is storage class:

* The storage class of a variable specifies the lifetime of the variable, as well as the area of
virtual memory where it is stored.

* The default is automatic storage class:
- automatic variables are stored in the function call stack

- they are created on declaration, and they disappear when the program exits the block where
they are declared

- examples of automatic variables include local variables and function parameters

* Another common storage class is static:
- static storage class variables are stored in the data segment in global memory

- they are created when they are first declared, and they disappear at the end of the program

- they "remember" their value until the end of the program, even though their visibility de-
pends on their scope

2.2. Operators

We introduce the terminology associated with operators, including their characteristics and op-
erator categories.

2.2.1. Concepts

2.2.1.1. What is an operator:

* An operator is a symbol, built into a programming language, that performs a specific task.
For example, the + operator performs an addition operation with two values.

* An operator takes a predefined number of existing values, for example a variable, a literal, or
a function’s return value, and it computes a result and returns that result.

* In that sense, operators behave similarly to functions.

* A list of C++ operators can be found here.
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2.2.1.2. What is an operand.:
* An operand is a value that an operator works upon.
 |f an operator is similar to a function, an operand is like a parameter to that function.

* For example, the addition (+) operator takes two operands, adds them together, and returns
the result.

2.2.1.3. What is a return value:
* Every operator returns a result.
* This return value may be used as an operand to another operator, if an expression or statement
contains multiple operators.

2.2.2. Categories of operators

There are several different categories of operators in C++:
2.2.2.1. Arithmetic:

* An arithmetic operator performs a simple arithmetic operation and returns the result.

* For example: addition (+), subtraction (-), multiplication («), integer division (/), modulo (%),
prefix/postfix increment (++), prefix/postfix decrement (--) are arithmetic operators.

2.2.2.2. Relational:
* A relational operator compares two operands and returns a boolean value.
* For example: equality (==), inequality (!=), less-than (<), greater-than (>), less-than-or-equal-
to (<=), greater-than-or-equal-to (>=) are relational operators.
2.2.2.3. Logical:

* Alogical operator performs an operation on one or two boolean values and returns the result-
ing boolean value.

» For example: logical AND (&s), logical OR (| |), logical NOT (!) are logical operators.

2.2.2.4. Bitwise:
* A bitwise operator manipulates a value at the bit-level and returns the result.

* For example: bitwise AND (&), bitwise OR (), bitwise NOT (), bitwise XOR ("), left-shift (<<),
right-shift (>>) are bitwise operators.

2.2.2.5. Assignment:

* An assignment operator performs an operation between two operands and stores the result
in the left-hand side operand.

* For example: assignment (=), addition-assignment (+=), subtraction-assignment (-=),
multiplication-assignment (x=), division-assignment (/=), modulo-assignment (%=) are assign-
ment operators.

2.2.2.6. Conditional:

* The conditional operator returns either the second or third operand, depending on whether
the first operand evaluates to true or false.

* For example: there is only one conditional (2 :) operator.
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2.2.3. Coding example: Operators

1 int main ()
2 {
3 int x, y, z;

5 X = 4;
6 vy = x;

8 z =y + 2 % x — 3

9 cout << x << " " << y << " " << z << endl;

11 if (x == vy)

12 cout << "equal" << endl;

13 else

14 cout << "not equal" << endl;

16 cout << ((y == z) ? "equal" : "not equal") << endl;

18 x =y =7;

19 z —= X;

20 y *= z;

21 cout << x << " " << y << " " << 7z << endl;
23 cout << "prefix: " << +4x << endl;

24 cout << "postfix: " << xt++ << endl;

25 cout << "next: "< o x << endl;

27 return (0) ;
28 }
i Terminal — -csh — 80x24

Don't Panic ==
4 & 9

equal

not equal

7 14 2

prefix: 8
postfix: 8
next: 9
Don't Panic

Program-2.1: Operators

Program purpose:

. demonstrates the use of some common operators in C++.

Lines 5-9:

* Line 8 contains four operators. The assignment operator (=) is an operator, just like the
others. The only difference is that it has lower precedence than the multiplication, addition,
and subtraction operators, so it is evaluated last.

Lines 11-14:

* These lines show an if-statement that branches on the equality of variables x and y.

* There no braces around the if and else blocks because braces are optional for single-
statement blocks. If the code is later modified to add more statements to either block, the
programmer must add the braces. Otherwise, the program will not behave as expected.
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Line 16:

* This line compares two values, like lines 11-14, but it uses the conditional operator (2:)

instead of an if-statement.

* From line 16, we see that the conditional operator takes three operands.
* The first operand, in this case (y == z), must evaluate to a boolean value. If true, the con-

ditional operator returns the second operand "equal™", otherwise it returns the third operand
"not equal".

* The conditional operator’s return value is used as the second operand of the stream insertion

operator (<<), and it is printed out using the standard output stream object cout.

Lines 18-21:

* Line 18 shows how the assignment operator (=) can be used multiple times in a single ex-

pression. Because the associativity of assignment operators is right-to-left, the first operator
to execute is the right-most one.

* On line 18, the literal 7 is first assigned to variable y. That first assignment operation re-

turns the new value of y, which then serves as the right-hand-side operand of the left-most
assignment operator. So the value of y is assigned to variable x.

Lines 23-25:

These lines show the difference between the prefix and postfix increment operators.

It's important to note that the behaviour differences can only be observed if the increment
operatoris used in an expression with multiple operators. If the increment is the only operator
in a statement, then prefix and postfix behaviour appear to be identical (we see in chapter 12
that there are computational performance differences).

Lines 23-24 show the increment operator in statements with the stream insertion operator.

On line 23, the prefix operator performs the incrementation of variable x by adding one to its
current value. The value returned from a prefix operator is the new value of the incremented
variable. So the initial value of x was 7. Line 23 increments it to 8, and this new value is
returned to serve as the second operand of the << operator. So the value 8 is printed out, as
we see from the program output.

On line 24, the postfix operator performs the incrementation of variable x. However, the
value returned from a postfix operator is the original value of the incremented variable. So
the initial value of x was 8. Line 24 increments it to 9, but the original value 8 is returned to
serve as the second operand of the << operator. So the value 8 is printed out, as we see from
the program output. But the increment operation did take place on line 24, so when line 25
prints out the current value of x, we see that it’s the new value 9.

2.2.4. Characteristics of operators

Every C++ operator has three very important characteristics that determine how an expression
is interpreted by the compiler.

2.2.4.1. What is operator arity:

The arity of an operator is the number of operands that it takes.

An operator is unary if it takes a single operand; binary if it takes two operands; and ternary
if it takes three operands. There is only one ternary operator in C++: the conditional operator.

Many operators are overloaded, so the same operator has different behaviours with different
types of operands. We discuss overloading in chapter 12.

Some operators are overloaded with different arities. For example, the x binary operator
performs a multiplication. However, as a unary operator, it dereferences a pointer variable.
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2.2.4.2. What is operator precedence:
* The precedence of an operator decides the order in which operators execute in an expression.

* For example, in Program-2.1, on line 8, multiplication has higher precedence than addition,
subtraction, and assignment. So the multiplication operator executes first by multiplying the
literal 2 with the value of variable x. Then the addition operator adds the multiplication re-
sult to the value of y. Then the subtraction operator subtracts 3 from the addition result.
Finally, the subtraction result is assigned into variable z, since assignment operators have
lower precedence than most other operators.

* A handy table of operator precedence can be found here.

* A programmer can always use parentheses to ensure that some operators execute first. For
example, in Program-2.1, on line 16, parentheses are used around the conditional operator to
make sure that its result is computed before the stream insertion operations.

2.2.4.3. What is operator associativity:

* The associativity of an operator decides the order in which operators of the same precedence
execute in an expression. Associativity may be left-to-right or right-to-left.

* For example, in Program-2.1, on line 8, the addition and subtraction operators have equal
precedence. But because they have left-to-right associativity, the left-most operator (addition)
executes first, after multiplication which has higher precedence. On line 18, there are two
assignment operators, so they have the same precedence. Since assignment has right-to-left
associativity, the right-most operator executes first.

2.2.5. Important operators in C++

C++ provides three important operators that do not exist in C.

2.2.5.1. Stream insertion operator:

* The stream insertion operator (<<) is used to add a sequence of bytes to an output stream.
The output stream can be one of the standard streams (cout for standard output or cerr for
standard error), or an output file.

* The first operand of the stream insertion operator is the output stream object (for example,
cout), and the second operand is the data to be output.

2.2.5.2. Stream extraction operator:

» The stream extraction operator (>>) is used to read a sequence of bytes from an input stream.
The input stream can be the standard input stream (cin), or an input file.

* The first operand of the stream extraction operator is the input stream object (for example,
cin), and the second operand is the variable into which the data is read.

2.2.5.3. Scope resolution operator:

* The scope resolution operator (: :) is without question the most powerful operator in C++.
Its existence is the reason why multiple inheritance can be implemented in this language, as
we see in chapter 9.

* This operator links an identifier to the scope to which it belongs. For example, we may use
an identifier defined inside a class somewhere else in the program. With the scope resolution
operator, we can indicate that the identifier belongs to a specific class.

* We make extensive use of the scope resolution operator in this textbook once we start working
with classes in chapter 3.
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2.3. Control structures

We review the control structures featured in the C++ programming language.

2.3.1. Types of control structures

2.3.1.1. Conditional:

e The if-else control structure is used to branch between two blocks of code, based on the
evaluation of a condition.

2.3.1.2. Selective:

* The switch control structure is used to choose one of multiple blocks of code for execution,
based on the value of a variable.

2.3.1.3. Iterative:
e The for, while, and do-while control structures are used for iteration.

* The loop header is the code between a pair of parentheses that follows the loop keyword. For
example, the while and do-while loop headers evaluate the loop’s iteration condition, and
the for-loop header contains three statements for managing the looping variable and testing
the iteration condition.

NOTE: Recursion should never be used where iteration is the better choice. Recursion
is a powerful tool for solving very specific problems, but it is an inelegant solution to
iteration-based problems.

2.3.1.4. Jump:

* The break and continue control structures are used to control the program flow within an
iterative control structure.

* The break keyword jumps the program control flow out of a loop to the first instruction that
follows the loop’s closing brace.

* The continue keyword jumps the control flow back to the loop header. In a do-while orwhile
loop, the condition is then evaluated to determine if another iteration will execute. In a for
loop, the advancing statement executes before the condition is evaluated.

PRO TIP: Programmers should always seek to minimize "indentation creep", where minor

A decisions regarding code structure can result in too many levels of indentation. Deeply
nested statements can result from the inefficient placement of break and return statements,
and they invariably have a negative impact on readability. Code should be structured so that
most statements are within 2-3 levels of indentation inside a function.
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2.3.2. Coding example: Jump control structures

1 bool getArrayData (intx arr, int*x num)

2 {

3 int newNum;

4 int currCount = 0;

6 cout << endl << "Enter the number of elements: Wa
7 cin >> *num;

8 if (#num >= MAX_ARR_SIZE) {

9 cout << "Too many elements" << endl;

10 return false;

11 }

13 while (1) {

14 cout << "Enter the next number: ";
15 cin >> newNum;

17 if (newNum < 0) {

18 cout << "number cannot be negative" << endl;
19 continue;

20 }

22 arr [currCount] = newNum;

23 ++currCount;

25 if (currCount >= *num) {

26 break;

27 }

28 }

29 return true;

30 }

Program-2.2: Jump control structures

Program purpose:

* Program-2.2 implements a getArrayData () function that prompts the user to enter a se-
quence of non-negative integers and stores them in a given integer array.

* The array and number of elements are returned using output parameters, and the function’s
return value indicates whether the function succeeded or failed in its task.

Lines 6-11:

* These lines prompt the end-user to specify the number of array elements to be entered. If
the number exceeds the array’s maximum capacity, the function returns a failure flag.

Lines 13-28:

* These lines show the while loop that performs the work of reading in and storing array values.

* Line 13 represents the loop header, which specifies the iteration condition, i.e. the condition
that must be true for another iteration to execute. When the iteration condition is false, the
loop terminates, and the program control flow transfers to the instruction following the loop.

* Lines 14-27 show the loop body. This is an example of an infinite loop, where the loop header
is always true. This technique requires that the body of the loop contains a condition that
terminates the loop. In C/C++, the number 0 means false, and all other values are true.

* Lines 14-15 prompt the user to enter the next number to be stored in the array.
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Lines 17-20:

* These lines show a correct usage of the continue keyword.

* The function only allows positive numbers (or zero) to be added to the array. If the number
entered is less than zero, the continue statement on line 19 jumps the control flow back
to line 13, and the iteration condition is evaluated again. In this case, lines 22-27 are not
executed for the current iteration.

 Itis important to note that the i f-statement on lines 17-20 does not require an else branch!
If the condition on line 17 is true, control jumps to line 13. If it’s false, execution resumes on
line 22 automatically.

* While the presence of an else branch would not change the function’s behaviour, it would
result in the indentation of lines 22-27 by an additional, unnecessary level, which is bad
programming style.

Lines 22-23:

* These lines add the user-entered number to the array and increment the current number of

array elements.
Lines 25-27:

* These lines show a correct usage of the break keyword.

* If the number of elements specified by the end-user on line 7 has been reached, then the
loop must terminate. The break statement on line 26 jumps the control flow to line 29, which
is the first instruction following the loop’s closing brace on line 28.

2.4. Variables and data types

When a program is launched, the operating system (OS) assigns to it four separate areas of virtual
memory: the code segment, the data segment, the function call stack, and the heap. The last
three are used to store the program’s data, in a manner decided by the programmer.

Variables are an essential tool for a program to manipulate data. We can think of a program’s
memory as a bookshelf and variables as boxes stored in that bookshelf.

2.4.1. Characteristics of variables

The main characteristics of a variable in C/C++ include: a name, a value, a data type, and a
location in memory.

2.4.1.1. Name:
* A variable’s name is the identifier used in a program to store or retrieve a unit of data.

e |f we think of a variable as a box in a bookshelf, its name is the label affixed to the box.

2.4.1.2. Value:
e A variable’s value is the data stored in that variable.

e |f the variable is a box, its value is the contents inside the box.

2.4.1.3. Data type:
* A variable’s data type determines the number of bytes required in memory to store its data.

 If the variable is a box, its data type decides the size of the box.
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2.4.1.4. Location:

* A variable’s location is the address in memory where its first byte is stored. The subsequent
bytes of a variable are necessarily contiguous. So given the address of the first byte and the
number of bytes that a variable occupies, its contents can be retrieved or updated.

e |f the variable is a box, its location is the address in the bookshelf where the box is stored.

2.4.2. Data types

2.4.2.1. Primitive (also called built-in) data type:
* A primitive data type is a data type that is built into the programming language.

e [In C++, these include int, float, double, char, and bool.

2.4.2.2. User-defined data type:
* |In the context of a programming language, the user is the programmer.
* A user-defined data type is a data type that is defined by the programmer.

e |n C++, these include classes and structs.

2.4.2.3. Memory address:
* In C++, pointer variables are used to store memory addresses as their contents. Pointers are
discussed in chapter 4.

2.4.3. Aggregate data types

Aggregate data types in C++ allow for the grouping of data and behaviour. These include C-style
structs and classes.

2.4.3.1. C-style structs:
* In C++, structs contain variables and functions, just like classes do.

» By default, the variables and functions inside a struct are declared with public access, so the
entire program can view or update the struct’s variables and call its functions. This is bad
software engineering.

2.4.3.2. Classes:
* Classes contain variables and functions, as they do in most OO languages.

* By default, the variables and functions inside a class are declared with private access, which
restricts how the program can use or update them. This is good software engineering.

* The use of classes instead of structs upholds the principle of least privilege, which is dis-
cussed in chapter 5.

PRO TIP: Classes should always be used instead of structs, to ensure that we follow the
A principles of correct software engineering.
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2.5. Standard 1I/O Streams

Unix-type operating systems, including Linux, conceptualize standard input/output (I/O) as streams,
which are essentially sequences of bytes. In C++, the standard I/O streams are represented as
instances of classes that are defined in the iostream library.

2.5.1. Standard 1/O stream objects

2.5.1.1. Using standard 1/O stream objects:

* The standard I/O stream objects are encapsulated within the std namespace. To use them in
a program, we can use either of the following techniques:

- precede every reference to a standard I/O stream object with the std namespace, followed
by the scope resolution operator (: :); for example, the standard output object cout can be
referred to as std: :cout

- explicitly scope in the entire std hamespace, with the statement using namespace std at
the top of a source file; the standard 1/O objects can then be used directly

2.5.1.2. Important stream objects:
* The two commonly used standard I/O stream objects are cin and cout.

* There are additional streams related to error reporting and logging, but these are left to explore
as an exercise for the reader.

* The cout object is an instance of the output stream class ostream.

* The cin object is an instance of the input stream class istream.

2.5.2. Coding example: Standard 1/0O streams

1 #include <iostream>
2 using namespace std;

4 int main ()

5
6 int %, y, z;
8 cout << "Please enter two numbers: ";

9 cin >> x >> y;
10 cout << "The sum is " << x+y << endl;

12 return (0) ;
13 }

® o Terminal — -csh — 80x24

Don't Panic ==> p2
Please enter two numbers: 22 55

The sum is 77
Don't Panic ==>

Program-2.3: Standard I/O streams

Program purpose:

* Program-2.3 demonstrates the use of both the stream insertion and stream extraction oper-
ators, with the standard 1/O stream objects.
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Line 2:
* This line shows the scoping in of the entire std namespace, so that every use of the identifiers
within it does not require the scope resolution operator.
Line 8:

* This line prints out a literal string to the standard output stream, without a newline character
at the end.

* The printing uses the stream insertion operator to send the string to the cout stream object.

Line 9:

* This line shows two values being read from the standard input stream and stored into local
variables x and vy.

It uses the stream extraction operator to retrieve each value from the cin stream object.

* The two occurrences of the stream extraction operator within the same statement is called
cascading, which is discussed in chapter 12. It is analogous to using any two operators in the
same expression, for example the multiple arithmetic operators on line 8 of Program-2.1.

2.6. Functions

Functions play a fundamental role in the correct design of any OO program. We discuss the types
of functions in C++, as well as the design terminology around functions and their parameters.

2.6.1. Types of functions

C++ supports two types of functions, which are differentiated by their scope: global functions
and member functions.

2.6.1.1. What is a global function:

* As the name implies, a global function has global scope, and it is defined at file scope, outside
of any blocks. It can be called from any function and any class in the program.

* In C, all functions are global.

* Themain () function is an example of a global function in C++.

2.6.1.2. What is a member function:

* A member function has scope within a single class. Depending on each member function’s
access specifier (public, protected, or private), a member function can be called on an object
of the class, or on the class itself in the case of static member functions, which are discussed
in chapter 8.

* In some OO languages, member functions are called methods. That term is not standard use
in C++, and it will be not be used in this textbook.

PRO TIP: It is considered good practice to minimize the number of global functions in our
A OO0 designs, and to use member functions wherever possible.

2.6.2. Characteristics of well-designed functions

Functions that follow a correct design typically have the following characteristics.
2.6.2.1. Well-designed functions are modular:
* They “receive” data from the calling function, through parameters.

* They do some work and/or compute some result.
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* They “give back” results to the calling function. There are two ways to do this: using the
function’s return value, which is a very limited technique, or using parameters

2.6.2.2. Well-designed functions are single-purpose:

* They have a single goal and do one thing only.

2.6.2.3. Well-designed functions use abstraction to hide their functionality:
* Other functions know what the function does, not how it does it.

* They know how to call the function, what information to provide through parameters, and what
information it returns. They do not know the function’s logic or how it's implemented.

2.6.2.4. Well-designed functions are reusable:
* They can be reused within the same program.

* A truly well-designed function may be reused in different programs as well.

2.6.3. Return values

2.6.3.1. Function success or failure:
* Return values can be used to indicate the success or failure of a function upon its termination.
* They can be used to return results from very simple functions, for example getter functions.

* Return values are a very limited technique, since only a single value can be returned.

2.6.3.2. Returning data from a function:
* Actual function results, or any complex data, should be returned using output parameters.

* Output parameters allow a function to return multiple results, unlike a return value. They are
discussed in the next section.

2.7. Function parameters

We review the design and implementation terminology related to function parameters. We also
discuss how they are shared between functions.

2.7.1. Calling and called functions

2.7.1.1. What are calling and called functions:
* A calling function is one that, as part of its instructions, calls another function.

* A called function is a function that is called by another.

2.7.1.2. Example:
* In Program-2.4, function foo () calls function bar () on line 4.

* For the duration of bar ()’'s execution on lines 8-10, foo () is the calling function, and bar ()
is the called function.

* The purpose of function parameters is to transfer information back and forth between the
calling function and the called function.

* In Program-2.4, foo () tells bar () how many dragons are in Dragonstone by passing the value
of its local variable numDragons, as a parameter to bar ().
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2.7.2. Coding example: Calling and called functions

1 void foo ()

2 {

3 int numDragons = 42;
4 bar (numDragons) ;

5

}

~

void bar (int n)

8 {
9 cout << "Hello to the " << n << " dragons at Dragonstone!" << endl;
10 }
'ﬂ @ Terminal — -csh — 80x24

Don't Panic ==> funcl
Hello to the 42 dragons at Dragonstone!

Don't Panic ==>
Program-2.4: Calling and called functions

2.7.3. Parameter modifiability

2.7.3.1. What is parameter modifiability:

* Parameter modifiability is a design technique that specifies if the value or the address of a
variable inside the calling function is passed as a parameter into a called function.

* A called function may change the values of variables declared in the calling function, depend-
ing on a parameter’'s modifiability.

* There are two types of parameter modifiability in C++: pass-by-value and pass-by-reference.

2.7.3.2. Pass-by-value:

* With pass-by-value, a parameter value is copied from the calling function into a local variable
in the called function.

* Any changes that the called function makes to that parameter value are to the local copy only.
No changes can be made inside the calling function using a pass-by-value parameter.

* For example, on line 4 of Program-2.4, the value of numbragons, which is 42, is passed by
value into bar () and stored in bar () 's local variable n. Any changes made to n during bar ()’s
execution would be made to the local copy only. In this program, there is no way for bar () to
change the value of the numbragons variable declared in foo ().

2.7.3.3. Pass-by-reference:

» With pass-by-reference, the memory address of a variable is passed from the calling function
into a parameter in the called function.

* If a parameter is passed by reference, there is no local copy of its value inside the called
function. But the called function may access and change the value inside the calling function
by dereferencing the pass-by-reference parameter.

* For example, on line 4 of Program-2.5, the variable numDragons is passed by value into the
called function bar (), and goneDragons is passed by reference. The called function contains
a local copy of the value 42 in its n variable, but local variable gone contains the memory
address of the variable gonebragons that's declared in the calling function foo ().

* In C++, parameters are passed by reference by using pointers or references. C++ references
are introduced in the next section.
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2.7.3.4. Best practice

* Except for primitive data type parameters, it is almost always better coding practice to use
pass-by-reference instead of pass-by-value.

* The problem with pass-by-value is that it creates copies of the data. There are two significant
issues with this:

- Making copies takes time. Why waste computational resources making unnecessary copies?
There may be little efficiency impact if copies are made only a few times, but what about
1000 times? Or a million times? We should always write code with scalability in mind. Our
design should be able to handle large volumes of data as easily as small amounts.

- Making copies may result in an inconsistent state. Most data should have a single instance
only, so that information remains consistent through the different parts of the program.

2.7.3.5. Beware of creating an inconsistent state:

* An inconsistent state occurs in a program when it contains contradictory information. For
example, one part of the program may have one value for some important data, but another
part has a different value for the same data.

* Thisis can be a consequence of inadvertently duplicating data, instead of maintaining multiple
references to a single instance. With multiple copies of what is supposed to the same data,
there is always the risk that each instance ends up with a different value.

* For example, in a university system, there should be only one instance of your student record,
with potentially multiple references that same record. That way, if you need to change your
home address, the single instance is changed, and the new information becomes available
everywhere in the system. But if multiple instances exist, changing your address may update
it in some parts of the system but not others. That would make your information inconsistent
across the university system, which inevitably leads to errors (and lost mail).

2.7.4. Coding example: Pass-by-value and pass-by-reference

1 void foo ()

2 {

3 int numDragons = 42; int goneDragons;

4 bar (numDragons, &goneDragons) ;

5 cout << "We had " << numDragons << " but " << goneDragons
6 << " flew away..." << endl;

7}

9 void bar (int n, intx gone)

10 {
11 cout << "Hello to the " << n << " dragons at Dragonstone!" << endl;
12 *gone = 10;
13 }
.ﬂ ] Terminal — -csh — 80x24

Don't Panic ==> func2
Hello to the 42 dragons at Dragonstone!

We had 42 but 16_: flew away...
Don't Panic ==> |

Program-2.5: Pass-by-value and pass-by-reference
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2.7.5. Parameter direction

2.7.5.1. What is parameter direction:

 The parameter direction is a design technique that specifies if a parameter is providing
information to the called function, or if it's returning information from the called function to
the calling one.

* The parameter direction is specific to each parameter. It is also unrelated to whether the
parameter is passed by value or by reference.

* There are three types of parameter direction: input, output, and input-output.

Q NOTE: The parameter direction has nothing to do with user I/0O.

2.7.5.2. Input parameter:
* An input parameter specifies a value that is required by the called function in order to work.

* The value of an input parameter must be initialized by the calling function.

If the calling function passes garbage as an input parameter, the called function will fail and
possibly crash the program.

* An input parameter may be passed by value or by reference.

2.7.5.3. Output parameter:
* An output parameter is one that is initialized by the called function.
* The calling function must allocate the memory that is initialized by the called function.

* There is no expectation that the output parameter is initialized by the calling function. Any
value contained in the referenced variable gets overwritten by the called function.

Because the called function modifies the output parameter, it is passed by reference.

2.7.5.4. Input-output parameter:
* An input-output parameter is both an input and an output parameter at the same time.

* The value of an input-output parameter must be initialized by the calling function, because it
is required by the called function in order to work.

* The input-output parameter value is also modified by the called function during its execution.

* Because the called function modifies the input-output parameter, it is passed by reference.

NOTE: Parameter modifiability and parameter direction are not implementation concepts.
They are both design concepts, and they are programming language-independent. During
function design, we decide how each function uses parameters for sharing information. Dur-
ing implementation, the mechanism used for parameter modifiability and direction depends
on the programming language.
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2.7.6. Coding example: Parameter modifiability and direction

int main ()

1
2 {

3 bool inputOk = false;
4 int num, result;

6 while (!inputOk) {

7 cout << "Please enter a number between 0 and 100: Ly
8 cin >> num;

9 inputOk = checkNum (num) ;

10 }

12 doubleNum (num, result);
13 cout<<"Result: " << result << endl;

15 return 0;
16 }

18 void doubleNum (int n, inté& res)
19 {

20 res = n * 2;

21 }

23 bool checkNum(int n)

24 {
25 return (n>=0 && n<=100) ;
26 }
’“ D Terminal — -csh — 80x24

Don't Panic ==> p3
Please enter a number between @ and 188: 999
Please enter a number between ® and 1886: 2828

Please enter a number between ® and 188: 77

Result: 154
Don't Panic ==> l

Program-2.6: Parameter modifiability and direction

Program purpose:

* Program-2.6 prompts the end-user to enter a number and calls the checkNum () function to
validate that the number entered is between 0 and 100. If not, the user is prompted again
until they enter a valid number. The doubleNum () function doubles the value of the entered
number, and the result is printed to the screen.

Line 1-16:
* These lines show the implementation of the main () function.

* Online 9, main () is the calling function and checkNum () is the called one. The num variable
is passed by value as an input parameter into the called function. The return value is used
to communicate success or failure back to the calling function.

* Online 12, main () is the calling function and doubleNum () is the called one. The num variable
is passed by value as an input parameter into the called function. The result variable is
passed by reference as an output parameter.
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Lines 18-21:

* These lines show the implementation of the doubleNum () function.

* The function takes two parameters: n is passed by value, and res is passed by reference
using a C++ reference and not a pointer. We discuss C++ references in the next section.

* An existing value is required in parameter n on line 20 for doubleNum () to do its work. So it
has an input direction. Also, the parameter does not get modified by doubleNum (), so it has
no output direction. Therefore, n is an input parameter.

* No pre-existing value is required in parameter res, so it has no input direction. The value
gets modified on line 20, so it has an output direction. Therefore, res is an output parameter.

Lines 23-26:

* These lines show the implementation of the checkNum () function.
* The function takes one parameter: n is passed by value.

* An existing value is required in parameter n on line 25 for checkNum () to do its work. So it
has an input direction. Also, the parameter does not get modified by checkNum (), so it has
no output direction. Therefore, n is an input parameter.

2.8. References

One of the most important advantages of passing parameters by reference is the ability for a
called function to modify data stored in a calling function. This capability is crucial for the correct
design of classes and functions in delegating sub-tasks to other parts of the program.

References are a feature of C++ that does not exist in C. They play an essential role in passing
parameters by reference.

2.8.1. Characteristics

2.8.1.1. Passing parameters by reference in C++:

* In C++, parameters may be passed by reference in one of two ways: using pointers or using
references.

» Passing parameters using pointers works the same way as in C. Pointers are very powerful,
but they can make the code overly complicated. We review pointers in chapter 4.

* Passing parameters using C++ references is a feature of C++ only. References use simple
syntax, but they provide very limited functionality.

2.8.1.2. What is a reference?
* A reference is a binding, or an alias, between an existing variable and a new identifier.

* Declaring and initializing a reference creates a bond between:
- the reference name as a new identifier, and

- an existing variable

* The reference bond is unbreakable for the scope of the reference identifier. It cannot be
reassigned to a different variable.

* The most common usage for references is passing parameters by reference, although they
can have other uses.

2.8.1.3. What is a reference not?

* Areference is not a separate variable! It does not occupy memory. It is simply an alternative
name for an existing variable.
©Christine Laurendeau Chapter 2. C++ Basic Language Features 39



* A reference must be bound to an existing variable when it is declared. A reference cannot be
declared without being initialized at the same time.

* The reference cannot be bound to a different variable during its lifetime.

2.8.2. Coding example: C++ references

1 int main ()
2 {
3 int nl, n2;

w

// inté& rl;
int& r2 = n2;

()]

8 nl = 7;
9 n2 = 99;

11 cout <<"Addresses:" << endl;
12 cout<< "nl = "<<g&nl<<"; n2 = "<K<K&n2<<"; r2 = "<<&r2 << endl;
14 cout<< "nl = "<<nl<<"; n2 = "<<Kn2<<"; r2 = "<<r2 << endl;

16 r2 = 10;
17 cout<< "nl = "<<nl<<"; n2

"<<n2<<"; r2 "<<r2 << endl;

19 r2 = nl;
20 cout<< "nl = "<<nl<<"; n2 = "<K<Kn2<<"; r2 = "<<r2 << endl;

22 return 0;
23 }

@ o Terminal — -csh — 80x24

Don't Panic ==> p4

Addresses:

Bx16T627668; r2 = Ax16T627664
7; n2 99

7; n2 18;

7; n2

t Panic ==>

Program-2.7: C++ references

Program purpose:

* Program-2.7 shows an example of how references are declared and how they behave.

Lines 5-6:

* Line 5 declares the identifier r1 as a reference to an integer, using the data type integ, but it
does not assign a value to r1 upon declaration. For this reason, line 5 does not compile and
is commented out.

* Line 6 shows the correct declaration of identifier r2 as an integer reference that is bound to
variable n2. From that line, until the end of r2’s scope at the end of the main () function, the
identifier r2 is an alias for variable n2. It is not a separate variable.

NOTE: The use of the ampersand (&) to declare a reference is UNRELATED to the address-of
operator used to initialize pointers. We can tell how the & symbol is used, based on whether
it's found in a variable declaration or in a regular statement with operators.
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Line 12:

* Line 12 prints out the addresses of three variables: n1, n2, and r2.

e Because n2 and r2 are the exact same variable, their addresses are the same, as we see
from the program output.

* This line is an example where the ampersand symbol (&) is used as the address-of operator,
and not in a reference declaration.

Line 14:

* Line 14 prints out the values of n1, n2, and r2.

e Because n2 and r2 are the exact same variable, their values are the same, as we see from
the program output.

Lines 16-17:
* Because r2 is not a separate variable and is simply an alias for n2, line 16 sets the value of
variable n2 to the value 10.

* On line 17, the same value 10 is printed out for both n2 and r2, because they remain the
exact same variable.

Lines 19-20:
* Again, because r2 is an alias for n2, line 19 sets the value of variable n2 to the value currently
stored in n1.
* Once a reference is declared and initialized, it cannot be reassigned to a different variable.
* On line 20, the same value 7 is printed out for n1, n2, and r2, as seen in the program output.

NOTE: It would be lovely to choose one favourite pass-by-reference technique (pointers or
references) and use it everywhere exclusively. Unfortunately, almost nothing in program-
ming is that simple. Pointers are mandatory for some C++ language features, for example
the use of dynamically allocated memory, and references are mandatory for other features
like operator overloading.

2.8.3. Coding example: Parameter passing with references

int main ()

1
2 {

3 string name, species;
4 int age;

6 enterInfo (name, species, age);

8 cout << "Your pet is a " << species << " called " << name
9 << ", and it is " << age << " months old ("

10 << age/l1l2 << " yrs, " << age%1l2 << " mths)"

11 << endl;

13 return 0;
14 }

16 void enterInfo(string& n, string& s, inté& a)
17 {

18 int years, months;

19
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20 cout << "Enter your pet’s name: ";
21 cin >> n;

23 cout << "Enter your pet’s species: ";
24 cin >> s;

26 cout << "Enter " << n << "’'s age as <years> <months>: ";
27 cin >> years >> months;

29 a = yearsx*1l2 + months;
30 }

[ NN ) Terminal — -csh — 80x24

Don't Panic ==> pb&
Enter your pet's name: Lady
Enter your pet's species: cat

Enter Lady's age as <years> <months>: 13 18
Your pet is a cat called Lady, and it is 166 months old (13 yrs, 18 mths)
Don't Panic ==>

Program-2.8: Parameter passing with references

Program purpose:

Program-2.8 demonstrates the use of C++ references to pass parameters by reference.

The program uses the enterInfo () function to prompt the end-user to enter their pet’s data.
The information is stored in variables declared inmain (), and they are passed as parameters
to enterInfo () using references.

Lines 1-14:

These lines show the implementation of the main () function.
Lines 3-4 allocate the memory for three variables in main () to store the pet information
(name, species, and age).

Line 6 calls enterInfo () with the three variables passed in using references. It is unclear
from line 6 alone that the parameters are declared as references, until we look at the function
prototype on line 16.

Lines 16-30:

These lines show the implementation of the enterInfo () function.

Line 16 reveals that the three parameters are passed as references. So for the scope of the
entire enterInfo () function on lines 16-30, the following is true:

- the reference n is an alias for the name variable declared in main ()
- the reference s is an alias for the species variable declared in main ()
- the reference a is an alias for the age variable declared in main ()

At all times, there is a single instance of each of the three variables for the pet name, species
and age. There are no duplicates of this information anywhere in the program. It only exists
in the three variables declared in main ().

Lines 21 and 24 read the name and species information from the end-user. The data is stored
directly in the corresponding variables in main (), through their parameter references.

Line 27 reads the age as years and months. Line 29 computes the total number of months and
stores the result in the corresponding variable in main (), through its parameter reference.

Lines 21, 24, and 29 show that the data is returned using the three output parameters.
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2.9. Programming conventions

Every programming language has its own programming conventions, and they can be different
across platforms. Every company and software development team also has its own particular
conventions, so it's necessary to constantly adapt our own personal style for each project.

This section discusses the programming conventions we use in this textbook. These are based
on traditional C++ conventions for Unix-type operating systems.

2.9.1. Naming conventions

2.9.1.1. What are naming conventions:

* Naming conventions are a communication tool between programmers. They are a short-cut
to understanding someone else’s code.

* If a programmer strays from the usual standards, their code will be very difficult to read and
modify, with likely negative consequences for their employability.

* We can never assume that we are the last programmer to work on our code. Realistically, there
will always be someone coming along after us, possibly a junior programmer or a coop student,
to update or extend our code. We want to make their job easier by following conventions.

2.9.1.2. Constants:
* Constant names are usually in all uppercase letters.

 Compound names (names made up of multiple words) can be separated using underscores,
for example MAX_ARR_SIZE.

2.9.1.3. Variables:
* Variables names begin with a lowercase letter.

« Compound names may use camel-case or underscores to separate the words, for example
numElements O num_elements.

* Camel-case is the practice of writing the first letter of a new word in uppercase, with the other
letters in lowercase. The shifts in case go up and down like the bumps on a camel’s back.

* Variable names must be descriptive without being overly long. We can use scope as the
context, for example inside a student class, we can use id instead of studentId.

* Single letters can be used as temporary variables, for example i or j for loop counters.

2.9.1.4. Data types:
» Data type names begin with an uppercase letter, for example the student class.

 Compound names may use camel-case or underscores to separate the words, for example the
BookArray class.

2.9.1.5. Functions:

* Functions names, whether they are global or member functions, begin with a lowercase letter,
for example a getName () member function.

 Compound names may use camel-case or underscores to separate the words.

* Function names must be short and descriptive.
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2.9.2. Coding practices

2.9.2.1. What are coding practices:

* Like naming conventions, coding practices are used as a short-cut to understand another
programmer’s code.

* The coding practices that we follow will vary based on the company and development team
where we work, and they will adapt to match each project.

2.9.2.2. Common coding practices we use:

* Do design classes that are separated into object categories (entity, control, interface), which
are discussed in chapter 6.

* Do not use structs, but use classes instead.

* Do not use global variables.

* Do not use global functions, except for main (), unless directed.
* Do not pass objects by value, but by reference instead.

* Do reuse the code that you write wherever possible. Do not copy and paste code. Instead,
create and call a separate function that contains the common code.

* Do perform all basic error checking.
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Chapter 3

Basic C++ Classes

In this chapter, we present the basic features of simple C++ classes and their organization in a
Unix-type OS. We discuss the different types of constructors in C++, and we introduce destructors.

3.1. Principles

We review some OO programming terminology in general and the specific terms that apply to
C++ in particular.

3.1.1. Terminology

3.1.1.1. What is a class:

A class in an OO programming language is a programmer-defined data type that aggregates

together related data and behaviour.

Every class contains:

- data, called data members in C++ (sometimes called instance variables in some other OO
languages), and

- behaviour, called member functions in C++ (methods in other OO languages)

As a data type, a class is a blueprint only. It stores no actual data, but it defines what data every
instance of the class contains. For example, a student class may specify that all students have
a student number and a name.

A class occupies no memory, and it cannot be used in any operations, except for static member
functions, which are discussed in chapter 8.

3.1.1.2. What is an object:

An object is an instance of a defined class.

While the class specifies the blueprint on which every object is modelled, an object contains
specific values for its data.

An object does occupy memory. Like any variable. it has a name, a value for each of its data
members, a data type (which is the class), and a location in memory.

For example, we can declare an object as a variable with a name of matilda, a data type of
Student class, and a value of "100567899" for the student number and "Matilda" for the
student name.
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3.1.2. Class members

3.1.2.1. What is a class definition:

* A class definition defines a new class data type.

* It contains the following information:
- a class name, and
- class members

* In a class definition, class members include:
- data members (sometimes called instance variables in other OO languages), and
- member functions (sometimes called methods in other OO languages)

* Every class member has an access specifier (public, protected, or private).

NOTE: Industrial-grade software is typically huge, with potentially millions of lines of
code, written by hundreds of developers in multiple releases over many years. It is
imperative that the software is written in a way that protects the runtime objects from
possible bugs and runtime errors. One important way to do this is with the principle of
least privilege, where each class member is given the most restrictive access (private or
protected) wherever possible.

3.1.2.2. What is an access specifier:
* An access specifier defines the level of access to a class member by the rest of the program.

* Public access:
- a public class member is visible to all objects and global functions in the program

Protected access:

- a protected class member is visible to objects of other subclass types only (subclasses are
sometimes called "child classes")

- protected access only makes sense when classes are organized in an inheritance hierarchy,
which is discussed in chapter 9

- to global functions and objects of all other classes, a protected member is private
* Private access:
- aprivate class member is not visible to objects of any other class types, or to global functions

- but in a surprising twist, C++ objects of the same class can access each other’s private
members; this is necessary for the correct functioning of copy constructors, as we discuss
later in this chapter

Within C++ classes, the default access specifier is private, which supports the principles of
good software engineering.

3.1.2.3. What is a function implementation:

* A function implementation consists of the sequence of statements that comprise that func-
tion, i.e. the statements inside the pair of braces.

* A function implementation is also called the function body. These terms apply to both global
functions and member functions.

* In a correctly organized C++ program, member function implementations are stored outside
the class definition, as we discuss later in this chapter.
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3.1.3. Coding example: Simple C++ class

{

1
2
3
4
5
6
7
8

10
11
12
13
14

16
17
18
19

21
22
23
24

26
27
28
29
30
31
32

33 };

class Student

public:
Student ()
{
number = "000000000";
name = "No name";

Student (string sl, string s2)

{
number = sl;
name = s82;

string getName ()
{

return name;

void setName (string n)

{

name = n;

void print ()

{

cout<<"Student: "<<number<<" "<<name<<endl;

}

private:
string number;
string name;

35 int main ()

36 {
37
38

40
41

43
44
45

47
48 }

Student matilda ("100567899",
Student Jjoe;

matilda.print () ;
joe.print () ;

joe.setName ("Joe") ;
matilda.print () ;

Joe.print () ;

return O;
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Don't Panic ==> pl
Student: 1885467899 Matilda
Student: ©PPBBOBBE No name

Student: 108567899 Matilda

Student: ©0eeopese Joe
Don't Panic ==> ||

Program-3.1: Simple C++ class

Program purpose:

* Program-3.1 declares a student class with data members and member functions. Themain ()
function creates two instances of the student class and calls their member functions.

Lines 1-33:

e These lines show the student class definition.

* The public portion of the class definition is found on lines 3-29, and everything declared on
those lines is given public access.

* The private portion of the class definition is found on lines 30-32, and everything declared
on those lines is given private access.

* There are no class members declared with protected access.

Lines 31-32:

e These lines declare the data members of the student class: the number data member that
stores the student number, and name that contains the student’'s name.

* We use the C++ standard library’s string class throughout the coding examples in this
textbook.

* Every instance of the student class, therefore every student object, has its own values for
each data member.

* In keeping with the correct principles of good software engineering, both data members are
declared with private access. Because of this, only the member functions that belong to the
Student class are allowed to access and modify the data members directly.

Lines 4-8:

* The member function defined on these lines is a constructor that takes no parameters. In

C++, we call this the default constructor. It sets all the data members to default values.
Lines 10-14:

* The member function defined on these lines is a constructor that takes two parameters. It
initializes the data members to specific values that are passed in as parameters.

* In a later section, we present the correct technique for combining multiple constructors into
a single one.

Lines 16-24:

* These lines define getter and setter member functions for the class’s name data member.

Lines 26-29:

* These lines define a member function that prints all the information contained in a student
object.
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* There is no C++ equivalent to Java’'s tostring () member function. However, a better ap-
proach for outputting an object directly to a stream is discussed in chapter 12.

Line 37:

e This line declares an instance of the student class, with the variable name matilda.

* When an object is declared, the class constructor is called automatically. Because two pa-
rameter values are used in the declaration ("100567899" and "Matilda"), the two-parameter
constructor on lines 10-14 is called.

* A constructor is always called when an object is created.

* Because we do not use the new keyword on line 37, the new student object is not allocated
dynamically. It is allocated statically, so the object resides in the function call stack, inside
the stack frame for the main () function, and not in the heap.

* Unlike Java, C++ does not limit all objects to dynamic allocation. The language allows the
programmer to decide whether an object is allocated statically or dynamically.

* We review memory management concepts in chapter 4, where we discuss statically and
dynamically allocated memory, and how C++ manages the memory allocation of objects.

Line 38:

* This line declares an instance of the student class, with the variable name joe.

* Because no parameter values are used in the declaration, the default constructor on lines
4-8 is called.

Lines 40-41:

* These lines print out the information in both student objects.

* Line 40 calls the student class’s print () member function defined on lines 26-29 using the
matilda object. The student number and name that belong to that object are printed to the
screen, as we see in the program output.

* Line 41 calls the print () member function using the joe object. The student information
initialized in the default constructor on lines 4-8 is printed out.

* Becausematilda and joe are objects, and not pointers to objects, we use the dot operator (.)
to access their class members, in this case the print () member function. In chapter 4, we
see how the arrow operator (->) is used to access class members using pointers to objects.
This is consistent with the C syntax used for accessing the fields of structs.

Lines 43-45:

* These lines change one student’s name and print the information in both objects again.

* Line 43 calls the student class’s setName () member function using the joe object. This
modifies the value of that object’s name data member to the given parameter "Joe".

* Lines 44-45 call the print () member function again on both student objects, and we see
the updated name for the joe object in the program output.
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3.2. Code organization

In software engineering, a very large program or application is called a software system. When
developing a large system, it’s important to consider how to best organize the code into separate
source files.

A key goal is to separate the code in ways that minimize the impact of changes on other parts
of the system. Reducing the number of files that require recompilation after a change is an
important technique for achieving this goal.

3.2.1. Class organization

3.2.1.1. Very small programs
* Program-3.1 presents two serious issues in terms of code organization.

* First, the member function implementations (the function bodies) are contained inside the
class definition. While this is standard practice is some other OO programming languages, it
fails to minimize program building dependencies between classes.

* Second, the program is contained entirely in a single source file. While this may be acceptable
for very small programs, it's problematic for larger ones.

3.2.1.2. All other programs

* |In a correctly organized C++ program, each class is separated into two files:
- a header file that contains the class definition, and

- a source file that contains the class’s member function implementations

* While this does increase the number of files in the program, the advantages for minimizing
recompilation efforts are worthwhile. As we discuss in chapter 5, class independence is an
important factor in strengthening resilience to changes, and packaging code correspondingly
is a key part of that.

3.2.1.3. Class header file
e Each class definition is contained in its own header file.

* A class header file is named after the class itself, followed by the .h extension. For example,
if we define a Date class, the corresponding header file is called bate.h

* The header file contains the class definition, including the data member declarations and the
member function prototypes only. It does not contain the implementation (the actual code)
for the member functions.

3.2.1.4. Class source file
e Each class has its own source file.

* A class source file is named after the class itself, followed by the . cc extension. For example,
the source file for the pate class is called pate.cc

* The source file contains the member function implementations.

* |If the class declares static storage class data members, they must be initialized in the source
file, as we discuss in chapter 8.
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3.2.1.5. Code organization issues:

* Large programs may contain dozens or hundreds of classes, all dependent on each other to
some extent. If one class requires the contents of another, it must use the include prepro-
cessor directive to bring the other class definition into its header file.

* This can potentially cause two issues:

- multiple inclusions of the same class definition inside two or more header files
- circular inclusions between two classes that depend on each other

* Multiple inclusions are prevented with the use of include guards, which are discussed later in
this section.

e Forward references are used to address the issue of circular inclusions, as we see in the dis-
cussion of Program-8.5, line 4.

3.2.2. Coding example: Code organization

O 00O NO UL B~ WN B

=
o

11
12
13
14
15
16
17

19
20
21
22
23
24
25

27
28
29
30
31

33
34
35
36
37
38

/*****************
* Filename: Date.h *
*****************/

class Date

{
public:

Date () ;
Date (int, int, int);
void setDate (int, int, int);
void print () ;
private:
int day;
int month;
int vyear;
int lastDayInMonth (int, int);
bool leapYear (int);
}i

VA S S S
* Filename: Date.cc *
* ok kA A A A A A A A A A A A A A/

#include <iostream>

#include <iomanip>

using namespace std;

#include "Date.h"

Date: :Date ()
{

cout<<"in default constructor"<<endl;
day = month = year = 0;

Date::Date(int d, int m, int vy)

{
cout<<"in three-parameter constructor"<<endl;
setDate(d, m, V);
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39
40
41
42
43
44

46
47
48
49
50
51

53
54

56
57
58
59
60

62
63
64
65

67
68

70
71

73
74

76
77
78
79
80

82
83

85
86
87
88

90
91

void Date
{
year
month =
day =

void Date
{

cout <<

<<

<<

int Date
bool Date

::setDate (int

( (y >0
( (m >0
( (d >0
:iprint ()

setfill (’

setfill (’
setfill (’

::lastDayInMonth (int m,
::leapYear (int y) {

)

0
0
0

?
&&
&&

")
")
")

d, int m, int y)

y : 0);

m<=12 ) 2 m : 0 );

d <= lastDayInMonth(m, y) ) 2 d : 0

<< setw (4)
<< setw(2)
<< setw(2)

<< year << "-"
<< month << "-"
<< day << endl;

int y) { /* not shown #*/

/* not shown x/

/*****************

* Filename:

main.cc

*

*****************/

#include

"Date.h"
#define MAX ARR_SIZE

int main ()

{

cout << "Declaring dl: ";

Date dl

(28, 5,

2012);

cout<<"Declaring d2:

Date d2

cout << endl << "Declaring dArray: "

14

we.
4

Date dArray[MAX ARR_SIZE];

cout << endl << "Printing dl: ";
dl.print () ;

cout << "Printing d2:

d2.print () ;
d2.setDhate (3, 3,

cout << "Printing d2:

d2.print () ;

dArray[0] .setDate (1,
dArray[1l].setDate (5,

cout << endl << "Printing dArray: "
1<MAX_ARR_SIZE;

for

(int i=0;

<< endl;
1933);
1, 1911);
5, 1955);
<< endl;

dArray[i] .print () ;

return O;

}
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Terminal — -csh — 80x24

Don't Panic ==> p2
Declaring dl: in three—-parameter constructor
Declaring d2: in default constructor

Declaring dArray:

in default constructor
in default constructor
in default constructor

Printing di1: 2812-85-28
Printing d2: ©P08-80-80
Printing d2: 1933-83-83

Printing dArray:
1911-81-81

1955-85-85
pBBe-08-88
Don't Panic ==> [J

Program-3.2: Code organization

Program purpose:

defines a Date class with two constructors, a setter, a printing member function,
and some helper member functions.

The main () function declares several bate objects, including an array of dates, and calls the
member functions on these objects.

Lines 4-17:

These lines are contained within the class header file, and they show the Date class definition.

The class contains three private data members, declared on lines 12-14: the date’s day,
month, and year.

The public member functions include two constructors (lines 7-8), a setter (line 9), and a
printing function (line 10).

Private member functions are usually helper functions. These are only used within the class’s
other member functions and cannot be called from outside the class itself.

Here, the class’s private member functions are used for validating the data member values.

Lines 22-54:

* These lines are contained within the class source file, and they show the pate class member

function implementations.

By default, all functions in C++ are global functions. In order to define the functions in the
class source file as member functions of the pate class, we must the scope resolution
operator (::).

* The scope resolution operator takes the class name as the left-hand side operand and the

class member as the right-hand side operand.
For example:

- on line 27, the function name Date: :Date () declares that the default constructor Date ()
is @ member function of the Date class

- on line 39, the function name Date: :setDate () declares that the setbate () function is a
member of the pate class, which allows this function to access the private data members
on lines 41-43; if we omitted the pate:: portion, we would be declaring setbate () as a
global function, which does not have any data members
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The print () member function on lines 46-51 uses the iomanip library to format the output
width and filler character. The reader is encouraged to look into the tools available in this
library to assist in producing professional-looking output.

Lines 59-91:

These lines show the contents of the main.cc source file, including the main () function.

Line 65 declares a Date object called d1, and it calls the three-parameter constructor on lines
33-37 with specific values.

Line 68 declares another Date object called d2, and it calls the default constructor on lines
27-31.

Line 71 declares an array called darray that contains three pate objects. The default con-
structor is called automatically for each of the three Date objects when the array is declared.

Line 74 shows the printing member function called using the d1 object.

Lines 77-80 show the setter and printing member functions called using the d2 object.
Lines 82-83 show the setter member function called using the first two elements of darray.
Lines 86-88 loop over darray and call the printing member function using each element.

3.2.3. Best practices for code packaging

3.2.3.1. Basic principles:

Very few professional developers write code directly for the end-users.

Most professionals write code for other programmers. This is different from writing code for
end-users, and it's a very important skill to develop.

A class developer is a programmer who writes the code for a class. In the coding examples

of this textbook, we assume that the class development team consists of the reader and the
author working together as student and instructor.

A class user is a programmer who uses our class in their code. For example, a class user may
create instances of our class in their program, or they may develop new subclasses.

3.2.3.2. Class interface:

* In computing, an interface is a mechanism for interacting with a software system or part of

a system. For example, an application programming interface (API) allows code to interact
programmatically with an existing system.

* Aclass interface consists of the information that a class user requires in order to create and

interact with objects of that class. This information includes:
- the class name

- its public members (both data members and member functions)
- sometimes its protected members too

* Some OO languages use the term interface to denote a language-specific construct. In this

textbook, we use interface in strict accordance with its correct meaning in general computing,
as defined above.

NOTE: Java provides a language construct that it calls an interface. This feature is
needed as a workaround to simulate multiple inheritance, which Java does not support.
C++ can provide true multiple inheritance because of its scope resolution operator.
The Java-specific usage of the term interface is unrelated to how the term is used in
general computing and in this textbook.
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3.2.3.3. Class development:

A class user requires two things from a class developer:
- the class definition, which is contained in the class header file, and

- the class object code, which is compiled from the class source code

The class user’s source code must use the include C++ preprocessor directive to copy the
class header file into their own code.

Then, they must link the class object code with their own object code to create the program
executable.

The class user does not require the class source code.

3.2.3.4. Class header file and include guards:

A class header file contains the class definition, including the data members and the member
function prototypes.

The header file must also use include guards. These are very useful in preventing compila-
tion errors due to the same class being redefined, when its header file is included two or more
times. This can happen when classes are have circular dependencies on each other.

Include guards use precompilation directives to make sure that each header file is only in-
cluded once.

The following is an example of an include guard for the pate class:

- at the top of the class header file, we use the following two preprocessor directives:
#ifndef DATE_H
#define DATE_H

- the ifndef directive ("if not defined") checks whether a constant called bATE_H has already
been defined; if it has not, it means that the header file has not yet been included anywhere

- if the constant does not yet exist, then the next line defines it, and the rest of the header
file is included

- if the constant does exist, it means that the header file has already been included once
during the compilation process; in this case, the preprocessor skips to the end of the file
and does not include the header file

- at the bottom of the class header file, we must terminate the preprocessor ifndef directive
with: #endif

An alternative to include guards in C++ is the use of #pragma once at the top of a class header
file. However, this directive is neither standard nor universally supported on all compilers. The
use of include guards instead makes the code more portable to a wider variety of platforms.

3.2.3.5. Class source file:

A class source file contains all the class’s member function implementations.

Remember! By default, all functions are global. The scope resolution operator must be used
in the source file to define a function as belonging to a specific class.

The source file also contains initialization statements for the static storage class data mem-
bers, which we discuss in chapter 8.
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3.2.3.6. Program building with class files:

Figure-3.1 shows what files are shared by a class developer with the class user.
The class user requires the class header file in order to access the class definition.

Once the class user’s source code is compiled, the corresponding object file is linked with the
class object file to produce the program executable.

The class developer does not provide the source code to the class user.

Question: If the class source code changes, what is required for the class user to rebuild the
program?

Answer: Only an updated class object file must be provided by the class developer. The class
user simply needs to re-link their existing object code with the new class object file. The class
user does not need to recompile their code.

Question: If the class header file changes, what is required for the class user to rebuild the
program?

Answer: Both an updated header file and class object file must be provided by the class de-
veloper. The class user must recompile their code with the new header file, then re-link their
new object code with the updated class object file.

We can see how changes to the class header file has a greater impact on the class user
than simply changing the class source code. For this reason, modifications to class header
files should be minimized if possible. Using correct design techniques and good software
engineering practices can go a long way in planning for changes in advance and reducing
their impact across the system.

CLASS DEVELOPER

Class header

N

#include
#include
l CLASS USER

Class source N\ i
source code

il
compl el compilel

Class

object code ma Leig)
] \ object code
link

.i.,kl

Executable

Figure-3.1: Program building with class files
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3.3. Default arguments

We discuss the role of default arguments in C++ functions. These allow for greater flexibility in
how global and member functions are called.

3.3.1. Concepts

3.3.1.1. What is a default argument:

* A function argument is a parameter value, from the point of view of a calling function:
- a calling function sends arguments to a called function

- the called function receives parameter values from the calling function

* A default argument is a predefined default value for a parameter. If the calling function
sends no value for an argument, then the called function uses the default value instead.

3.3.1.2. Characteristics of default arguments:

* A default argument is specified where the function prototype first appears.

* One or more parameters may have default values.

* A function may have a mix of some parameters with default values, and others without.

* To eliminate ambiguity, all parameters with default values must be positioned as the right-

most parameters in the function prototype, after the parameters without default values.

3.3.1.3. Uses of default arguments:

* Default arguments can be used in global functions or in member functions.

* A common usage is to combine a default constructor with a multiple-parameter one.

NOTE: A class may only declare one default constructor. Declaring default values for all the
parameters of a multi-parameter constructor automatically makes it a default constructor.

3.3.2. Coding example: Default arguments

1 void sayHello(string = "Timmy Tortoise");
3 int main ()
4 {
5 sayHello ("world") ;
6 sayHello () ;
7 sayHello ("");
8 return 0;
91}
10 void sayHello (string who)
11 {
12 cout << "Hello " << who << endl;
13 }
'{-E} D Terminal — -csh — 80x24

Don't Panic ==> p3
Hello world
Hello Timmy Tortoise

Hello
Don't Panic ==> !

Program-3.3: Default arguments
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Program purpose:

* Program-3.3 declares a default value for the parameter to the sayHello () global function.
Then the main () function calls it in three different ways.

Line 1:

* This line declares sayHello () as a global function that takes a single string parameter. The
function prototype establishes that the parameter has the default value "Timmy Tortoise".

Lines 10-13:

* These lines show the implementation of the sayHello () function.
* Line 12 prints out "Hel1lo", followed by the parameter value.

Lines 3-9:
* These lines show the implementation of the main () function.

* Line 5 calls sayHello () with the parameter value "world". As a result, "Hello world" is
printed out, as we see from the program output.

* Line 6 calls sayHello () with no parameter value. If the function did not provide a default
value for the parameter on line 1, then line 6 would not compile. But since it does, line 6
calls sayHello () with the string "Timmy Tortoise" as parameter. As aresult, "Hello Timmy
Tortoise" is printed out.

* Line 7 calls sayHello () with an empty string as parameter value. This line does not use the
default parameter value, because there is a value provided. It just happens to be an empty
string. We see from the program output that "Hello " is printed out.

3.4. Default constructors

Constructors have one basic purpose: to initialize every part of a new object. We know from pro-
gramming in C that allocated variables are not automatically assigned default values at runtime.
Instead, they contain whatever garbage was in those memory cells the last time they were used.
To make sure that our programs don’t crash due to invalid data, it is imperative that we initialize
every variable and data member before they are used.

3.4.1. Concepts

3.4.1.1. What is a default constructor?
* A default constructor is a constructor that takes no parameters.

* Equivalently, it is also a constructor whose every parameter is a default argument. If the
constructor is called with no parameters, then all the default values are used.

3.4.1.2. Characteristics of a default constructor:

A default constructor is a member function of a class.
* Only one default constructor can exist for each class.

* An empty default constructor is provided automatically by the compiler, if the class developer
does not implement any constructors for a class.

The default constructor can be called explicitly or implicitly.

3.4.1.3. Explicit and implicit function calls:

* A function is called explicitly in C++ when the programmer uses syntax that clearly and
deliberately calls the function.
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» A function is called implicitly when the programmer uses syntax that causes the compiler to
automatically convert that syntax into a call to the function. There are several types of syntax
in C++ that trigger these automatic conversions to function calls, and they are discussed
throughout this textbook.

3.4.1.4. Uses of default constructors:
* The job of any constructor is to initialize all the data members of a new object.
e A default constructor must initialize all the data members to default values.

* Remember, in many programming environments including most Unix-type systems, all vari-
ables contain garbage unless they are initialized by the programmer.

3.4.1.5. The default constructor is called implicitly:
* when an object is declared with no parameters specified

* when an array of objects is declared, and the default constructor is called automatically for
every object in the array

* when memory for a new object is dynamically allocated; dynamic allocation in C++ is done
using the new operator, which is discussed in chapter 4

3.4.2. Coding example: Default constructors

1 /% % % % * % & %k * ok % K ok K Kk & *
2 « Filename: Date.h *
I S I A A A A A Y4
4 class Date

5 {

6 public:

7 // Date () ;

8 Date (int=0, int=0, 1int=2000) ;

9 void setDate(int, int, int);

10 void print();

12 private:

13 int day;

14 int month;

15 int vyear;

16 int lastDayInMonth (int, int);
17 bool leapYear (int);

18 };

20 /4 Ak Ak ok A A Kk A A K A A A A A A A

21 * Filename: Date.cc *

22 ok ok ok ok ok ok ok A Kk Kk Ak K A K A A */

24 /+ NO LONGER USED

25 Date: :Date ()

26 {

27 cout<<"in default constructor"<<endl;
28 day = month = year = 0;

29 }

30 #/

31
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/% This 1s now the default constructor =*/

Date: :Date (int d, int
{

m, int y)

cout<<"in default constructor"<<endl;

setDate(d, m, vVy);
}

/* The rest of the file is not shown. */
/* L S S S S S R R S A S (S S S S o
* Filename: main.cc *
* * * * * * * * * * * * * * * * */
#include "Date.h"
#define MAX ARR_SIZE 3
int main ()
{
cout << "Declaring d4: ";
Date d4(7,6,2012);
cout << "Printing d4: ";
d4.print () ;
cout << "Declaring d3: ";
Date d3(7,6);
cout << "Printing d3: ";
d3.print () ;
cout << "Declaring d2: ";
Date d2(7);
cout << "Printing d2: ";
d2.print () ;
cout << "Declaring dl: ";
Date dl;
cout << "Printing dl: ";
dl.print () ;
cout << endl << "Declaring dArray: " << endl;

Date dArray[MAX_ARR_SIZE];

return O;

Don't Panic ==> p4

Declaring d4: in default
Printing d4: 2012-86-87
Declaring d3: in default
Printing d3: 2080-86-87
Declaring d2: in default
Printing dz: 2080-60-07

Declaring dl: in default
Printing dl: 2©88-00-80

Declaring dArray:

in default constructor
in default constructor
in default constructor
Don't Panic ==>
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constructor

constructor

constructor

constructor

Program-3.4
Chapter 3.
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Program purpose:

Program-3.4 modifies the Date class from Program-3.2 by merging the two constructors into
a single default constructor that defines default arguments.

* Themain () function declares several Date objects, including an array of dates, and the pro-

gram output shows when the default constructor is called.

Lines 7-8:

In the pate class definition, the three-parameter constructor on line 8 has been modified to
define default values for all three parameters, which now makes it the default constructor.

* The previous default constructor on line 7 must be removed or commented out, otherwise

there would be two default constructors and compilation would fail.

The default constructor takes as parameters the default values of zero for both day and
month and 2000 for the year, as defined on line 8.

Lines 25-37:

The implementation of the previous default constructor on lines 25-29 is commented out, as
it is no longer used.

The implementation of the three-parameter constructor on lines 33-37 is unchanged from
Program-3.2, except for the debugging statement printed out.

The default parameter values are not specified in the member function implementation, as
we see on line 33.

Lines 46-71:

These lines show the implementation of the main () function.

Lines 49, 54, 59, and 64 together declare four Date objects called d4, d3, d2, and d1, respec-
tively. Line 69 declares an array of three Date objects. Each Date object created on these
lines triggers a call to the pDate default constructor, with different parameters.

On line 49, the constructor is called with three parameters for the day, month, and year. The
d4 object is initialized accordingly, as the 7th day of the 6th month, in the year 2012.

On line 54, the constructor is called with two parameters for the day and month. This results
in the default value being used for the right-most parameter, the year. The d3 object is
initialized accordingly, as the 7th day of the 6th month, in the year 2000.

On line 59, the constructor is called with one parameter for the day. This results in default
values being used for the two right-most parameters, the month and year. The d2 object is
initialized accordingly, as the 7th day of month zero, in the year 2000.

On line 64, the constructor is called with no parameters. This results in default values being
used for all three parameters. The d1 object is initialized accordingly, as day zero of month
zero, in the year 2000.

On line 69, the constructor is called with no parameters for each of the three Date objects in
the array. This results in default values being used for all three parameters for each object.
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3.5. Destructors
We introduce the concept of destructors, which are a key component of C++4+ programming.

3.5.1. Concepts

3.5.1.1. What is a destructor?

» Adestructor is the mirrorimage of a constructor. While a constructor initializes a newly created
object, a destructor cleans up an object when it is destroyed.

¢ We note that the term "de-constructor" is incorrect in C++ and should not be used.

3.5.1.2. Characteristics of a destructor:
* A destructor is a member function of a class.
* Only one destructor can exist for each class, and it takes no parameters.

* An empty destructor is provided automatically by the compiler, if the class developer does
not implement one for a class.

The destructor is never called explicitly. It is always called implicitly, at specific points in the
program which are discussed in this section.

3.5.1.3. Uses of destructors:

* The job of a destructor is to perform any necessary cleanup when an object is destroyed. It's
the responsibility of the class developer to know what cleanup is required for an object and to
implement the class destructor accordingly.

* If necessary, the destructor can release resources that are no longer needed after the object
is destroyed. For example:
- a destructor can be used to close any files that the object opened

- it can be used to deallocate dynamically allocated memory that is contained within the
object, for example if the object has a data member that’s dynamically allocated

* If a class does not require any cleanup when its objects are destroyed, the empty destructor
provided by the compiler is usually sufficient.

NOTE: There is no magic that performs object cleanup on behalf of the class developer. If
cleanup is required, it’s up to the developer to write the destructor code for their classes.
It's generally considered bad practice to place most cleanup code outside the destructor,
except where it would result in objects being cleaned up more than once.

3.5.1.4. When is the destructor called implicitly:

* For block scope objects, the destructor is called automatically when the control flow exits the
block where the object is declared.

Tor global scope objects, the destructor is called when the control flow exits the program.

* Fordynamically allocated objects, the destructor executes when the memory is explicitly deal-
located with the delete operator, which is discussed in chapter 4.

Destructors are usually called in the reverse order of constructor calls, but not always.
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3.5.2. Coding example: Destructors

1 /% % % % % Kk % K ok K Kk A A K K Kk *
2 + Filename: Thing.h *
I S R e I I A A A A A a4
4 class Thing

5 {
6
7
8
9

public:
Thing (int=0, string="");
~Thing () ;
private:
10 int id;
11 string location;
12 };

14 /% #* % * % % * % K % & ok K Kk K K ok
15 « Filename: Thing.cc *
16 % & % & ok K ok Kk K ok A Kk K Kk K * %/

17 Thing::Thing(int i, string s)

18 {

19 id = i;

20 location = s;

21 cout<<"—— ctor: "<< id <<" "<< location <<endl;
22 }

24 Thing::~Thing ()

25 {

26 cout<<"-- dtor: "<< id <<" "<< location <<endl;
27 }

29 /4 Ak ok ok A Kk Kk K A K K K A A A A F
30 # Filename: main.cc *
31 * ok ok Ak Ak A A A A A A A A A A A A/

32 void func();

34 Thing t1(1,"first global");
35 Thing t2 (2, "second global");

37 int main ()

38 {

39 cout<<endl<<"In main..."<<endl;

40 Thing t3(3, "first local in main");

42 cout<<"Calling func () "<<endl;
43 func () ;
44 cout<<"Back from func () "<<endl;

46 cout<<"Calling func () again"<<endl;
47 func () ;
48 cout<<"Back from func () again"<<endl;

50 static Thing t4 (4, "local static in main");

52 cout<<"So long and thanks for all the fish"<<endl<<endl;
53 return 0;
54 1}
55
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void func ()

{

cout<<"In func () "<<endl;

Thing t5(5, "first local in func");
Thing t6(6, "second local in func");

cout<<"leaving func () "<<endl;

Terminal — -csh — 80x30

Don't Panic ==> pb&
-- ctor: 1 first global
-— ctor: 2 second global

In main...

== ¢gtor: 3 first local in main
Calling func()

In func()

5 first local in func
6 second local in func
func()
6 second local in func
5 first local in func
Back from func()
Calling func() again

In func()
5 first local in func
6 second local in func
func()
6 second local in func
5 first local in func
Back from func() again
local static in main
thanks for all the fish

first local in main
local static in main
second global

first global

==>

Program-3.5: Destructors

Program purpose:

. creates multiple instances of the Thing class at different scopes (global and
local) in the program, using different

* The program output shows when each object is created and destroyed, based on the debug-
ging statements in the Thing class constructor and destructor.

Lines 4-12:

* These lines show the Thing class definition, which does not represent a real-life concept. Its
purpose is to show the creation and destruction of objects, based on their scope and their
storage class.

* The data members declared on lines 10-11 represent a unique number for the object and a
string to show where the object is declared in the program.
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Lines 17-27:

* These lines implement the Thing class’s default constructor and its destructor, which both
print out the contents of the data members.

Lines 34-35:

* In the main.cc source file, these lines declare objects t1 and t2 at global scope. Their con-
structors are called in the order in which the objects are declared, before the main () function
begins execution.

Line 40:

* This line declares object t 3, which has block scope within themain () function. Its constructor
executes on line 40.

Line 43 and 56-64:

e Line 43 calls the func () function for the first time.
* Lines 56-64 show the implementation of func ().

* Lines 60-61 declare two objects, t5 and t6, which both have block scope within func (). The
constructor for each object executes on the line where it is declared.

e On line 64, the func () function terminates, and the control flow returns to main ().

* Because line 64 represents the end of the func () block, the objects declared locally within
its scope are destroyed. The destructors for t5 and t6 are called at this time, in the reverse
order of construction.

Line 47 and 56-64:

e Line 47 calls the func () function for the second time.

* Lines 60-61 declare two objects, t5 and t6, once again. The constructor for each object
executes on the line where it is declared.

* On line 64, the func () function terminates, and its locally declared objects are destroyed.
The destructors for £t5 and t6 are called at this time, in the reverse order of construction.

Line 50:

* This line declares object t4, which has block scope within the main () function.

* However, t4 has static storage class, instead of the default automatic storage class. While
this has no effect on when the object constructor is called, it does affect its destruction.

* Remember, static storage class variables are stored in global memory, in the data segment,
and not in the function call stack. Because of this, objects with static storage class are not
destroyed when the control flow exits the scope where they are declared.

e The t4 constructor executes on line 40, where it is declared.

Line 53:

* On this line, the main () function terminates and returns control to the OS. At this point, all
the objects still remaining in memory are destroyed.

* First, the locally declared objects are destroyed, starting with the automatic storage class
object (t3), followed by the static storage class object (t4).

* Once the local objects have been cleaned up, the ones with global scope (t1 and t2) are
destroyed, in the reverse order of construction.

* We note that the destructors for these objects are called automatically on line 53, after the
last printing statement in main (), on line 52.
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3.5.3. Order of execution

3.5.3.1. Explicit calls to a destructor:
» Destructors should never be called explicitly by the programmer.

» Although some compilers do allow for explicit calls to be made, destructors are always called
implicitly. So an explicit call to a destructor cannot prevent an implicit call from taking place
at the predetermined time, based on object scope and storage class.

* As aresult, if an explicit call is made, it may result in the destructor being called twice, possibly
resulting in a segmentation fault if the same memory is deallocated multiple times.

3.5.3.2. Global scope objects:

* For global scope objects, the constructor is called when the object is declared, before the
main () function executes, in the order of declaration.

* The destructor is called after main () terminates, or when the exit () system call is invoked,
in the reverse order of construction.

3.5.3.3. Local (block) scope objects:

* For local scope objects, the constructor is called when the object is declared, for example in a
function, or a loop, or any block.

* The destructor is called when the control flow exits the block where the object is declared.

* If a function is called multiple items and declares local objects, then different objects are
created on every call. They are destroyed when the control flow returns to the calling function.

3.5.3.4. In case of abnormal program termination:

 If the program terminates because of a system call to exit ():
- this indicates a controlled failure and causes program termination

- the destructors for the global scope objects do execute
- the destructors for the local scope objects do not

* If the program terminates because of a system call to abort ():
- this indicates a non-recoverable failure and causes immediate program termination

- no destructors execute

3.6. Object duplication

Before we move on to copy constructors, we must discuss some of the concepts related to object
duplication in a program. We clarify the distinction between an object variable declaration and
initialization, and we introduce terminology around the different ways to make copies of objects.

3.6.1. Declaring objects

3.6.1.1. What is an object declaration:

* An object declaration allocates memory for an object and calls its class constructor.

* For example:
- given the object declaration: student matilda;

- this declares a new variable called matilda as an object of the student class, and it calls
the student class default constructor
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3.6.1.2. What is an object initialization:

* An object initialization declares an object variable and initializes it using the values from an

existing object.

* Because the end goal of an initialization is to copy an existing object into a brand new one, an

initialization triggers a call to the copy constructor, as we discuss in the next section.

* For example:

- given the object initialization: student bertha = matilda;

- the compiler converts this initialization to its two parts: (1) it declares a new variable called
bertha as an object of the student class, and (2) it calls the student copy constructor for
object bertha, with matilda as parameter

3.6.1.3. What is an object assignment:

* An object assignment copies one existing object into another existing object. Because an

assignment does not declare a new variable, no constructors are called.

* For example:

- given the object assignment: matilda = bertha;
- this copies the data members of the existing object bertha into the existing object matilda

- it’'s important to remember that any data previously stored in the matilda object are over-
written by an assignment operation

- the assignment operation copies data members from one object to another, like the copy
constructor does, but it's considered a different operation because no new object is created

Q NOTE: In C++, the equal symbol (=) in an initialization is not an assignment operation. It

is a construction operation. The two have different meanings, and two different member
functions are called.

3.6.2. Depth of object duplication

3.6.2.1. Depths of copies

A key concept when duplicating objects is how deeply the copying should go.
A deep copy duplicates an object to its full depth, whereas a shallow copy does not.

It's important to note that there is no universally good or bad way to create copies. In some
situations, a deep copy is required, and in other cases, a shallow copy makes more sense.

3.6.2.2. What is a deep copy:

A deep copy of an object, or a pointer to an object, creates a full duplicate, including copies
of all its data members and containee objects, and their containee objects, and so on, all the
way to the deepest containee object.

At every level, if a data member is a primitive data type, then its value is copied.
If a data member is an object, then that object and all its containees are fully duplicated.

If the data member is a pointer, then a duplicate of the pointee and all its containees must be
allocated and initialized.
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3.6.2.3. What is a shallow copy:
* Ashallow copy creates a duplicate of an object, only based on the data type of its members.
* |f a data member is a primitive data type, then its value is copied.

* |If a data member is an object, then that object is copied.

If the data member is a pointer, then only the pointer itself is copied, and not the pointee.
This results in two pointers with the same pointee.

NOTE: Shallow copies create havoc when cleaning up objects that have dynamically
allocated containees. If there are multiple pointers to a containee, the code must en-
sure that only one container object deallocates that containee. If a container destructor
cleans up a containee that is still in use, then all the other pointers to that same con-
tainee will be pointing to memory that is no longer allocated. These are called dangling
references, and they usually result in a segmentation fault and program crash.

3.6.2.4. What is member-wise assignment:
* Another term for the shallow copy of an object is member-wise assignment.

* If a class developer does not implement the class’s copy constructor or its overloaded as-
signment operator, the compiler automatically provides an implementation that performs
member-wise assignment.

* |If the class developer requires a deeper copy for those operations, they must provide their
own implementations. Copy constructors are discussed in the next section, and overloaded
operators in chapter 12.

3.7. Copy constructors

Copy constructors are a special type of constructor that can be called explicitly, but can also be
called implicitly in unexpected ways. We discuss the characteristics and uses of copy constructors
and the syntax that can lead to their implicit call.

3.7.1. Concepts

3.7.1.1. Constructors with one parameter
* A constructor that takes one parameter is special.
* It is considered by the compiler to be either a copy constructor or a conversion constructor.

e Conversion constructors are discussed in the next section.

3.7.1.2. What is a copy constructor?

* A copy constructor is a constructor that takes one parameter that is a reference to an object
of the same class.

* A copy constructor cannot take as parameter an object of the same class passed by value, or
passed as a pointer.

* Only one copy constructor can exist for each class.
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3.7.1.3. Characteristics of a copy constructor:
* A copy constructor is a member function of a class.
* |t takes one parameter: a reference to an object of the same class.

* A copy constructor is provided automatically by the compiler, if the class developer does not
implement one:

- the compiler-provided copy constructor is not an empty function, like the provided default
constructor and the destructor

- the provided copy constructor performs member-wise assignment

- in either a deep copy or a shallow copy of an object, the copy constructor of each of its
containee objects is called automatically

* A copy constructor may be called either explicitly or implicitly, depending on the syntax used.
NOTE: Itis critical that we understand what syntax triggers a call to the copy constructor,
so that we understand why our program behaves the way it does.

3.7.1.4. Uses of a copy constructor:
* The job of any constructor is to initialize all the data members of a new object.

* The purpose of a copy constructor is to initialize a new object based on the contents of an
existing object of the same class.

* |t is used for constructing a new object as a copy of an existing one that’s passed in as pa-
rameter.

Q NOTE: Remember that objects have access to all the members of another object of
the same class, even the private ones. When implementing a copy constructor, it is not
necessary to implement getters to access the members of the parameter object. The
copy constructor already has direct access to all the members.

3.7.1.5. Explicit calls to the copy constructor:

* A copy constructor can be called explicitly, with an existing object of the same class as a
constructor parameter.

* For example: student bertha (matilda);

3.7.1.6. Implicit calls to the copy constructor:

* The copy constructor is called implicitly on initialization:
- for example: student bertha = matilda;

* |tis also called implicitly when an object is passed by value as a function parameter.

* In older compilers, the copy constructor could be called implicitly if an object was returned by
value. Newer compilers appear to be better optimized and no longer do this.

* However, we must keep in mind that objects should never be returned or passed as parameter
by value, but always by reference instead.
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3.7.2. Coding example: Copy constructors

1 /% % % & & & K A A A A K A K A ok ok
2 + Filename: Book.h *
R S A T e Y4

4 class Book

51

6 public:

7 Book (int=0, string="Unknown", string="Unknown");
8 Book (const Book&) ;
9 ~Book () ;

10 void print ();

11 private:

12 int id;

13 string title;

14 string author;

15 };

17 /% #* % * % * ok % K % * ok K Kk K K ok
18 « Filename: Book.cc *
19 X ok Ak A Ak A A A A A A A A A A A A

20 Book::Book (int i, string t, string a)

21 {

22 id = iy

23 title = t;

24 author = a;

25 cout<<"-- default ctor, book id: "<< id <<endl;
26 }

28 Book: :Book (const Book& oldBook)

29 {

30 id = oldBook.id;

31 title = oldBook.title;

32 author = oldBook.author;

33 cout<<"-- copy ctor, book id: "<< id <<endl;
34}

36 Book: :~Book ()

37 {

38 cout<<"-- dtor, book id: "<< id <<endl;
39 }

41 void Book::print ()

42 {

43 cout<<"--Book: "<< title <<" by "<<author<<endl;
44 }

45
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AB /* * * h ok ok ok ok ok ok ok ok k Kk K * *
47 # Filename: main.cc *
A8 % ok A A kA ok A A Ak A kA A A A k)
49 void funcl (Book) ;

50 void func2 (Booké&) ;

52 int main ()

53 {
54 cout<<"Declaring and initializing books 1 to 4..."<<endl;
56 Book , "Ender’s Game", "Orson Scott Card");

bl (1
57 Book b2 (2, "Dune", "Frank Herbert");

58 Book b3 (3, "Foundation", "Isaac Asimov");

59 Book b4 (4, "Hitch Hiker’s Guide to the Galaxy", "Douglas Adams");

61 cout << endl << "Printing all books:" << endl;
62 bl.print ();

63 b2.print ();
64 b3.print () ;
65 b4 .print ()

4

67 cout<<endl<<"Declaring book 5..."<<endl;
68 Book bb5;
69 b5.print () ;

71 cout<<endl<<"Assigning book 4 to 5..."<<endl;
72 b5 = b4;
73 b5.print () ;

75 cout<<endl<<"Explicit call to copy constructor..."<<endl;
76 Book b6 (b2);
77 b6.print () ;

79 cout<<endl<<"Declaring and initializing book 7 from book 3..."<<endl;
80 Book b7 = b3;
81 b7.print () ;

83 cout<<endl<<"Calling funcl () ..."<<endl;
84 funcl (bl) ;

86 cout<<endl<<"Calling func2()..."<<endl;
87 func?2 (b2) ;

89 cout << endl;
90 return 0;
91 }

93 void funcl (Book b)
94 {

95 b.print () ;

96 }

98 void func2 (Booké& Db)
99 ({

100 b.print () ;

101 }

©Christine Laurendeau Chapter 3. Basic C++ Classes



Terminal — -csh — 80x44

[Don't Panic ==> pé

Declaring and initializing books 1 to &4...
—— default ctor, book id: 1

—— default ctor, book id: 2

—— default ctor, book id: 3

—— default ctor, book id: &

Printing all books:

—-Book: Ender's Game by Orson Scott Card

——Book: Dune by Frank Herbert

—-Book: Foundation by Isaac Asimov

——Book: Hitch Hiker's Guide to the Galaxy by Douglas Adams

Declaring book 5...
—— default ctor, book id: 8
--Book: Unknown by Unknown

Assigning book &4 to 5...
——Book: Hitch Hiker's Guide to the Galaxy by Douglas Adams

Explicit call to copy constructor...
—— copy ctor, book id: 2
——Book: Dune by Frank Herbert

Declaring and initializing book 7 from book 3...
—— copy ctor, book id: 3
—-Book: Foundation by Isaac Asimov

Calling funcl()...

—— copy ctor, book id: 1

——Book: Ender's Game by Orson Scott Card
—-= dtor, book id: 1

Calling func2()...
——Book: Dune by Frank Herbert

dtor, book id:
dtor, book id:
dtor, book id:
dtor, book id:
dtor, book id:
dtor, book id:
dtor, book id:
Don't Panic ==> J§

Program-3.6: Copy constructors

Program purpose:

. demonstrates how the copy constructor is called both explicitly and implicitly.

* The program output shows when an object is created using the default constructor, when
one is created with the copy constructor, and when one is destroyed, based on the printed
debugging statements.
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Lines 4-15:
* These lines show the Book class definition.
* Lines 12-14 declare three data members: the book id, title, and author.
* Line 8 shows the copy constructor prototype inside the class definition.

Lines 28-34:

* These lines show the implementation of the Book class’s copy constructor.

* On lines 30-32, the data members of the newly created book are assigned the values from
the existing o1dBook object that’'s passed in as parameter.

* Because the copy constructor is a member function of the Book class, it is permitted to access
all the members of another Book object like o1dBook. No getters are necessary.

Lines 56-59:

* These lines declare four Book objects as local variables in the main () function, and they call
the default constructor with different values for each one.

Line 68:

* This line demonstrates a simple object declaration, with a call to the default constructor.

Line 72:

* This line shows an assignment operation, where the values of object b4 are copied into b5.
* No constructor is called on this line.

Line 76:

* This line demonstrates an explicit call to the copy constructor.
* A new Book oObject b6 is allocated and initialized with the values from existing object b2.

Line 80:

* This line contains an initialization, which triggers an implicit call to the copy constructor.
* A new Book object b7 is allocated and initialized with the values from existing object b3.

Lines 84 and 93-96:

* Line 84 demonstrates a call to function func1 (), with object b1 as parameter.

* The function prototype on line 93 shows that the parameter is a Book object, and not a
reference or a pointer, so the object is passed by value.

* Because the parameter object is passed by value, line 84 triggers an implicit call to the copy
constructor. The parameter object b is allocated and initialized using the values from existing
object b1.

* The program output shows that parameter object b is destroyed when func1 () returns, since
the parameter has block scope within the function.

Lines 87 and 98-101:

* Line 87 demonstrates a call to function func2 (), with object b2 as parameter.

* The function prototype on line 98 shows that the parameter is a Book reference, and not an
object, so the object is passed by reference.

* Because the parameter object is passed by reference, line 87 does not result in the creation
of a new object, so no constructors are called. As a Book reference, the identifier b becomes
an alias for the existing object b2.
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3.8. Conversion constructors

Like copy constructors, conversion constructors are one-parameter constructors that can be
called either explicitly or implicitly. We discuss the characteristics and uses of conversion con-
structors and the syntax that can lead to their implicit call.

3.8.1. Concepts

3.8.1.1. What is a conversion constructor?

* A conversion constructor is a constructor that takes one parameter that is not a reference to
an object of the same class.

* Any number of conversion constructors can exist for each class, as long as their parameter
are of different data types.

3.8.1.2. Characteristics of a conversion constructor:
e A conversion constructor is a member function of a class.
* |t takes one parameter, of a data type that is not a reference to an object of the same class.

* It may be called either explicitly or implicitly, depending on the syntax used.

3.8.1.3. Uses of conversion constructors:
* The job of any constructor is to initialize all the data members of a new object.

* The purpose of a conversion constructor is to initialize a new object based on the contents of
an existing variable of a different data type. This data type could be any primitive or aggregate
type, including an object.

* |Its usage is highly dependent on the nature of both the class and the parameter data type.
Not every class can be (or should be) instantiated using data from a different data type.

3.8.1.4. Issues with conversion constructors:

* Unfortunately, many simple syntax errors can accidentally trigger an implicit call to a conver-
sion constructor. For this reason, conversion constructors are considered risky.

* The explicit keyword should be used when defining a conversion constructor in its class
definition. This keyword disables all implicit calls to the conversion constructor and allows
only explicit calls.

3.8.1.5. Explicit calls to the conversion constructor:

* A conversion constructor can be called explicitly, with an existing variable of a different data
type as a constructor parameter.

* For example: Book bl; Movie ml (bl);

3.8.1.6. Implicit calls to the conversion constructor:

* A conversion constructor is called implicitly when the syntax expects an instance of the class,
but instead is given a variable of a data type matching the conversion constructor parameter.

* For example, the conversion constructor can be called implicitly on initialization:
- for example: Book bl; Movie ml = bl;

* |t is also called implicitly when a function expects an object of the class as a parameter, but
the calling function instead uses a variable of a data type matching the conversion constructor
parameter.

©Christine Laurendeau Chapter 3. Basic C++ Classes 74



3.8.2. Coding example: Conversion constructors

1 /% % % & & & K A A A A K A K A ok ok

O© 00N O U A WN

e R e B e R
O Ul WN KK O

18
19
20
21
22
23
24
25
26
27

29
30
31
32
33
34
35

37
38
39
40

42
43
44
45
46

* Filename: Movie.h *

*****************/

class Movie

{

public:
Movie (string="", string="", int=0);
// explicit Movie (Booké&) ;

Movie (Booké&) ;

~Movie () ;

void print();
private:

string title;

string screenwriter;

int duration;

) 8

/*****************

* Filename: Movie.cc *

*****************/

Movie: :Movie (string t, string s, int d)

{

title = t;
screenwriter = s;
duration = d;
cout<<"-- default Movie ctor: "<< title <<endl;

Movie: :Movie (Booké& Db)

{

title = b.getTitle();

screenwriter = b.getAuthor ();

duration = 120;

cout<<"-- conversion Movie ctor: "<< title <<endl;

Movie: :~Movie ()

{

cout<<"-- Movie dtor: "<< title <<endl;

void Movie: :print ()

{

cout<<"-- Movie: "<< title <<" lasting "<< duration<< " minutes"<<endl;
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A7 /% * * h Kk ok ok ok ok ok ok ok k Kk K * *
48 + Filename: main.cc *
49 X A ok A ok Ak A ok A A A A ok A A * A/

50 void func (Movie) ;

52 int main ()

53 {

54 Book bl (l, "Ender’s Game", "Orson Scott Card");

55 Book b2 (2, "Dune", "Frank Herbert");

56 Book b3 (3, "Foundation", "Isaac Asimov");

57 Book b4 (4, "Hitch Hiker’s Guide to the Galaxy", "Douglas Adams");

59 cout<<endl<<"Declaring movie..."<<endl;
60 Movie ml ("Sherlock Holmes", "Johnson et al.", 128);
61 ml.print ();

63 cout<<endl<<"Explicit call to conversion constructor movie from book..."<<endl;
64 Movie m2 (b2);
65 m2.print () ;

67 cout<<endl<<"Declaring and initializing movie from book..."<<endl;
68 Movie m3 = Db3;
69 m3.print () ;

71 cout<<endl<<"Calling func () ..."<<endl;
72 func (bl) ;

74 cout << endl << "End of program" << endl;
75 return 0;
76 }

78 void func (Movie m)
79 {

80 m.print () ;

81 }
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ey & Terminal — ssh access.scs.carleton.ca — 80x32

<theta®l> Don't Panic ==> p7
—— Book default ctor: 1
—— Book default ctor: 2
—— Book default ctor: 3
—— Book default ctor: &

Declaring movie...
—— Movie default ctor: Sherlock Holmes
Movie: Sherlock Holmes by Johnson et al., 128 minutes long

Explicit call to conversion constructor movie from book...
== Movie conv ctor: Dune
Movie: Dune by Frank Herbert, 120 minutes long

Declaring and initializing movie from book...
—— Movie conv ctor: Foundation
Movie: Foundation by Isaac Asimov, 128 minutes long

Calling func()...

—— Movie conv ctor: Ender's Game

Movie: Ender's Game by Orson Scott Card, 120 minutes long
—— Movie dtor: Ender's Game

End of program
—— Movie dtor: Foundation
Movie dtor: Dune
Movie dtor: Sherlock Holmes
Book dtor:
Book dtor:
Book dtor:
—— Book dtor:
<theta®@1> Don't Panic ==> [

&
3
2
1

Program-3.7: Conversion constructors

Program purpose:

. demonstrates how a conversion constructor is called both explicitly and implic-
itly to create a Movie object from an existing Book object.

* The Book class definition and implementation used in this program is identical to
, with getter member functions for the data members.

* The program output shows when an object is created using the default constructor, when one
is created with the conversion constructor, and when one is destroyed, based on the printed
debugging statements.

Lines 4-16:
e These lines show the Movie class definition.
e Lines 13-15 declare three data members: a movie title, screenwriter, and duration in minutes.

* Lines 8-9 show two alternative versions of the conversion constructor prototype, one that
allows only explicit calls, and one that allows both explicit and implicit calls. Both versions
take a Book reference as parameter, allowing for a new Movie object to be initialized based
on an existing Book object.
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Line 8 is commented out but shows the explicit keyword before the conversion construc-
tor prototype. If this line was uncommented, the implicit calls to this constructor would be
disallowed and would generate a compilation error. Only the explicit calls would be allowed.

Line 9 shows the conversion constructor prototype that allows for both explicit and implicit
conversions.

Lines 29-35:

These lines show the implementation of the conversion constructor that initializes a new
Movie object from an existing Book object.

The data members of the newly created Movie object are assigned values from the existing
Book object on lines 31-33.

Because the two are different classes, getter member functions are required in the Book class
for the Movie class to access them.

Lines 52-76:

These lines show the implementation of the main () function.
Line 60 demonstrates a simple Movie object declaration, with a call to the default constructor.

Line 64 shows an explicit call to the conversion constructor, where a new Movie object m2 is
allocated and initialized with the values from the existing Book object b2.

Line 68 shows an initialization, where a new Movie object m3 is allocated and initialized with
the values from an existing Book object b3. This line triggers an implicit call to the conversion
constructor, as we see from the program output.

Line 72 demonstrates a call to function func () implemented on lines 78-81, with Book object
bl as parameter. The function prototype on line 78 shows that the parameter to func () is a
Movie object.

Because func () is expecting a Movie object as parameter, but line 72 is providing a Book
object instead, this triggers an implicit call to the conversion constructor, as we see from the
program output. The Movie parameter object m is allocated and initialized with the values
from the existing Book object b1.
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Chapter 4

Memory Management

Unlike programming languages where memory management choices are predetermined, C/C++
allow the programmer full flexibility in deciding how and where to store data.

On one hand, this requires the programmer to possess a deeper understanding of the trade-
offs between the different memory management options. On the other hand, it places crucial
memory-related design decisions firmly in the hands of those with the best knowledge of program
functionality, the programmers.

4.1. Principles

We review the basic principles of virtual memory and the role of the function call stack and heap
in memory management.

4.1.1. Virtual memory

4.1.1.1. What is virtual memory:

* Virtual memory is the main memory that the OS allocates to a program when it launches, for
the duration of the program’s execution.

* It is called virtual because it does not map to a contiguous area of physical memory. Virtual
memory does appear to be contiguous, but it usually corresponds to multiple separate areas of
physical memory. The OS is responsible for the runtime mapping of virtual to physical memory.

* When a program begins execution, the OS assigns it four areas of virtual memory:

the code segment (also known as the text segment)

the data segment

the function call stack

the heap, which is part of the data segment but is so important that we discuss it separately

4.1.1.2. Code segment:
* The code segment contains the individual program instructions.
* Every instruction has its own unique memory address in the code segment.
* The program control flow usually executes instructions sequentially, except in case of jumps.

* Jump instructions transfer control to an instruction at a specific memory address, for example
in the implementation of a loop, or a function call or return.
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4.1.1.3. Data segment:

* The data segment stores variables with global scope, variables with static storage class, and
literals.

* It also includes the heap, which is discussed below.

4.1.1.4. Function call stack:
* The function call stack stores variables with local scope and automatic storage class.

» But its primary purpose is the management of the function-call-and-return mechanism.

4.1.1.5. Heap:
* The heap stores the dynamically allocated memory, which is memory that is allocated by a
program at runtime.

4.1.2. Function call stack and heap

4.1.2.1. What is the function call stack:

* The function call stack manages the function-call-and-return mechanism during program
execution.

* Like all stacks in computing, it is a data structure that stores elements in a last-in-first-out
(LIFO) manner. Elements are pushed onto the top of a stack when added, and popped from
the top when removed.

* When a function is called, a stack frame is created specifically for that function, and it is
pushed onto the call stack. When the function returns, its stack frame is popped off.

* The top of the call stack, or its latest element, always corresponds to the function currently
executing.

 Example: Let's assume that the main () function calls function foo (), which then calls bar (),
which is currently executing. In this scenario, the bottom stack frame belongs to main (), the
middle frame to foo (), and the top one to bar (). When bar () returns, its stack frame is
popped off the call stack. Control flow returns to foo (), and its stack frame is now at the top
of the call stack.

4.1.2.2. Characteristics of a stack frame:
* A stack frame belongs to a specific function that has been called and has not yet returned.
* It contain all of the function’s local automatic variables, including the function parameters.

* |t also contains the memory address of the next instruction in the calling function where the
control flow must return when the function terminates.

4.1.2.3. What is the heap:
* The heap is the area of program memory used for dynamic allocation.

* Types of memory allocation:
- static memory allocation occurs at compile time by simply declaring a variable

- dynamic memory allocation is performed at runtime by using the new operator in C++

* Dynamic memory allocation is discussed later in this chapter.
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4.2. Pointers

Pointers are a crucial tool for a programmer to fully control how the program memory is used.

4.2.1. Concepts

4.2.1.1. What is a pointer:
* A pointer is a variable that stores a memory address as its value.
* A pointer variable’s value is the address of the first byte of either:
- another existing variable, or

- a block of dynamically allocated memory
» The variable or block that a pointer points to is called the pointee.

* A pointee can be of any data type or any size.

4.2.1.2. Uses of pointers:
* Pointers promote computational and memory efficiency:
- whatever the size of a pointee, a pointer to it always occupies a fixed number of bytes
- because of their fixed size, pointers usually occupy less memory than their pointee

- this is important in preventing the unnecessary copying of data
* Pointers allow a function to make changes to data that is stored in memory outside of the
function’s scope:

- in a correct modular design, helper functions assist in doing portions of the work; in order
for different functions to modify the program’s data, they must be able to access the data;
this can only be done with pointers

- in a real-life system, there is one instance of each unit of data, and multiple functions are
passed in pointers to the data in order to access it

» Pointers help to avoid copying data:

- C++ is notorious for automatically making unnecessary copies of data, either as temporary
copies or multiple instances of the same data

- copies are usually bad! their creation and destruction is a drain on computational resources,
and they increase the chances of putting the program in an inconsistent state

* Pointer use is necessary when working with dynamically allocated memory.

4.2.1.3. Characteristics of pointers:

» Like all variables, pointers have:
- a hame, since all variables must have a unique identifier

a data type, comprised of the data type of the pointee, followed by the asterisk symbol (*)

a value, which is the memory address of the pointee

a location in memory; since a pointer is a variable, it resides in memory at a specific address

for example: charx c; declares a pointer variable with the name ¢, the data type char=«,
an initial value that is garbage because it has not been initialized, and a location in memory
that is chosen by the OS

* If we assume a 64-bit OS, a pointer variable occupies 8 bytes.
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4.2.2. Coding example: Pointers

1 int main ()

2 {

3 char ¢ = "H’;
4 int 1 = 42;
5 int* iptr;

7 cout << "sizes: " << sizeof(c) << " " << sizeof (i) << " " <<
sizeof (iptr) << endl;

9 iptr = &i;

10 cout << "addresses: " << &1 << " " << giptr << endl;
11 cout << "values: " << 1 << " " K< iptr << endl << endl;
13 cout << "two ways to 1i: " << 1 << " " << xiptr << endl;

15 // iptr = 99;
16 *iptr = 99;
17 cout << "new value for i: " << 1 << " " << *iptr << endl;

19 return O;
20 }

Terminal — -esh — 80x32

Don't Panic ==> pl

sizes: 148

addresses: Bx16b58bb664s Bx16b58b658
values: 42 Bx16b58bb664

two ways to i: 42 42
new value for i: 99 99
Don't Panic ==> [J

Program-4.1: Pointers

Program purpose:

. demonstrates a simple example of pointer declaration and usage.

Line 5:

* This line shows the declaration of a pointer variable. The variable name is iptr, its pointee
must be an integer variable, and its initial value is garbage.

Line 7:

* This line prints out the number of bytes occupied by the three variables in this program.

* From the program output, we see that a char takes up 1 byte, an integer is 4 bytes, and a
pointer is 8 bytes.

Lines 9-11:

* Line 9 assigns a value to the iptr variable. This value is the address of the existing integer
variable called i.

* The ampersand (&) on line 9 is the address-of operator. It takes one operand, which is an
existing variable, and it returns the address in memory where the operand variable is located.

* Line 10 prints out the addresses of the i and iptr variables. The two addresses are different
from each other because each variable has its own location in memory.
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* Line 11 prints out the values of the i and iptr variables. From the program output, we see
the value of i is 42, and the value of iptr is the address of variable i.

Line 13:

* This line prints out the value of i in two ways: one by directly accessing variable i, and the
other by following iptr to its pointee value.

* The asterisk (x) on line 13 is the dereferencing operator. It takes one operand, which is a
pointer variable, and it returns the value of the operand’s pointee variable.

Lines 15-17:

* Line 15 is commented out because it’s an error and does not compile on some OSs. It tries to
assign a value of 99 to the iptr variable, which is a pointer. This would result in address 99
being stored. While this line may or may not be flagged by the compiler, if it was accepted,
it would cause a runtime segmentation fault if we used the dereferencing operator to access
its pointee. Address 99 is not valid within our programs.

* Line 16 assigns the value 99 to iptr’s pointee variable, which is i.
* Line 17 prints out the updated value of i using both the variable and its dereferenced pointer.

4.2.3. Pointer operators

4.2.3.1. The address-of operator:

* The ampersand symbol (&) is used as the unary address-of operator to obtain the address of
an existing variable.

* This operator takes one operand, which is a variable, and it returns the address in memory
where the operand variable is located.

* The ampersand symbol is used as a binary operator for a very different purpose, i.e. the
bitwise AND operator.

4.2.3.2. The dereferencing operator:

* The asterisk symbol («) is used as the unary dereferencing operator to obtain the value of a
pointee variable.

* This operator takes one operand, which is a pointer variable, and it returns the value of the
operand’s pointee variable.

* The asterisk symbol is used as a binary operator for a very different purpose, i.e. multiplication.
* A very common cause of runtime segmentation faults is the dereferencing of either a null
pointer or a garbage pointer:
- a null pointer is one that has been initialized and set to a null (zero) value

- a garbage pointer is one that has not been initialized and therefore contains whatever
garbage was in the pointer variable’s memory cell the last time it was used

* When a null or garbage pointer is dereferenced, the program tries to access the value at that
zero or garbage address. Since these are almost never valid addresses in our program, it
crashes with a segmentation fault.

PRO TIP: It is crucial to always initialize our pointer variables, either with valid address

2 or with null, and then check the pointer variable’s value before dereferencing it. We can
easily check a pointer to see if it has a null value and choose to not dereference it, but
there is no way to test for garbage pointers.
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4.2.3.3.

Uses in variable declarations and statements:

* Both the ampersand and the asterisk symbols have a very different meaning if they are used
in a variable declaration or in a regular program statement.

e |n a variable declaration:

- the ampersand symbol (&) declares a C++ reference to an existing variable

- the asterisk symbol («) declares a pointer variable

* In a statement:
- the ampersand symbol (&) serves as the unary address-of operator

- the asterisk symbol («) represents the unary dereferencing operator

* The two uses are independent from each other and are unrelated.

4.2.3.4.
* Pass-by-value makes a copy of a variable value and does not use the variable’s address.

Parameter passing:

* Pass-by-reference in C++ may be done in two ways:

- pass-by-reference by reference: an alias is created inside the called function for an existing
variable

- pass-by-reference by pointer: the address of an existing variable is passed by the calling
function to the called function

4.2.4. Coding example: Pass-by-reference using pointers and references

1
2 {
3
4

O 0 N O

10

12
13
14
15

17
18 }

int main ()

bool inputOk = false;
int num, resultl, result2;

while (!inputOk) {
cout << "Please enter a number between 0 and 100: ";
cin >> num;
inputOk = checkNum (num) ;

doubleNum (num, resultl);

doubleNum (num, &result2);

cout<<"Result 1: " << resultl << endl;
cout<<"Result 2: " << result2 << endl;

return 0;

20 void doubleNum(int n, inté& res)

21 {
22
23
24 }

cout << "inside pass-by-reference by reference" << endl;
res = n % 2;

26 void doubleNum(int n, int* res)

27 |
28
29
30 }
31

cout << "inside pass-by-reference by pointer" << endl;
*res = n * 2;
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32 bool checkNum(int n)

33 {
34 return ( n>=0 && n<=100);
35 }
[ XN | Terminal — -csh — 80x24

Don't Panic ==> p2

Please enter a number between 8 and 188: 222
Please enter a number between 8 and 188: 77
inside pass-by-reference by reference

inside pass-by-reference by pointer
Result 1: 154

Result 2: 154

Don't Panic ==> [

Program-4.2: Pass-by-reference using pointers and references

Program purpose:

* Program-4.2 is a variation of Program-2.6, but with two versions of the doubleNum () function.

* One version of doubleNum () passes the result parameter by reference by reference, and the
other passes it by reference by pointer.

Lines 20 and 26:

* These lines show the function prototypes of the two versions of the doubleNum () function.

* Both versions take the number to be doubled as input parameter and the result as the output
parameter. The implementation that begins on line 20 passes the output parameter using a
reference, and the one starting on line 26 uses a pointer.

Lines 12-13:

e These lines show the two calls to doubleNum().

* Line 12 passes the result parameter as a reference, so no operator is required for the resultl
variable.

* Line 13 passes the result parameter as a pointer, so the address-of operator must be used
to pass the address of the result2 variable.

Lines 20-24:

* These lines show the doubleNum () function that takes the result parameter as a reference.

* When main () calls this function on line 12, the output parameter res becomes an alias for
the result1 variable declared in main ().

* Line 23 sets the result to the updated value and does not need any pointer operators to do so.
Because res is an alias and not a separate variable, modifying it on line 23 directly modifies
the result1 variable in main ().

Lines 26-30:

* These lines implement the doubleNum () function that takes the result parameter as a pointer.

* When main () calls this function on line 13, it uses the address-of operator to initialize the
value of the output parameter res with the address of the result2 variable. So the pointer
variable res is assigned as pointee the result2 variable declared in main ().

* Line 29 sets the result to the updated value. By dereferencing the res parameter, this line
ensures that the value of its pointee result2 is modified.
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FUNCTION CALL STACK

doubleNum (int,inté&

FUNCTION CALL STACK

doubleNum(int, int*

Loz ] |

n res n res
main () main ()
|77| |154| | I |77| | | |154|
num resultl result2 num resultl result2
inputOk inputOk

(a) Result parameter as a reference (b) Result parameter as a pointer

Figure-4.1: Program-4.2 call stack and heap

Program memory:

* Figure-4.1 shows the contents of the function call stack during a call to each version of the
doubleNum () function in Program-4.2.

* In the stack frames shown in Figure-4.1a, we see that resultl is passed to doubleNum ()
as a reference, which means that no separate variable is created for that parameter in
doubleNum (). As a reference, res is simply an alias for the existing variable result1 de-
clared in main ().

* In the stack frames shown in Figure-4.1b, we see that result2 is passed to doubleNum() as
a pointer. This means that parameter res is a separate variable in the doubleNum () stack
frame, and its pointee is the existing variable result2 declared in main ().

4.3. Memory allocation

We discuss statically and dynamically allocated memory in C++ programming, as well as the
issue of memory leaks.

4.3.1. Concepts

4.3.1.1. What is memory allocation?
» Memory allocation is the reserving of a specific number of bytes in program memory.
* The number of bytes reserved is based on the data type.

* This allocation may be known at compile time, which is known as static allocation, or it may
be performed at runtime, as dynamic allocation.

4.3.1.2. Static memory allocation:
» With static allocation, the number of bytes reserved is known at compile time.
* These bytes are usually stored in the function call stack.
* The use of the word static in this context is unrelated to storage class.

» Statically allocated variables include local variables and parameters.

We statically allocate memory by simply declaring a variable, for example int x;
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4.3.1.3. Dynamic memory allocation:

* With dynamic allocation, the number of bytes reserved is only known at runtime, during the
program’s execution.

* These bytes are always stored in the heap.

* Memory is dynamically allocated in C++ by using the new operator, and it is explicitly deallo-
cated with the delete operator.

* Failing to explicitly deallocate dynamically allocated memory will result in a memory leak,
which is discussed later in this section.

NOTE: All program memory is returned to the OS when the program terminates, so the
reader may wonder why bother with explicit deallocation. The reality is that most real-
life production-grade software is meant to continue executing for days, or months, or even
years without terminating. Any memory leak would accumulate over time, and it would
eventually cause the program to crash when it runs out of virtual memory. It is considered
best practice for programs to clean up after themselves and deallocate memory when it’s
no longer needed.

4.3.2. Coding example: Dynamic memory allocation

1 #define MAX_ARR 4

3 int main ()
4 {

5 int* pl;
6 pl = new int;

7 *pl = 56;

8 cout << "Value at pl: " << xpl << endl;

10 int* p2 = new int (87);
11 cout << "Value at p2: " << xp2 << endl;

13 cout << "Deallocating pl and p2" << endl << endl;
14 delete pl;
15 delete p2;

17 int* p3 = new int [MAX_ ARR];
18 for (int i=0; i<MAX_ARR; i++) {

19 p3[1i] = (1i+1) = 2;

20 }

22 cout << "Array values: ";

23 for (int i=0; i<MAX_ARR; i++) {
24 cout << p3[i] << " ",

25 }

26 cout << endl;

28 cout << "Deallocating array" << endl;
29 delete [] p3;

31 return O;
32 }
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& Terminal — ssh access.scs.carleton.ca — 80x24

<theta®l> Don't Panic ==> valgrind p3

==757427== Memcheck, a memory error detector

==757427== Copyright (C) 2882-2817, and GNU GPL'd, by Julian Seward et al.
==757427== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info
==757427== Command: p3

==7857427==

Value at pl: 5é

Value at p2: 87

Deallocating pl and p2

Array values: 2 4 6 8

Deallocating array

==757427==

==757427== HEAP SUMMARY:

==757427== in use at exit: ® bytes in 8 blocks

==757427== total heap usage: 5 allocs, 5 frees, 73,752 bytes allocated
==757427==

==757427== All heap blocks were freed -- no leaks are possible
==757427==

==757427== For lists of detected and suppressed errors, rerun with: -s
==757427== ERROR SUMMARY: ® errors from @ contexts (suppressed: @ from @)
<theta®l> Don't Panic ==> [J

Program-4.3: Dynamic memory allocation

Program purpose:

demonstrates the use of dynamic memory allocation and the corresponding
deallocation, with integers and an array.

Lines 5-8:

These lines show the dynamic allocation of a single integer, its initialization, and printing.

Line 5 declares an integer pointer variable p1, but does not initialize it. This means that the
pointer value is garbage at this point.

Line 6 uses the new operator to dynamically allocate an integer (4 bytes) in the heap. This
operator returns a pointer to the newly allocated bytes in the heap, and this address is stored
in variable p1.

Line 7 uses the dereferencing operator to change the value of the new integer in the heap
from garbage to the value 56.

Line 8 also uses the dereferencing operator, this time to print the value 56 stored in the heap.

Lines 10-11:

These lines show the dynamic allocation and initialization of a single integer, and its printing.

Line 10 uses the new operator to dynamically allocate an integer in the heap and store its
address in variable p2. This line also initializes the new value in the heap to 87.

We notice that on line 10, the syntax uses parentheses to initialize the newly allocated in-
teger, in a very similar fashion to a copy constructor. Even though integers are a primitive
data type, C++ reuses the same syntax for language consistency.

Lines 14-15:

These lines show the explicit deallocation of the memory that we have dynamically allocated
so far, using the delete operator.

Without this explicit deallocation, the memory would remain reserved, and our program
would have a memory leak.
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Lines 17-20:

* These lines show the dynamic allocation of an array of integers, its initialization, and printing.

* Line 17 uses the new operator to dynamically allocate an array of four integers (16 bytes) as
a single contiguous block in the heap. This operator returns a pointer to the first element of
the array in the heap, and this address is stored in variable p3.

* It's important to note the syntactic differences between lines 10 and 17. Line 10 uses the new
operator and parentheses to allocate and initialize a single integer. Line 17 uses the same
operator and square brackets to allocate an array of integers.

* Lines 18-20 initialize the array elements to even numbers. Line 19 uses the subscript operator
(1) to access each individual element, just like any array.

Line 29:

* This line shows the explicit deallocation of the dynamically allocated array, using the delete
operator.

* Because we are deallocating an entire array, and not a single object or variable, we must use
the empty square brackets with the delete operator.

* Failing to use the empty square brackets when deallocating an array may result in unpre-
dictable program behaviour.

@ NOTE: It is crucial to note that we are responsible for the explicit deallocation of our dy-

namically allocated memory only! Statically allocated memory is stored in the function call
stack, and this memory is automatically deallocated when the stack frame containing it is
popped off the function call stack. Attempting to explicitly deallocate statically allocated
memory will result in a program crash.

HEAP FUNCTION CALL STACK

|$|4|6|8|

Figure-4.2: Program-4.3 call stack and heap

Program memory:

* Figure-4.2 shows the contents of both the function call stack and the heap during the execu-
tion of Program-4.3, before any memory is deallocated.

* In the function call stack, we see that the three pointer variables p1, p2, and p3 are stored in
the main () function’s stack frame.

* In the heap, we see the three blocks of dynamically allocated memory. Each one is a pointee
of a pointer variable stored in the function call stack.
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4.3.3. Memory leaks

4.3.3.1. What is a memory leak:

» Amemory leak is a block of memory in the heap that was dynamically allocated by a program,
but the program no longer has any pointers to it.

* There are two serious issues with a memory leak:
- the data inside the memory block is lost because it can no longer be accessed
- the memory block can never be explicitly deallocated

* In long-lived programs like most production-grade software, the memory leaks accumulate
until there is no remaining virtual memory. When this happens, the program crashes.

* Memory leaks are not possible with statically allocated memory, because that type of memory
is automatically deallocated when a stack frame is popped off the function call stack.

4.3.3.2. Possible causes of memory leaks:

* A memory leak may occur if a pointer into the heap gets clobbered, i.e. accidentally overwrit-
ten, by the program.

* It may also happen when a pointer variable moves out of scope. For example, if a function
stores a pointer into the heap as a local variable, it must either deallocate the block or return
the pointer to the calling function. If the only pointer to a dynamically allocated block is a
local variable in a stack frame, a memory leak occurs when the stack frame is popped off the
function call stack,

4.3.3.3. Why are memory leaks a problem:
* A memory leak means that access to the data is permanently lost by the program.

* The program may also run out of heap space:
- only a finite amount of heap space is allocated to every program

- once dynamically allocated, a memory block stays reserved until either it is deallocated, or
the program terminates

- for long-running programs, a memory leak accumulates over time until heap space runs out

- the development of professional software must entail planning for execution durations of
months or years

4.3.3.4. How do we prevent memory leaks:

* Our programs must always explicitly deallocate dynamically allocated memory as soon as it
is no longer required. The valgrind utility in Linux can assist in finding memory leaks.

* |f a function is tasked with dynamically allocating some memory, the programmer must make
sure that pointers to the allocated blocks are passed by reference:

- passing pointers by reference requires the use of double pointers
- a double pointer is a pointer variable whose value is the address of another pointer variable

* We must make sure that our code never clobbers pointers into the heap.

4.3.3.5. What is garbage collection:

* Garbage collection is an automated mechanism that frees dynamically allocated memory
blocks that no longer have any pointers to them.

* |In order to support the development of real-time applications and give programmers full con-
trol, C and C++ do not perform garbage collection, hence the risk of memory leaks.
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4.3.4. Dynamic allocation of objects

4.3.4.1. How are objects allocated:

e Static allocation:

- objects are allocated statically with a simple declaration, as we saw in Program-3.1, on lines
37-38

- statically allocated objects are stored entirely in the function call stack, in the declaring
function’s stack frame

* Dynamic allocation:
- objects are allocated dynamically using the new operator
- dynamically allocated objects are stored entirely in the heap

* Whether an object is allocated statically or dynamically, its constructor is called automatically
on allocation.

» Constructor parameters may be specified, otherwise the default constructor executes.

4.3.4.2. How are objects deallocated:
» Statically allocated objects:
- objects that are allocated statically do not require explicit deallocation

- they are deallocated automatically when the stack frame that contains them is popped off
the function call stack

* Dynamically allocated objects:

- objects that are allocated dynamically must be deallocated using the delete operator, oth-
erwise they cause a memory leak

* Whether an object is allocated statically or dynamically, its destructor is called automatically
on deallocation.

4.3.4.3. Dynamically allocated containees:

* Classes that have dynamically allocated objects as containees must be implemented carefully
in order to avoid memory leaks.

* These container classes should always provide:
- a copy constructor that performs a deep copy, if needed
- a destructor that explicitly deallocates the containee objects
- an overloaded assignment operator (=) that performs a deep copy, if needed

* By default, copy constructors and assignment operators both use member-wise assignment,
which only performs a shallow copy.
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4.3.5. Coding example: Dynamic allocation of objects

int main ()

{
cout << "Allocating single objects..." << endl;
Datex dl = new Date;
Datex d2 = new Date (23, 2);

cout << endl << "Printing dl: ";
dl->print () ;
cout << "Printing d2: ";

d2->print () ;

cout<<endl<<"Allocating array of objects..."<<endl;
Date*x arr = new Date[MAX_ARR_SIZE];

arr[0] .setDate (11, 11, 2011);

arr[1l].setDate (12, 12, 2012);

cout << endl << "Printing arr[Q0]: ";

arr[0] .print () ;

cout << "Printing arr[1l]: &
arr[1l] .print () ;

cout<<endl<<"Deallocating single objects..."<<endl;
delete dil;

delete d2;

cout<<endl<<"Deallocating array of objects..."<<endl;

delete [] arr;
return O;

Terminal — -csh — 80x25

(Don't Panic ==> p&4
Allocating single objects...
—- Date ctor: 2006-88-80

-- Date ctor: 2086-82-23

Printing dl1: 20806-98-08
Printing d2: 28086-82-23

Allocating array of objects...
-— Date ctor: 2900-00-00
== Date ctor: 2006-80-88
== Date ctor: 2000-00-88

Printing arr[8]: 2611-11-11
Printing arr[1]: 2612-12-12

Deallocating single objects...
—-- Date dtor: Zeee-08-88
-- Date dtor: 2Zeee-e2-23

Deallocating array of objects...
-— Date dtor: Z990-08-88

-— Date dtor: 2e12-12-12

-— Date dtor: 2011-11-11

Don't Panic ==>

Program-4.4: Dynamic allocation of objects
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Program purpose:

* Program-4.4 demonstrates the dynamic memory allocation of individual Date objects and an
array of objects, as well as the corresponding deallocation.

* The Date class used in this program is identical to Program-3.4, with the addition of a de-
structor that prints out a debugging message. We assume that the preprocessor constant
MAX_ARR_SIZE is defined as 3.

Lines 5-12:

* Line 4 shows the dynamic allocation of a single Date object. Since no parameter values are
specified, the constructor is called with default values. A pointer to the new object in the
heap is stored in local pointer variable d1.

* Line 5 shows the dynamic allocation of another single pate object and a call to its default
constructor with provided parameter values. A pointer to the new object is stored in local
pointer variable d2.

* Lines 8 and 10 call the printing member function for each new pDate object. Since d1 and d2
are pointers to objects, and not actual objects, their members must be accessed using the
arrow operator (->), instead of the dot operator.

Lines 12-19:

* Line 13 shows the dynamic allocation of an array of three pate objects and a call to the
default constructor for each element in the array. A pointer to the new array in the heap is
stored in local pointer variable arr.

* Lines 14-15 show calls to the setter member function for the first two elements of the ar-
ray. Since each element in the array is an actual object, and not a pointer to an object, its
members must be accessed using the dot operator, instead of the arrow operator.

* Lines 17 and 19 show calls to the printing member function for those same objects.

Lines 21-26:
* Lines 22-23 show the deallocation of both single objects.
* Line 26 deallocates the entire array.

Program execution:
* We see from the program output that the constructor is called when each individual pate
object is created.

* The constructor is also called three times when the array is allocated, in order to initialize
each array element with default values.

* When the individual objects are deallocated on lines 22-23, we see from the output that the
destructor is called for each object.

* When the array is deallocated on line 26, the destructor is called for each element of the
array, in the reverse order of construction.

Program memory:
* Figure-4.3 shows the contents of both the function call stack and the heap during the execu-
tion of Program-4.4, before any memory is deallocated.

* In the function call stack, we see that the three pointer variables d1, d2, and arr are stored
in the main () function’s stack frame.

* In the heap, we see the three blocks of dynamically allocated memory. Each one is a pointee
of a pointer variable stored in the function call stack.

* We also note that there are no pate objects in the function call stack in this program. All the
Date Objects are dynamically allocated in the heap.
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FUNCTION CALL STACK

main ()
day: 0
month: 0 |€ —{ @ |
year: 2000 di
day: 23
month: 2 |€ = ‘@S] I
year: 2000 d2
day: 11 | day: 12 | day: 0
month: 11 | month: 12 | month: 0
year: 2011 |year: 2012 |year: 2000 _El
1‘ arr

Figure-4.3: Program-4.4 call stack and heap

4.4. Dynamic arrays

We discuss the four different ways in which objects may be stored in arrays in C++ programs. We
demonstrate the syntax for the allocation and deallocation of each type of array and its elements.

4.4.1. Types of arrays

4.4.1.1. Types of array allocation:
* Arrays in C++ can be either statically allocated or dynamically allocated.
* With statically allocated arrays, the array itself is stored in the function call stack.

* With dynamically allocated arrays, the array is stored in the heap.

4.4.1.2. Types of array elements:
* Arrays can contain either data, as objects or primitive values, or pointers to data.
* If an array stores data, the memory for that data is automatically allocated with the array.

* If an array stores pointers to data, the memory for that data must be allocated separately
from the array.

4.4.1.3. Options for storing data in an array:

* There are four ways to store data in an array:
in a statically allocated array of objects

in a statically allocated array of object pointers

in a dynamically allocated array of objects

in a dynamically allocated array of object pointers
* Each of the four types of array is stored differently in the function call stack and the heap.

* Each type of array has different allocation and deallocation requirements.
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4.4.2. Coding example: Statically allocated array of objects

1 #define MAX_ARR_SIZE 3

3 cout << "Statically allocated array of Date objects" << endl;

4 Date arrl[MAX_ARR];

6 arrl[0] .setDate(1,1,1911);

7 arrl[l] .setDhate(2,2,1922);

8 arrl[0] .print () ;

9 arrl[1l] .print ();

11 cout << endl << "-- end of program" << endl;
12 return O;

13

o

Terminal — -csh — 80x43

.

Don't Panic ==> p5

Statically allocated array of Date objects
—- Date ctor: 2060-806-806

—— Date ctor: 28886-866-88

—— Date ctor: 2888-86-88

1911-61-01

1922-82-82

end of program

Date dtor: 2060-80-88

Date dtor: 1922-82-82
—— Date dtor: 1911-81-81
Don't Panic ==>

Program-4.5: Statically allocated array of objects

Partial program purpose:

» Partial uses the same pate class as to show how a statically allo-
cated array of objects is allocated and used.

* Because the entire array and its elements are statically allocated, they are stored in the
function call stack. As a result, they do not require explicit deallocation.

Line 4:

* This line shows the allocation of the array and its object elements. We see from the program
output that this line results in three calls to the pate default constructor, once for each
element in the array.

Lines 6-7:

* These lines initialize the first two elements of the array with specific values.
* The third element keeps the default values assigned by the constructor.

Lines 8-9:
* These lines print the first two elements of the array.

* Because each element is an object, and not a pointer, the dot operator is used to call the
printing member function.
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Line 12:

* We see from the program output that all three Date elements in the array are deallocated at
the end of the program, when the main () function’s stack frame is popped off the function
call stack. When the array is deallocated, the destructor is automatically called for each pate
object element.

HEAP FUNCTION CALL STACK
main ()
day: 1| day: 2 | day: 0
month: 1 | month: 2 |month: 0
year: 1911 |year: 1922 |year: 2000
arrl
Figure-4.4: call stack and heap
Program memory:
. shows the contents of both the function call stack and the heap during the execu-
tion of partial , before any memory is deallocated.

* Inthe function call stack, we see that the entire array arr1, including its Date object elements,
is stored in main ()’s stack frame.

* There is nothing in the heap, because no memory is dynamically allocated in this example.

4.4.3. Coding example: Statically allocated array of object pointers

1 cout << "Statically allocated array of Date object pointers"<<endl;
2 Datex arr2 [MAX_ARR];

4 Date* dtl = new Date(3,3,1933);

5 arr2[0] = dtl;

6 arr2[1l] = new Date(4,4,1944);

7 arr2[0]->print () ;

8 arr2[1]->print () ;

10 cout << "... deallocating arr2 elements" << endl;

11 delete arr2[0];
12 delete arr2([1l];

Statically allocated array of Date object pointers
—— Date ctor: 1933-83-83

—— Date ctor: 1944-04-04

1933-83-83

1944-B4-B4

... deallocating arr2 elements
—- Date dtor: 1933-83-83

—- Date dtor: 1944-04-084

Program-4.6: Statically allocated array of object pointers
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Partial program purpose:

» Partial Program-4.6 shows how a statically allocated array of object pointers is allocated,
used, and deallocated.

* Because the array itself is statically allocated, it is stored in the function call stack. As a
result, it does not require explicit deallocation.

* But because the array elements point to dynamically allocated Date objects, these objects
are stored in the heap and must be explicitly deallocated.

Line 2:

* This line shows the static allocation of the array of bate pointers.

* We see from the program output that this line does not result in any calls to the Date de-
fault constructor, because no Date objects are created on this line. The array elements are
pointers, which are a primitive data type and not objects.

Lines 4 and 6:

* These lines show the dynamic allocation of two Date objects.

* We see from the program output that these lines do result in a call to the bate constructor.
Lines 5-6:

* These lines initialize the first two elements of the array with pointer values.

* The third element keeps its garbage value, because it has not been initialized.

Lines 7-8:
* These lines print the first two elements of the array.

* Because each element is a pointer, and not an object, the arrow operator is used to call the
printing member function.

Lines 11-12:

* These lines deallocate the two dynamically allocated pate objects, and we see from the
program output that the pate destructor is called for each object.

* The array itself is deallocated at the end of the program, when the main () function’s stack
frame is popped off the function call stack.

HEAP

FUNCTION CALL STACK

main ()

day: 4

month: 4 |€ |

year: 1944

—ttele] x|

- 2 arr2
ay:
month: 3 |€ \
year: 1933

Figure-4.5: Program-4.6 call stack and heap
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Program memory:

. shows the contents of both the function call stack and the heap during the execu-
tion of partial , before any memory is deallocated.

* In the function call stack, we see that the array of pointers arr2 is stored in main ()’s stack
frame. We also note that there are no pate objects in the call stack in this partial program.

* In the heap, we see the two dynamically allocated Date objects. Each one is a pointee of a
pointer element of arr2, which is stored in the function call stack.

4.4.4. Coding example: Dynamically allocated array of objects

1 cout << "Dynamically allocated array of Date objects" << endl;
Datex arr3;
arr3 = new Date[MAX_ARR];

5 arr3[0] .setDate (5,5,1955);

6 arr3[1l] .setDate (6,6,19660);

7 arr3[0] .print () ;

8 arr3[1l] .print ();

10 cout << "... deallocating arr3" << endl;
11 delete [] arr3;

Dynamically allocated array of Date objects
—— Date ctor: 2000-08-88

—- Date ctor: Z2008-08-08

—- Date ctor: 20066-00-80

1955-85-85

1966—-86-86

. deallocating arr3
—— Date dtor: 2000-80-88
—— Date dtor: 1966-86-86
—— Date dtor: 1955-85-85

Program-4.7: Dynamically allocated array of objects

Partial program purpose:

* Partial shows how a dynamically allocated array of objects is allocated, used,
and deallocated.

* Because the entire array and its elements are dynamically allocated, they are stored in the
heap. As a result, they do require explicit deallocation.
Lines 2-3:

* These lines show the declaration and dynamic allocation of the array and its objects.

* We see from the program output that line 3 results in three calls to the pate default construc-
tor, once for each element in the array.

Lines 5-6:
* These lines initialize the first two elements of the array with specific values.
* The third element keeps the default values assigned by the constructor.
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Lines 7-8:
* These lines print the first two elements of the array.

* Because each element is an object, and not a pointer, the dot operator is used to call the
printing member function.

Line 11:

* This line deallocates the dynamically allocated array, including the pDate objects that are
stored directly inside the array.

* We see that the pate destructor is automatically called for each object element stored in the
array.

Program memory:

* Figure-4.6 shows the contents of both the function call stack and the heap during the execu-
tion of partial Program-4.7, before any memory is deallocated.

* In the function call stack, we see that the single pointer arr3 is stored in main ()’s stack
frame. We also note that there is no array and there are no pate objects in the call stack in
this partial program.

* Inthe heap, we see the entire dynamically allocated array, including its bate object elements.
The array is a pointee of pointer variable arr3, which is stored in the function call stack.

HEAP

FUNCTION CALL STACK

main

[+]

arr3

\ 4
day: 5| day: 6 | day: 0
month: 5 |month: 6 | month: 0
year: 1955 |year: 1966 |year: 2000

Figure-4.6: Program-4.7 call stack and heap

4.4.5. Coding example: Dynamically allocated array of object pointers

1 cout<<"Dynamically allocated array of Date object pointers"<<endl;
2 Datex* arré4;

arr4d = new Datex [MAX_ ARR];

5 Datex dt2 = new Date(7,7,1977);

6 arrd [0] = dt2;

7 arr4[1l] = new Date(8,8,1988);

8 arrd [0] —>print () ;

9 arrd[l]->print();

11 cout << "... deallocating arr4 elements" << endl;

12 delete arr4([0];
13 delete arr4[1l];

14 cout << "... deallocating arr4d" << endl;
15 delete [] arr4;
16
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Dynamically allocated array of Date object pointers
—- Date ctor: 1977-87-87

—— Date ctor: 1988-988-88

1977-87-87

1988-88-88

. deallocating arr4 elements
-- Date dtor: 1977-87-87
-- Date dtor: 1988-88-88

. deallocating arr4

Program-4.8: Dynamically allocated array of object pointers

Partial program purpose:

» Partial Program-4.8 shows how a dynamically allocated array of object pointers is allocated,
used, and deallocated.

* Because both the array and its elements are dynamically allocated, they are stored in the
heap. As a result, they do require explicit deallocation.

Lines 2-3:
* These lines show the declaration and dynamic allocation of the array only.

* We see from the program output that this line does not result in any calls to the pate default
constructor, because no bDate objects are created on these lines. The array elements are
pointers, which are a primitive data type and not objects.

Lines 5 and 7:

* These lines show the dynamic allocation of two Date objects.
* We see from the program output that these lines do result in a call to the bate constructor.

Lines 6-7:
* These lines initialize the first two elements of the array with pointer values.
* The third element keeps its garbage value, because it has not been initialized.

Lines 8-9:
* These lines print the first two elements of the array.

* Because each element is a pointer, and not an object, the arrow operator is used to call the
printing member function.

Lines 11-15:

* Lines 12-13 deallocate the two dynamically allocated pate objects, and we see from the
program output that the pate destructor is called for each object.

* Line 15 deallocates the array itself.

Program memory:

* Figure-4.7 shows the contents of both the function call stack and the heap during the execu-
tion of partial Program-4.8, before any memory is deallocated.

* In the function call stack, we see that the single pointer arr4 is stored in main ()’s stack
frame. We also note that there is no array and there are no pate objects in the call stack in
this partial program.
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* In the heap, we see the dynamically allocated array of pointers. The array is a pointee of
pointer variable arr4, which is stored in the function call stack. The heap also contains the
two dynamically allocated Date objects, each one a pointee of a pointer element of the array.

FUNCTION CALL STACK

day:
month: 7 day: 8
year: 1977 month: 8
year: 1988

Figure-4.7: Program-4.8 call stack and heap

4.5. Double pointers

Working with double pointers is an essential technique in programming languages where memory
management is the programmer’s responsibility. In order to achieve a correct design, we must
delegate sub-tasks to helper functions, which necessitates the ability to pass any variable by
reference. Passing pointers by reference requires the use of double pointers.

4.5.1. Concepts

4.5.1.1. What is a double pointer:
* A double pointer is a pointer variable whose pointee is another pointer variable.
* So the value of a double pointer is the address of that other pointer variable.

* Forexample, intx+ p; declares a pointer variable p whose pointee is another pointer variable
whose pointee is an integer variable.

* |In partial Program-4.8, line 2 declares a dynamically allocated array of bate object pointers as
Datexx arr4; which indicates that the double pointer variable arr4 has a pointee that itself
is a pointer. We see from Figure-4.7 that arr4’s pointee is the first element of the dynamically
allocated array, and this first element is a Date object pointer.

NOTE: Recall from programming with arrays in C that an array variable’s pointee is
always the array'’s first element. So the value of the array variable is the address of that
first element.

4.5.1.2. Uses of double pointers:
* The most common usage of double pointers is for passing pointers by reference.

* In a correct design with modular functions, it's normal to delegate small tasks to helper func-
tions. If the job of a helper function is to modify a pointer value, then the corresponding pointer
variable must be passed by reference, as a double pointer.

* A double pointer may also be used to store an array of pointers, as we saw in partial Program-
4.8, or to store a two-dimensional (2D) array.
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@ NOTE: It is almost always a mistake to declare a double pointer as a stand-alone variable,

except in the case of an array of pointers or a 2D array. The common usage of a double
pointer is to pass a pointer variable by reference. The only place where double pointer
variables should be declared is as a parameter in a called function.

9 NOTE: For example, if a called function has the prototype void foo (int** p), it is always

incorrect to declare a double pointer int+«* myPtr; in the calling function and then to call
foo () using the statement foo (myPtr). All this does is copy the garbage inside myptr into
the called function foo (), which will modify its local copy of parameter p to a valid value.
When foo () returns and p is popped off the function call stack, the myptr variable in the
calling function will still contain the same garbage it originally had.

Passing a double pointer by value is NOT the same as passing a single pointer
by reference, even though the called function prototype may look the same.

4.5.2. Coding example: Double pointers

1 #define MAX ARR 5
2 volid initDate (int, int, int, Datex=*);

4
5
6 Date #*someDates [MAX_ ARR];
7 Date *tmpDate;

9 initDate (1922, 2, 2, &tmpDate);
10 someDates[0] = tmpDate;

11 cout << "Initialized: ";

12 tmpDate—->print (); cout << endl;

14 initDate (1988, 8, 8, &tmpDate);
15 someDates[1] = tmpDate;

16 cout << "Initialized: ";

17 tmpDate->print () ; cout << endl;

19 initDate (1977, 7, 7, &someDates[2]);
20 cout << "Initialized: ";
21 someDates[2]->print () ; cout << endl;

23 initDate (1955, 5, 5, someDates+3);
24 cout << "Initialized: ";
25 someDates [3]->print () ; cout << endl;

27 cout << "Date array:" << endl;
28 for (int i=0; i<4; ++i) {

29 someDates [1]->print () ;

30 }

31 cout << endl;

33 cout << "Deallocating dates... " << endl;
34 for (int i=0; i<4; ++i) {

35 delete someDates[i];

36 }

38 return 0;
39 }
40
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41 void initDate(int y, int m, int d, Datexx dt)
42 {

43 *dt = new Date(d, m, Vy);

44 }

Terminal — -csh — 80x25

Don't Panic ==> pé
—-— Date ctor: 1922-82-82
Initialized: 1922-82-82

== Date ctor: 1988-88-88
Initialized: 1988-88-88

== Date ctor: 1977-87-87
Initialized: 1977-87-87

== Date ctor: 1955-85-85
Initialized: 1955-85-85

Date array:
1922-82-82
1988-68-88
1977-87-87
1955-85-85

Deallocating dates...

—— Date dtor: 1922-82-82
—— Date dtor: 1988-88-88
—— Date dtor: 1977-87-87

—— Date dtor: 1955-85-85
Don't Panic ==> [

Program-4.9: Double pointers

Program purpose:

. demonstrates the use of double pointers to pass a pointer by reference. The
initDate () helper function is called from main () multiple times to allocate and initialize a
Date Object, using a pointer to the allocated object as an output parameter.

* The Date class used in this program is identical to

Lines 2 and 41:

* These lines show the prototype for function initbate ().

* The job of the initDate () function is to dynamically allocate memory for a new Date object,
initialize its data members to the values provided in the , and return a
pointer to the new object using an

* We see that this function takes the following parameters:
- three input parameters for the new date’s year, month, and day

- an output parameter to return to the calling function a pointer to a newly allocated and
initialized Date object

* The initDate () function expects the calling function to declare a Date pointer variable that
is passed by reference using a double pointer parameter.
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Lines 6-7:

Line 6 declares a statically allocated array of bate object pointers, as we did in partial Program-
4.6. With this type of array, the array of pointers is located in the function call stack, while
its object elements are in the heap.

Line 7 declares a temporary Date pointer that to be used as output parameter in the calls to
the initDate () function.

Lines 9-12:

Line 9 calls initDate () to allocate and initialize a new Date object, using the locally declared
tmpDate pointer variable as the output parameter.

After line 9, the value inside tmpDate is the address of the new block of memory in the heap
that contains the new Date object.

Line 10 initializes the first element of the someDates array to that same address in the heap.
This line is a simple assignment of one pointer value to another, as a primitive data type.

After line 10, both tmpbate and the first element of somebates point to the newly created
Date object in the heap.

Figure-4.8a shows the contents of the function call stack and heap after line 10.

Lines 14-17:

Line 14 calls initDate () again to allocate and initialize another new Date object, using the
locally declared tmpDate pointer variable as the output parameter.

Figure-4.8b shows the contents of the function call stack and heap during the callto initDate ()
from line 14.

After line 14, the value inside tmpDate is the address of the new block of memory in the heap
that contains the new Date object.

Line 15 initializes the second element of the someDates array to that same address in the
heap.

After line 15, both tmpbate and the second element of someDates point to the newly created
Date object in the heap.

Figure-4.8c shows the contents of the function call stack and heap after line 15.

Lines 19-21:

Line 19 calls initDate () to allocate and initialize another new pDate object. This time, the
third element of the someDates array is used directly as the output parameter.

Because the output parameter to initDate () must be the address of a pointer variable, the
function is called with the address of the array’s third element, as ssomeDates[2].

Lines 23-25:
* Line 23 calls initDate () to allocate and initialize another new pate object. The fourth ele-

ment of the someDates array is used as the output parameter.

* The address of the array’s fourth element is used as output parameter. As we know from

pointer arithmetic principles, someDates+3 is equivalent to ssomeDates[3]. The reader is
encouraged to review the pointer arithmetic concepts that were covered in COMP 2401.

* Figure-4.8d shows the contents of the function call stack and heap after line 23, where the

someDates array has been populated with pointers to the four bate objects.
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Lines 27-36:

* Lines 28-30 print out every object element in the someDates array.
* Lines 34-36 loop over the someDates array to deallocate all four bate objects. The array itself

is in the function call stack and doesn’t need explicit deallocation.
Lines 41-44:

* These lines show the implementation of the initDate () function.

* Line 43 allocates and initializes a new Date object. It stores the pointer to the new object
inside a pointer variable or an array element declared in main () and used as the output
parameter.

FUNCTION CALL STACK

main ()

— el x[x[x[x]

someDates

tmpDate

day: 2
month: 2
year: 1922 |g

N

(a) After line 10

FUNCTION CALL STACK

initDate(int.,int, int,Date*%*)

lose] [s 1 [« | [o5
y m d

dt

main ()

el x| x[x[x]

someDates

day: 8 r—;rj,

month: 8 1"

year: 1988 tmpDate
7'y day: 2

month: 2
year: 1922

(b) After line 43, with initDate () called on line 14

Figure-4.8: Program-4.9 call stack and heap
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day: 8

month: 8 | €&

FUNCTION CALL STACK

main ()

year: 1988

A

day:

year:

month:

192

2
2
2

—— e [6 [X [ X[ X]

someDates

tmpDate

(c) After line 15

FUNCTION CALL STACK

main

A

day: 71,

month: 71

year: 1977
day: 8
month: 8
year: 1988

]
re[e]éfeé]x|

someDates

=2

day:
month:
year:

2

tmpDate

2
1922

AN

(d) After line 23

Figure-4.8: Program-4.9 call stack and heap (cont.)
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Program memory:

Figure-4.8 shows the contents of both the function call stack and the heap during the execu-
tion of Program-4.9, before any memory is deallocated.

Figure-4.8a represents the program memory after line 10, where one new Date object has
been allocated and initialized:
- the function call stack contains:

> a statically allocated array of pointers called someDates, and

> a single Date pointer called tmpDate, both stored in main () 's stack frame

- the heap contains only one Date object at this point
Figure-4.8b shows the program memory during the call to initbDate () from line 14:
- the function call stack shows the stack frames for both main () and initDate ()

- it’simportant to note that the double pointer parameter dt inside initDate () 's stack frame
points to the Date pointer tmpDate declared in main ()’s stack frame; this is how double
pointers must be used to pass pointers by reference

- the heap contains the two Date objects that have been allocated at this point

Figure-4.8c illustrates the program memory after line 15, where the second new pate object
has been allocated, initialized, and its address stored as the second element of the someDates
array. The heap contains the two Date objects that have been allocated at this point.

Figure-4.8d shows the program memory after line 23, where all four bate objects have been
allocated, initialized, and their addresses stored as the first through fourth elements of the
someDates array. The heap contains the four bate objects that are created in this program.
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Part I

Basics of Object-Oriented Design
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Chapter 5

Design Principles

We introduce some basic concepts of object-oriented design, including data abstraction, encap-
sulation, and the principle of least privilege.

5.1. Concepts

5.1.1. Why object-oriented (0O0) design:

* Any software system worth building must be built correctly. This involves thinking through how
the program functionality should be distributed over what objects, before we start coding.

* For every program we write, there are typically two or three correct ways to design it and
hundreds of incorrect ways.

* Simply writing code that works is not sufficient. Professionally developed code must also follow
the principles of good software engineering, and a significant portion of correct development
must be planned at the design stage.

5.1.2. For a good OO design, we need to think about:
* What objects do we need, what data should they store, what behaviour should they have?

¢ Can we reuse classes from another source?

* What do our classes have in common with each other? Do they contain generalized or spe-
cialized data from a common class or from each other?

* What information should be hidden inside each class? What information should be available
to other classes?

5.1.3. Characteristics of good OO designs:

We design single responsibility classes:
- our objects should have one purpose

We follow the principles of data abstraction:
- we separate what an object does from how it does it

We incorporate encapsulation into our design:
- we protect our runtime objects from bad code (our own or other developers’)

We follow the principle of least privilege:
- we allow as little access to our runtime objects as possible
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5.2. Data abstraction and encapsulation

5.2.1. Goal of data abstraction:
* We separate what an object does from how it does it.

* For example:

- most people drive a car without understanding the mechanical principles behind how cars
are built

- adriver’s conceptual idea of a car is much simpler than the engineering principles involved
in car design and construction; this conceptual idea is called an abstraction

- the same is true of software; our class user doesn’t have to understand how our classes
work, they simply need to know what they do

* We separate the class interface from the implementation details:

- the class interface is the set of public properties and behaviours of our objects, and it is
shared with our class user

- the implementation details are private to the class developer and are not shared with the
class user

5.2.2. Encapsulation is another important design concept:

* We hide the implementation details inside our classes. This includes the underlying data
structures, algorithmic details, and so on.

* Ourclass user should never design their code based on our implementation details, only based
on our class interface.

* We discuss some key tools for promoting encapsulation in chapter 8, including composition
(aggregation), inheritance, and the principle of least privilege.

5.2.3. Why are data abstraction and encapsulation important:

* The biggest threat to timely software development is change:
- clients change their mind about what they want

- designers misunderstand the requirements, so the design is incorrect
- clients want more features, which may have a significant impact on the design

* Change is always disruptive, so its consequences must be minimized.

* What developers can do to minimize the impact of changes:
- we must design classes that can be modified with minimal impact on other classes

- we can make sure our class users don’t rely on our class implementation details

5.2.4. Approaches for good data abstraction:

* We must design our class interfaces to be simple and intuitive, easy to use, and not require
knowledge of implementation details.

* We must group together common data and functionality.

* We must grant the least amount of access to other classes. Our data members should always
be implemented with private or protected access specifiers only.

* We must maximize the reuse of existing code by finding the similarities between our classes
and reusing the code that implements these similarities.

* We must design code that can be reused, within the same program and even across other
applications and platforms.
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5.2.5. Good data abstraction means separating object functionality:

Separation of concerns is a design technique where each part of a software system focuses
on its own distinct responsibilities. One example is the design of our objects into categories,
as discussed in chapter 6.

Control objects are responsible for the program control flow.

Boundary objects conduct all communications with the end-user and with other systems or
applications. These are sometimes called user-interface (Ul) or view objects.

Entity objects represent the real-world domain concepts in the program.

Collection objects contain data structures and their related operations to store program data.

5.3. Principle of least privilege

5.3.1. What is the principle of least privilege:

The principle of least privilege is an important OO design technique.

It requires that:
- we give the rest of the program minimal access to our objects, and only as needed

- we never grant more access than is strictly required

5.3.2. Characteristics of the principle of least privilege:

The principle applies to:
- all class members

- variables, parameters, objects
In practical terms, it means:
- all data members should have private or protected access specifiers only

- we never provide getter and setter member functions for our classes, unless there exists no
alternative design that can avoid them

- helper member functions that are only used inside the class should have private or protected
access specifiers

- only the most minimal set of public member functions should be available to class users

- the public member functions should provide a simple class interface that reveals no imple-
mentation details about the class
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Chapter 6

Object Design Categories

We discuss how we can promote good data abstraction by designing classes that belong to object
design categories, as introduced by Jacobson et al. [6]

6.1. Concepts

6.1.1. What are object design categories:

* Object design categories are an OO design approach for identifying and separating objects by
area of responsibility.

* Each category of objects has specific tasks for which it is responsible.

6.1.2. Why should we use object design categories:
* Object design categories assist in distributing program functionality over objects.
* They promote data abstraction and encapsulation.

* They help with designing classes that are single-purpose and reusable.

6.1.3. What are object design categories not:
* They are not the same as the Model-View-Controller (MVC) architectural pattern.
* They are structured like MVC, in the sense that they are comprised of the same kinds of objects.

* They do not behave like MVC, in that they do not use the Observer design pattern.

6.2. Types of object categories

6.2.1. What are the different object design categories:
* Entity objects;
* Control objects;
* Boundary objects, also sometimes called view or user interface (Ul) objects; and

* Collection objects.

6.2.2. Entity objects:
* An entity object represents real-world information maintained by the program.

* They often represent persistent information. Persistent objects survive between program ex-
ecutions. They are saved to persistent storage, such as a hard disk or solid-state drive.
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* Examples of entity objects: Library, Book, Patron

6.2.3. Control objects:

* A control object is in charge of the program control flow, i.e. the sequence of operations.

They manage how classes interact with each other.

In a typical OO program, the main () function has two lines of code: it creates a control object,
and it calls a member function of that object to launch the rest of the control flow.

The control object then takes charge of the program control flow.

* Large programs may have multiple control objects, each with a different set of responsibilities.

6.2.4. Boundary objects:

A boundary object is responsible for interactions with end-users and other systems.

In this textbook, we focus only on end-user interactions, specifically user 1/O.

Ideally, no other classes in the program should communicate with the end-user.

The use of boundary objects simplifies switching from one Ul library to another.

6.2.5. Why separate objects into design categories:

* It's easier to make changes. Modifiability and extensibility are very important software engi-
neering (SE) qualities.

* For example: entity objects can be reused between programs
- if we model the Book class correctly, it should be reusable between different applications

* For example: replacing a Ul simply means implementing new boundary objects
- the entity objects should not change

- the control objects should only require very simple changes

6.3. Collection classes

6.3.1. What is a collection:

* A collection is a generic term for a data structure that stores multiple instances of the same
data type.

* There are two options for storing data in a collection: a primitive collection, or a collection
class
6.3.2. What is a primitive collection:
* A primitive collection is a type of collection that is built directly into a programming language.
* These are very basic and have no special features or operators.
* An array is an example of a primitive collection that exists in most programming languages.
We use the term primitive array in this textbook to denote this type of built-in collection.
6.3.3. What is a collection class:

* A collection class is a class whose only purpose is to store a collection of data and provide
operations on it.

e |In C++, it's sometimes also called a container.
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* A collection class must use an internal data structure to store the data:
- that internal data structure is called the underlying container or collection

- it may be a primitive collection or an instance of another collection class

* There are libraries in C++ that provide collection classes, but these are not always efficient.
They are discussed in chapter 15.

6.3.4. Why use a collection class:
* Why not simply use arrays everywhere? Let’s think about the principle of least privilege.

* A primitive array does not restrict operations on itself. Any part of the program can add to,
delete from, or access the elements of a primitive array.

* This is bad software engineering.

6.3.5. Advantages of using a collection class:
* A collection class effectively hides the data from the rest of the program.

* The collection class developer has full control over how the data is accessed and modified by
choosing what member functions to make available.

* This is good software engineering.

6.4. Coding example: Collection classes

1 /% * % K o Kk Kk Kk ok ok Kk ok ok *k Kk * *
2 * Filename: Array.h *
I I T A A A A A A Y4
4 #define MAX_ARR_SIZE 64

6 class Array

7 {

8 public:

9 Array () ;

10 ~Array () ;

11 void add (Datex) ;

12 void print () ;

13 private:

14 Datex elements[MAX_ARR_SIZE];
15 int size;

16 };

18 /% # * % % * * % % *k K & & * K * *
19 x Filename: Array.cc *
20 & K K K A A Kk A Kk A A K A Kk * Kk */
21 Array::Array ()

22 {

23 size = 0;

24 '}

26 Array::~Array ()

27 {

28 for (int i=0; i<size; ++i) {
29 delete elements[i];

30 }

31 }
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void Array::add (Datex d)
{
if (size >= MAX_ ARR_SIZE)
return;

elements[size++] = d;

void Array::print ()
{
cout << endl << "DATES:" << endl;
for (int 1=0; i<size; ++i) {
elements[i]—->print ();
}

cout<<endl;

/* b . S S S S . S S A S R N S S o
* Filename: main.cc *
L A S S S S R S S S S S S S 4 */

int main ()

{

Array arr;
Datex d;

d = new Date(1,1,1911);
arr.add((d) ;

d = new Date(2,2,1922);
arr.add((d) ;

arr.add (new Date(3,3,1933));
arr.add (new Date(4,4,1944));
arr.print () ;

return O;

Terminal — -csh — 80x24

[Don't Panic ==> pl

—— Date ctor: 1911-81-81
—— Date ctor: 1922-82-82
—— Date ctor: 1933-83-83
—— Date ctor: 1944-84-84

DATES:

1911-81-81
1922-82-82
1933-83-83
1944-84-84

Date dtor: 1911-81-81

Date dtor: 1922-82-82
- Date dtor: 1933-83-83
—— Date dtor: 1944-84-84
Don't Panic ==> [

Program-6.1: Collection classes
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Program purpose:

Program-6.1 demonstrates the implementation and usage of a collection class called Array.
The pate class used in this program is identical to Program-4.4.

Lines 6-16:

These lines contain the class definition for the array collection class.

Line 14 shows that the collection class uses a primitive, statically allocated array as the
underlying container to store Date object pointers.

Line 15 declares a size data member to track of the current number of elements in the array.

Lines 9-12 show that the collection class provides a default constructor, a destructor, and
member functions for adding a new Date pointer to the array and for printing the entire
array.

Lines 21-47:

These lines show the member function implementations for the Array class.

Lines 21-24 implement a default constructor that initializes only the size data member to
indicate that a new array contains no elements.

The elements primitive array of pointers does not require initialization, because correctly
written code should never access array elements beyond the current size.

Lines 26-31 show the destructor deallocating the array’s Date objects stored in the heap.

It is common practice for collection class destructors to clean up their elements. The collec-
tion class is often the only place that holds pointers to this memory.

Lines 32-38 show the add () member function that adds a new element to the end of the
array.

Lines 40-47 implement the print () member function that prints to the screen every element
of the array.

It is important to note that the print () member function does not contain any knowledge
of how to print a Date object. The only class in the program that knows how to print a pate
object is the pDate class itself, specifically its print () member function.

Ensuring that the Array class’s job is to know about Array objects only is a fundamental
example of correct data abstraction and encapsulation.

Lines 52-66:

These lines show the implementation of the main () function.

To maintain correct encapsulation, themain () function knows no details about any class. The
Array class provides a simple class interface for main () to create and manipulate an aArray
object by calling its member functions.

Line 54 declares a new Array object, and its constructor initializes it.
Lines 57, 59, 61, and 62 each dynamically allocate a new pDate object.
Lines 58, 60, 61, and 62 each add a pate object pointer to the array.
Line 63 prints out the contents of the array.
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Chapter 7

UML Class Diagrams

We introduce the concepts of Unified Modelling Language (UML) class diagrams, which are used
to represent an OO software design graphically, as introduced by Booch et al. [7] We show how
to represent classes and their relationships in a UML class diagram.

7.1. Concepts

7.1.1. What is the Unified Modelling Language (UML):
* The Unified Modelling Language (UML) is a family of notations that represent OO models.

A model is a virtual representation of something, in our case software.

UML is an important tool for documenting OO designs. As a modelling language, its goal is to
facilitate communication between software developers.

UML is programming language independent. In principle, a design that’'s based on a UML
diagram can be implemented in any OO programming language.

There are many types of UML design diagrams, but we focus on UML class diagrams.

7.1.2. UML class diagrams are used to represent:
* Classes, including:
- class attributes: this is the general term for data members or instance variables
- class operations: this is the general term for member functions or methods

* Class relationships, including:
- inheritance

- composition/aggregation
- dependency (the "uses" relationship)

* In this textbook, we focus on the inheritance and composition/aggregation class relationships.

7.2. Representing classes in UML

7.2.1. Showing classes:
* Each class consists of three vertically stacked boxes:
- the top box contains the class name
- the middle box shows the class attributes (data members, instance variables)

- the bottom box shows the class operations (member functions, methods)
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e |f a class is abstract, its name must be italicized.

* We never show collection classes in a UML class diagram. Instead, a composition relationship
must be shown between the class that contains the collection and the class of the collection
elements. For example, if a Library class contains a BookArray object that contains Book
objects or pointers, we do not shown the BookArray class at all! Instead, we use a composition
class relationship to show that a Library contains multiple Books.

* The name of every attribute and operation must be preceded by its access specifier:
- private is represented with a dash (-)

- protected with a hash symbol (#)
- public with a plus symbol (+)

7.2.2. Showing attributes:

* Each attribute is shown with its access specifier and name, followed by a colon (:) and the
attribute’s data type.

* We never show other objects among a class’s attributes. If a class has an attribute that’'s an
object of another class, this must be shown as a relationship between the two classes instead.

* UML does not use the C++ variable declaration syntax.

7.2.3. Showing operations:

* Each operation is shown with its access specifier, name, and list of parameters, followed by a
colon and the operation’s return type.

* Each parameter in the list must indicate the parameter direction (in, out, or inout) and name,
followed by a colon and the parameter’s data type.

* UML does not use the C++ function prototype syntax.

Clinie

-name : string

+add(in cust:Customer®)

+add(in an:Animal®)

+addToCustomer({inout cust:Customer™, in animalld:int) : bool
+print(}

+HprintCustomers()

+printAnimals()

Figure-7.1: UML class diagram with a single class

7.2.4. UML class example:
e Figure-7.1 shows an example of how a single class is represented in a UML class diagram.
* The top box specifies the class name Clinic.

* The middle box indicates that the cl1inic class has one attribute that isn’t an instance of
another class. Remember, data attributes that are objects are not shown as attributes, but
using class relationships instead. We see that the name attribute is a string, and it’s private to
the clinic class.

* The bottom box shows the six operations for the clinic class, all of which are public. Each
operation lists its parameters, and it specifies the direction, name, and data type of each one.
The clinic class and its operations are further explained in a later example.
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7.3. Representing class relationships in UML

7.3.1. Types of class relationships:

A class relationship is a relationship between two classes in an OO design.
There are several types of relationships between classes:

- inheritance, which is more formally called generalization / specialization
- association, which includes composition and aggregation

- dependency, which is sometimes called a "uses" relationship

The differences between composition and aggregation are subtle and outside the scope of this
textbook. We use the term composition to denote both.

7.3.2. Showing class relationships:

In our class diagrams, we show inheritance and composition relationships only.

A dependency relationship is represented in UML with a dashed line between two classes,
where one class uses the services of the other. For example, one class may call the operations
of the other class, or use temporary instances of it as parameter.

We do not discuss dependency relationships in this textbook, as they are a much weaker type
of relationship between classes than inheritance or composition. We leave it to upper year
software engineering courses to delve into the degrees of dependency in class relationships.

7.3.3. What is inheritance:

Inheritance is an is-a relationship between two classes, where one class is a specialization of
another, more general class. We discuss inheritance further in chapter 9.

The superclass is the generalized class, and it's sometimes informally called the "parent" class.
The subclass is the specialized class, sometimes called the "child" class.

Inheritance is shown in UML with a line between the two classes, and a clear (not filled) triangle
at the superclass end of the line.

7.3.4. What is composition:

Composition is a has-a relationship between two classes, where each instance of one class
contains one or more instances of the other class.

The container is the class that contains one or more instances of the other class.
The containee is the class that is contained within the other one.

Composition is shown in UML with a line between two classes, based on directionality and
multiplicity as described below.

7.3.5. What is directionality:

Directionality in a composition relationship indicates which class is the container and which
one is the containee.

Composition relationships may be:

- unidirectional (one-way), or

- bidirectional (two-way)

In a unidirectional relationship:

- the container has one or more instances of the containee, and

- the containee does not know about the container; it doesn’t even know that it is a containee
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A unidirectional relationship is shown with an open-headed arrow from container to containee.

In a bidirectional relationship:
- the container has one or more instances of the containee, and

- the containee has one or more instances of the container
A bidirectional relationship is shown with a simple line with no arrows.

Directionality is a property of composition relationships only. Inheritance relationships do not
have directionality.

7.3.6. What is multiplicity:

Multiplicity in a composition relationship indicates how many instances of the containee are
stored in the container.

Values may be a single number or an asterisk (x) to represent "many", or it may be a range.

A range of values is represented with a lower bound, followed by two dots, followed by an
upper bound.

If the container has a collection of containee objects, we do not show a specific upper bound.
We use the asterisk to denote "many" instead.

Multiplicity is shown at the containee end of the relationship.

Multiplicity is a property of composition relationships only. Inheritance relationships do not
have multiplicity.

7.4. Example

Figure-7.2 shows an example of a design that is separated into control, boundary, and entity
classes, with both inheritance and composition relationships. The design is for a program that
manages the data for a veterinary clinic, including customer and animal information.

The control class:

This class manages the data and control flow for the entire program.

It contains one instance of the clinic that it manages and one instance of the boundary object
(the view class) that is responsible for most communication with the end-user.

We see that the multiplicity of the composition relationships indicates that the control object
contains a single instance each of the clinic and and view objects.

The composition relationships are also both shown as unidirectional. The control object knows
about the clinic and the view, but they have no knowledge of or access to the control object.

The public 1aunch () operation manages the program’s overall control flow.

The private initCustomers () and initAnimals () operations are helpers that initialize the
program data.

The view class:

This class manages most communications with the end-user.

It contains operations that print out the main menu to the end-user and perform basic end-
user 1/0O.
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The clinic class:

This is the primary entity class in the program.
It has an attribute to store the clinic name.

From the composition relationships and their multiplicity, we see that the clinic also contains
two collections: a customer collection and an animal collection.

The customer collection stores data on the human clients of the clinic, and the animal col-
lection contains information on all the customers’ pets.

We note that the exact types of collections are not specified. UML class diagrams are created
at the software design stage, but choices of collection types are implementation decisions.

The diagram also does not specify whether the collections store objects or object pointers,
since that is also an implementation decision. However, it's always a better design choice to
use pointers, so we can assume the use of pointers as collection elements.

The two add () operations allow a class user to add a new element to the clinic’s customers
and animals collections.

The addToCustomer () operation establishes a new adoption relationship between a customer
and an animal. It adds the animal with the given id to the given customer’s collection of
adoptees, and it sets the animal’s parent to that same customer.

The print () operations print out the corresponding data to the screen. Alternatively, we
could design the view class to print out the clinic data, but instead we choose to encapsulate
it entirely inside the clinic class.

Control
View
+aunchi) 1*& i
-initCustomers(inout c:Clinic*) = | +showMenu{out choice:int&)
-initAnimals{inout c:Clinic*) +printStr(in str:string)
+readint{out num:int&)
+readStr{out stristring&)
1
W
Clinic
-name : string [dentifiable
+add(in cust:Customer*) el It
+add(in an:Animal*) +print()
+addToCustomer(inout cust:Customer®, in animalld:int) : bool
+print()
+printCustomers()
+printAnimals()
Customer
-nextld : int 1
-name : strin
. 9 Animal
::ﬂgﬁ?lmal{m an:Animal®) * | -nextid  int
-name : string
-species : string
-age : int
L]
+setParent{in cust:Customer”)
+print()

Figure-7.2: UML class diagram with class relationships
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The Identifiable class:

This class is used as a superclass for all objects that have a unique identifier.
It contains a unique id attribute.

It's the role of the subclass to track the id to be assigned to the next subclass object created.
However, this superclass assigns the id and ensures their sequential incrementation.

The Customer class:

This class represents a single human client of the clinic.
It is a subclass of the 1dentifiable class, as we can see from the clear triangle.

Each customer has three attributes: the next id to be assigned to a new customer object; the
customer’s name; and a collection of the customer’s pets.

The underlining of the next id attribute indicates that it is a static attribute that belongs to
the class as a whole, instead of a unique value belonging to each instance. We discuss static
class members in chapter 8.

The customer and Animal classes have a bidirectional composition relationship, which means
that each serves as both a container and a containee to the other.

We see that each customer’s animal collection is represented with multiplicity of "many".

The Animal class:

This class represents a single animal in the clinic, and it is a subclass of the Identifiable
class.

Each animal has five attributes: the next id to be assigned to a new animal object, as a static
class member; the animal’s name, species and age; and a reference to the customer object
to which the animal belongs, as a pointer to avoid object duplication.

We see that each animal has one parent, based on the multiplicity of 1.

Important conventions:

We never show collection classes in UML. They are implied using a composition relationship
between the container and containee classes, using a multiplicity of "many".

Abstract class names are shown in italics.

Inheritance relationships do not have directionality or multiplicity. Only composition relation-
ships do.

In C++, friendship is not shown in a UML class diagram. Friendship is a concept unique to
C++, and not to OO programming in general, and it is discussed in chapter 8.

We usually do not show constructors, destructors, or simple getter/setter operations in a UML
class diagram.
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Part Il

Essential Object-Oriented Techniques
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Chapter 8

Encapsulation

Most OO programming languages provide standard design and implementation techniques that
help promote the encapsulation of data and behaviour into objects. In this chapter, we discuss
how C++ implements these essential techniques, including composition class relationships, the
use of constants, friendship, static class members, and namespaces. We also delve into a de-
tailed design and implementation example of linked lists that synthesizes several of the concepts
discussed in this textbook so far.

8.1. Composition

Composition relationships allow for the design of classes that work together in a container-containee
capacity. The design goal is for both classes to maintain their independence from each other by
encapsulating data and behaviour in the class where they belong.

We show how composition relationships are implemented between classes in C++, as well as the
special syntax used to prevent the unnecessary creation of temporary objects. We discuss how
the construction and destruction of objects work within the container-containee class relationship.

8.1.1. Concepts

8.1.1.1. What is a composition relationship:

* A composition relationship between two classes means that one class declares a data member
that’'s an object or a pointer to an object of another class.

* Composition is also sometimes informally called a has-a relationship between two classes.

* The container class in a composition relationship is the one that contains one or more in-
stances of another class.

* The containee class is is the one contained within an instance of the container class. The
containee may be declared as an actual object or a pointer to an object.

* For example, if the student class declares a data member that’s an instance of the Address
class, then the two classes have a composition relationship. In this case, student is the
container class, and Address is the containee.

8.1.1.2. Container and containee object construction:
* When an object is allocated, either statically or dynamically, its constructor is always called.

* If the new object is a container, then a call to its constructor automatically triggers a call to
the containee constructor.
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If a container object has several containees, the containee constructors are called in the order
in which they are declared in the container class definition.

It is convention for the container constructor to take all the parameter values required to
initialize both the container and the containee data members.

To uphold correct encapsulation, the container constructor should only initialize its own data
members. The containee data members must be initialized with a call to the containee con-
structor that uses the values provided as parameters to the container constructor.

The correct approach for a container constructor to pass parameters to a containee construc-
toris to use member initializer syntax. All other approaches result in the creation of temporary
containee objects, which is a waste of computational resources.

NOTE: There are many cases in C++ where the default syntax will result in the auto-
matic creation of duplicate or temporary objects. These are unnecessary and should be
avoided. It's important to understand what syntax triggers the creation of these extra
objects, so that it can be avoided.

8.1.1.3. What is member initializer syntax:

We use member initializer syntax to have a container object constructor call a containee
constructor with provided parameter values, during the construction of the container object.

Without this syntax, the following situations arise:

- the containee’s default constructor is called automatically to initialize the containee data
members with default values, instead of the values provided as parameters to the container
constructor

- in order for the container constructor to do its job of initializing the containee data members,
the containee class must provide setter functions for all its data members

Both situations are examples of bad software engineering. Using member initializer syntax
avoids both issues entirely.

Member initializer syntax appears with the container constructor implementation, between
the prototype and the opening brace of its implementation. It begins with a colon (:), followed
by the containee data member name, as declared in the container class definition, followed
by the list of containee constructor parameter values within a pair of parentheses.

Member initializer syntax can also be used for the initialization of non-object data members. In
this case, the syntax is also located between the constructor prototype and its implementation.
It begins with a colon (:), followed by the data member name, followed by the value to be
assigned to the data member, within a pair of parentheses.

If a constructor initializes multiple data members and/or containee objects using member ini-
tializer syntax, the initializations must be separated with a comma (, ) which is the sequencing
operator.

8.1.1.4. Order of execution with composition relationships:

Constructors:
- objects are built from the inside out

- the containee object(s) are constructed first, in order of declaration in the class definition
- the container object constructor executes last

Destructors:

- objects are destroyed from the outside in

- the container destructor executes first, then the containee destructor(s)

- destructors are usually invoked in the reverse order of constructors
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8.1.2. Coding example: Member initializer syntax

1

O© 00N O U A WN

[ e T S B S R SR S
O Ul B~ WN B

18
19
20
21
22
23
24
25
26

28
29

31
32
33
34

36
37
38
39
40

JAk A A A Ak A A A A kA ok ok ok ok ok ok
* Filename: Address.h *
*****************/
class Address

{
public:

Address (int=0, string="No street", string="No city", string="Canada");

~Address () ;
void print();

private:
int number;
string street;
string city;
string province;

) 8

/*****************
* Filename: Address.cc *
*****************/

Address: :Address (int n, string s, string c, string p)

{

number = n;
street = s;
city = C;
province = p;
cout<<"-- Address ctor: "<< city << ", " << province << endl;

Address: :~Address ()
{

cout<<"—-- Address dtor: "<< city << ", " << province << endl;

void Address::print ()
{

cout<<" Address: "<<number<<" "<<street<<", "<<city<<",
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41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

85
86
87
88
89
90
91
92
93
94
95
96

/*****************
* Filename: Student.h *
*****************/

class Student

{
public:

Student (string="000000000", string="No name", string="No major",
float=0.0f, int=0, string="No street", string="No city",

string="Canada") ;
~Student () ;
void print();

private:
string number;
string name;
string majorPgm;
float gpa;
Address homeAddr;
bi

/*****************

* Filename: Student.cc *

*****************/
/* Version 1: Uses member initializer syntax for containee ctor x/
Student: :Student (string sl, string s2, string s3, float g,

int n, string s, string c, string p)
homeAddr (n, s, c, p)

{

cout<<"-- Student ctor: "<< 82 <<endl;

number = sl;

name = s2;

majorPgm = s3;

gpa = 97
}
/* Version 2: Uses member initializer syntax for everything +/
J *
Student : :Student (string sl, string s2, string s3, float g,

int n, string s, string c, string p)
number (sl1), name(sZ2), majorPgm(s3), gpa(g), homeAddr (n,s,c,p)

{

cout<<"—- Student ctor: "<< s2 <<endl;
}
*/
Student: :~Student ()
{

cout<<"-- Student dtor: "<<name <<endl;
}
void Student::print ()
{

cout << "Student: " << number << " " << left << setw(1l0) << name <<

<< setw(1l5) << majorPgm << " GPA: "

<< fixed << setprecision(2) << setw(5) << right << gpa << endl;

homeAddr .print () ;
cout << endl;

}
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/*****************
* Filename: main.cc *
X ok ok Ak Ak A A A A A A A A A A A A
int main ()
{
cout << "Declaring matilda:" << endl;
Student matilda ("100567899", "Matilda", "CS", 9.0f, 123, "Main",
"Moncton", "NB");
cout << endl;
cout << "Declaring joe:" << endl;
Student Jjoe;
cout << endl;

cout << "Printing students:" << endl;
matilda.print () ;
Jjoe.print () ;

cout<< endl << "End of program" << endl;
return 0;

L5 Terminal — -csh — 80x24

Don't Panic ==> pl

Declaring matilda:

== Address ctor: Moncton, NB
—— Student ctor: Matilda

Declaring joe:
—- Address ctor: No city, Canada
—— Student ctor: No name

Printing students:

Student: 188567899 Matilda Cs GPA: 9.88
Address: 123 Main, Moncton, NB

Student: ©PPPPEBBO No name Mo major GPA: 6.868
Address: © No street, No city, Canada

End of program

—-= Student dtor: No name

—- Address dtor: No city, Canada
—-= Student dtor: Matilda

—— Address dtor: Moncton, NB
Don't Panic ==> [

Program-8.1: Member initializer syntax

Program purpose:

. demonstrates the correct construction of container/containee objects, by using
member initializer syntax.

* In this example, the student class is the container, and the Address class is the containee.
So every student object created has its own Address object contained inside it.
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Lines 4-16:

e These lines show the Address class definition.
e An address has four data members, as shown on lines 12-15: the house number, street name,

city, and province.

e We see that the class definition contains no setter functions for the data members. If this

solution didn’t use member initializer syntax, we would be forced to provide setters, which
would violate the principle of least privilege.

Lines 21-39:

* These lines show the implementations of the Address member functions.
* Lines 21-29 contain the default constructor, which initializes every data member from the

provided parameters.

Lines 44-59:

These lines show the student class definition.

A student has five data members, as shown on lines 54-58: the student number, their name,
major, gpa, and home address as an Address object.

Line 58 establishes the composition relationship between the two classes, by declaring an
Address object as a data member of the student class.

We see on lines 47-49 that the student constructor takes all the parameters required to
initialize both the new student object and its containee Address object.

Lines 65-74:

These lines show the correct implementation of the student default constructor.

The constructor is responsible for initializing the entire student object, including calling the
constructor for its containee Address object using the correct parameters.

Issue: In a composition relationship, the containee object constructor is called before the
first line of the container object constructor. So by the time we reach line 69, the containee
Address object has already been constructed using default values.

Without member initializer syntax, we would be forced to implement and call setter member
functions to initialize the address data members a second time from inside the student
constructor. This would be a violation of the principle of least privilege.

However, this solution does use member initializer syntax on line 67. This line explicitly calls
and passes parameter values to the Address object constructor before the first line of the
container student object constructor on line 69.

The syntax for member initializer syntax must appear after the constructor prototype and
before the constructor body. It begins with a colon (:), followed by the containee data mem-
ber name homeAddr (as declared in the student class definition on line 58), followed by the
Address constructor parameter values within a pair of parentheses.

In this version of the student constructor, the other data members are initialized in the body
of the constructor, as usual.

Lines 77-82:

These lines show an alternative, commented-out version of the student default constructor.

In this version, all the student data members are initialized using member initializer syntax
on line 79. First, all four non-object data members are initialized, and then the aAddress
constructor is called with the correct parameter values.

The member initializer syntax must appear after the constructor prototype and before the
constructor body. The syntax begins with a colon (:), followed by the data member name,
followed by the value to be assigned to the data member, within a pair of parentheses.
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* With this syntax, it is expected that the body of the constructor would be empty, if we did not
have a print statement for debugging purposes. This is a normal occurrence in C++, even if
it may look somewhat unusual.

Lines 89-96:

* These lines show the implementation of the student printing function.

* This member function must print out all the data members of the student object to the
screen, and this must include the data members of the containee address object. However,
it would be bad encapsulation for the student class to have knowledge about how to print
an Address object.

* The correct solution is seen on line 94, where the student printing function calls the Address
class’s printing function to output the Address object’'s data members.

Lines 100-116:

* These lines show the implementation of the main () function.

* We see from lines 103-104 and the program output that the declaration of the matilda object
with parameter values for all student and Address data members results in both the student
and Address constructors being called.

* We also see from the output that objects are constructed from the inside out, with the con-
tainee object constructed first, then the container object.

* The program output also shows that the aAddress object is correctly initialized with parameter
values immediately on creation. It is not initialized with default values, as it would be without
member initializer syntax.

8.2. Constants

The use of constant objects, constant member functions, and constant data members in C++
protects the integrity of our runtime objects and ensure they are not misused. We discuss how
these mechanisms are implemented in C++.

8.2.1. Concepts

8.2.1.1. What are constants in C++:

* Constants are used to protect our runtime objects from bad code, either our own or code
written by other programmers for the same software system.

* Constants help to promote encapsulation and enforce the principle of least privilege by mini-
mizing access to our objects from the rest of the program.

* In C, we declare constant variables and parameters with the const keyword.

* C++ provides three additional ways to use constants:
- constant objects

- constant member functions
- constant data members

8.2.1.2. Properties of constant variables:
e |n C/C++, once a constant variable is declared, its value can never be modified.

e A constant variable can never be used as an lvalue.
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* |In programming, an Ivalue can be used on the left-hand side of an assignment operation:
- a valid Ivalue must represent an area of storage, for example a variable

- an expression or a literal cannot be used as an Ivalue

* An rvalue can be used on the right-hand side of an assignment operation:
- a valid rvalue can represent an area of storage, or an expression, or a literal
- all Ivalues can be used as rvalues, but not all rvalues can be used as Ivalues

* A constant variable or object must be assigned a value on

8.2.2. Constant objects

8.2.2.1. What is a constant object:
* A constant object is an object that is declared as a constant variable.
* Once initialized, the object’s data members can never be modified.

* No part of the program is allowed to modify the members of a constant object, not even the
class’s own member functions.

* Only constant member functions can be called on a constant object, but they cannot modify
its members. Constant member functions are discussed in the next section.

8.2.2.2. Applying the principle of least privilege:
* We need to think about what objects are required in a program.
* If an object does not need to be modified after initialization, we make it a constant object.

* This guarantees the integrity of the object and protects it from bad code.

8.2.3. Coding example: Constant objects

1 int main ()

2 {

3 Date dl1 (28, 1, 2013);
4 dl.print () ;

6 const Date newYear (1, 1);
7 // newYear.setDate (2, 2, 2013);
8 // newYear.print();

10 cout<< endl << "End of program" << endl;
11 return 0;
12 }
: & Terminal — -esh — 80x24
Don't Panic ==> p2
—— Date ctor: 2813-81-28
2013-81-28
—— Date ctor: 2880-81-81

End of program
—— Date dtor: 2868-81-81

—— Date dtor: 2813-81-28
Don't Panic ==> [

Program-8.2: Constant objects
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Program purpose:

* Program-8.2 demonstrates the declaration and usage of constant and non-constant objects.
* The Date class is identical to Program-3.4, with the addition of a destructor that prints out a

debugging message.
Lines 3-4:

* These lines show the declaration and printing of a non-constant pate object called d1.

Lines 6-8:

* Line 6 shows the declaration of a constant object called newyear. The Date constructor is
called with parameter values to initialize the object’s data members.

* The constructor is the only non-constant member function that is allowed to execute on a
constant object. Once the constructor has finished executing, no other member functions
can be called on a constant object, unless they are constant member functions.

* Lines 7-8 are commented out because they cause a compilation error. The member functions
called are not allowed on a constant object.

8.2.4. Constant member functions

8.2.4.1. What is a constant member function:

e A constant member function is a member function that is allowed to access the members of
a constant object, on a read-only basis.

* Declaring a member function as constant is a guarantee that this function does not modify
any part of the object.

8.2.4.2. Characteristics of constant member functions:

* Constant member functions are the only functions that can be called on a constant object,
except for the constructor and destructor.

* They are not allowed to modify the value of any data member.
* They are not allowed to call a non-constant member function.

» Constructors and destructors cannot be constant, but they can be called on constant objects.

8.2.4.3. Applying the principle of least privilege:
* We need to think about what member functions are required for a class.

* If a member function doesn’t need to modify the object, it should be made constant. This
ensures that it can be called on constant objects.

* Declaring a member function as constant makes our class more usable by other programmers,
if they need to declare constant objects in their code.
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8.2.5. Coding example: Constant member functions

1 /% % % % & & & A A A A K A A A ok ok

2
3
4
5

6
7
8
9

11
12
13
14
15
16
17
18

20
21
22
23
24
25
26
27
28
29

31
32
33
34
35
36
37

39
40

42
43
44

* Filename:

Date.h

*

*****************/

class Date
{
public:
Date (int=0,
~Date () ;
void print ()

private:
int day;
int month;
int vyear;

void setDate (int,
int lastDayInMonth (int,

int=0,

const;

int,

bool leapYear (int);

b8

int=2000) ;

int);
int) ;

/*****************

* Filename:

Date.

cc

*

*****************/

void Date: :print ()
{
cout << setfill ('
<< setfill (’
<< setfill (’
}

const
07) <<
07) <<
07) <<

/% The rest of the member

setw(4)
setw (2)
setw (2)

<< year <<
<< month <<

functions are not shown

/*****************

* Filename:

main.

cc

*

*****************/

int main ()

{
Date dl1 (28, 1,
dl.print () ;

const Date newYear(l, 1);

newYear.print () ;

2013);

14

cout<< endl << "End of program" << endl;

return 0;

}
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& ] Terminal — -csh — 80x24

Don't Panic ==> p3

—— Date ctor: 2813-81-28
2813-81-28

—— Date ctor: 2888-81-81
2888-81-81

End of program
—— Date dtor: 2888-81-81

—— Date dtor: 2813-81-28
Don't Panic ==> [

Program-8.3: Constant member functions

Program purpose:

* Program-8.3 demonstrates the use of constant member functions.

Lines 4-18:

e These lines show the Date class definition.

* Line 9 shows the function prototype for print (), which is declared as a constant member
function. The const keyword must appear at the end of the member function prototype.

* Once a member function has been declared as constant, the const qualifier becomes part
of the function prototype. It must appear everywhere that the prototype is used.

Lines 23-28:

* These lines show the implementation of the print () member function.

* Online 23, we see the const qualifier appearing in the function prototype, just as in the class
definition on line 9.

Lines 34-44:

* These lines show the implementation of the main () function.
* Lines 36-37 show the declaration and printing of a non-constant Date object called 4d1.

* Line 39 shows the declaration of a constant object called newvear. The Date constructor is
called with parameter values to initialize the object’s data members.

* On line 40, the print () member function is called on the newYear constant object. This is
allowed because it's declared as a constant member function. The program output shows
that the constant object’s data is printed correctly.

8.2.6. Constant data members

8.2.6.1. What is a constant data member:
e A constant data member is a data member that can never be modified.

* A constant data member cannot be modified by any of the class member functions, not even
the constructor.

8.2.6.2. Characteristics of constant data members:

e Because a constant data member can never be modified, even inside the constructor, it must
be initialized before the constructor body.

* As a result, its initialization must use member initializer syntax.
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8.2.6.3. Constant data members and member initializer syntax:

* Member initializer syntax can be used to initialize non-constant data members.

* But it must be used to initialize constant data members, because it executes before the body

of the constructor.

8.2.6.4. Applying the principle of least privilege:

* We need to think about what data members are required for a class.

e |f a data member never needs to be modified after initialization, we make it constant.

* This protects the integrity of the data member, even from our own member functions.

8.2.7. Coding example: Constant data members

1 /% % % % * % & * % ok * K Kk K Kk * *

2 x Filename: Student.h *
3*****************/

4 class Student

5 {

6 public:

7 Student (string="000000000", string="No name",

8 float=0.0f);

9 void print () const;

10 private:

11 const string number;

12 string name;

13 string majorPgm;

14 float gpa;

15 };

16 /% #* % * % % ok % A Kk & Kk K Kk K A ok

17 =+ Filename: Student.cc *

I8 % & % & ok K ok K A Kk A Kk K A % * */

19 Student::Student (string sl, string s2, string s3, float qg)
20 number (sl), name(s2), majorPgm(s3), gpa(qg)

21 {

22 }

24 void Student::print () const

25 {

26 cout << "Student: " << number << " " << left << setw(10)
27 << " " << setw(l5) << majorPgm << " o
28 << fixed << setprecision (2) << setw(5)

29 }

string="No major",

30 /* The rest of the member functions are not shown =/

32 /4 ok ok ok k k Kk K A K A A A A A A F
33 % Filename: main.cc *
Y R I T T Y4
35 int main ()

36 {

37 Student matilda("100567899", "Matilda", "CS",

38 Student Jjoe;
39 matilda.print () ;
40 joe.print () ;
41 return O;
42 }
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<< name

<< right << gpa << endl;

135



& & Terminal — -csh — 80x24

Don't Panic ==> p4
Student: 106567899 Matilda CS

Student: BBBBBB_@BB No name No major
Don't Panic ==> |

Program-8.4: Constant data members

Program purpose:

* Program-8.4 demonstrates the use of constant and non-constant data members, as well as
the use of member initializer syntax.

Lines 4-15:

e These lines show the student class definition.
e Line 11 declares the student number as a constant data member.

Lines 19-22:

* These lines show the implementation of the student default constructor.

* Line 20 demonstrates the use of member initializer syntax to initialize all the data members
from the given parameter values.

* While member initializer syntax is mandatory for initializing the number data member, which
is constant, it is optional for initializing the other data members.

* If any member function, including the constructor, tried to assign a value to the number data
member using the assignment operator, it would result in a compilation error.

* We see on lines 21-22 that the constructor body is empty, since all the data members are
initialized using member initializer syntax.

8.3. Friendship

Friendship is a unique C++ feature that has value in very specific situations, but otherwise strains
the principle of least privilege to near its breaking point. It’'s worth noting that friendship is a
design choice that should never be made without a complete understanding of its ramifications.

In the COMP 2404 course supported by this textbook, the only acceptable use of friendship is
discussed in Chapter 12, where it's necessary for overloading some types of operators.

8.3.1. Concepts

8.3.1.1. What is friendship in C++:

* Friendship in C++ is a special relationship between either:
- two classes, or

- a class and a global function

* A class can grant friendship to:
- a global function (not a member function), and/or

- another class
* A friend function is a global function that is granted friendship by a class.

» A friend class is a class that is granted friendship by another class.
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8.3.1.2. Characteristics of friendship:
* If a class grants friendship, it gives away complete access to its class members, even the
private and protected ones:
- for example, if class a grants friendship to class B, then all instances of B can directly access
any member inside an instance of a
* Friendship can only be granted (i.e. given), and it cannot be taken:
- for example, class A can grant friendship to class B, but B cannot take friendship from class
A without A explicitly granting it
* Friendship is neither symmetric nor transitive:
- for example, if class A grants friendship to class B, it does not mean that B automatically
grants friendship to a

- if A grants friendship to B, and B grants friendship to c, it does not mean that A automatically
grants friendship to ¢

* Friendship is not inherited from a superclass to a subclass.

8.3.1.3. Friendship is bad software engineering:

* Friendship violates both encapsulation and the principle of least privilege by giving away ac-
cess to all class members, even private and protected ones.

* Qutside of very specific situations, for example in the implementation of some overloaded
operators, friendship should never be used in our programs.

8.3.2. Coding example: Friendship

1 /% % % % * % * % & * * K *k * *k & *

2 * Filename: Address.h *

3k ok Ak A A kA A Ak Ak A A A Ak A/

4 class Student;

class Address

6
7 {

8 friend class Student;

9 friend void where (Studenté&) ;

11 public:

12 Address (int=0, string="No street", string="No city",
13 string="Canada") ;

14 ~Address () ;

15 void print () const;

17 private:

18 int number;

19 string street;

20 string city;

21 string province;

22 };

23 /+ The Address.cc file is not shown. */
24
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25 /% K K ok A A A A A A A A A A A A K

26 # Filename: Student.h *

27  F A ok ok Kk Ak ok kA Ak kA A A k)

28 #include "Address.h"

30 class Student

31 {

32 friend void where (Studenté&) ;

34 public:

35 Student (string="000000000", string="No name", string="No major",
36 float=0.0f, int=0, string="No street", string="No city",
37 string="Canada") ;

38 ~Student () ;

39 void moveTo (string, string);

40 void print () const;

42 private:

43 const string number;
44 string name;

45 string majorPgm;

46 float gpa;

47 Address homeAddr;

48 };

50 /4 * 4 4 * K K * K K A K A A A A *
51 « Filename: Student.cc *
52 * ok ok Ak A A A A A A A A A A A A A/

53 void Student::moveTo(string c, string p)

54 {
55 homeAddr.city = c;
56 homeAddr.province = p;
57 }

58 /% The rest of the file is not shown. #*/

B0 /# % * ok & A K K Kk K A K A K A ok *
61 x Filename: main.cc *
62 X A ok A ok kA ok A Ak A A ok A Ak A/

63 int main ()

64 {
65 Student matilda("100567899", "Matilda", "CS", 9.0f, 123, "Main",
66 "Moncton", "NB");

67 Student Jjoe;

69 cout<<endl<<"All students:"<<endl;
70 matilda.print () ;
71 Jjoe.print () ;

73 matilda.moveTo ("Vancouver", "BC");
74 joe.moveTo ("Montreal", "QC");

76 cout<<endl<<"All students after move:"<<endl;
77 matilda.print () ;

78 joe.print () ;

79
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cout<<endl<<"Where are the students:"<<endl;
where (matilda) ;
where (joe) ;

cout<< endl << "End of program" << endl;

return O;

void where (Studenté& s)

{

cout << "Found address in " << s.homeAddr.city
<< ", " << s.homeAddr.province << endl;
}
:} ] Terminal — -csh — 80x28

Don't Panic ==> p&
Address ctor: Moncton, NB
Student ctor: Matilda
Address ctor: No city, Canada
Student ctor: No name

All students:
Student: 188567899 Matilda Ccs
Address: 123 Main, Moncton, NB
Student: 0886660880 MNo name No major
Address: © No street, MNo city, Canada

All students after move:
Student: 188567899 Matilda Ccs
Address: 123 Main, Vancouver, BC
Student: 08866608880 MNo name No major
Address: © No street, Montreal, QC

Where are the students:
Found address in Vancouver, BC
Found address in Montreal, QC

End of program

——= Student dtor: No name

—— Address dtor: Montreal, QC
——= Student dtor: Matilda

—— Address dtor: Vancouver, BC
Don't Panic ==> [

Program-8.5: Friendship

Program purpose:

. modifies the Address and Student classes from to demonstrate
the use of friendship between two classes and between a class and a global function.

Line 4:
* This line is a forward reference, a technique sometimes necessary when packaging software.

* This program has a student class that contains an instance of the Address class. As a result,
the student .h file must use the include preprocessor command to access the Address class
definition found inside the Address.h file.
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* However, because of the friendship relationship in this example, the address class definition
in the Address.h file also needs to know about the student class definition found in the
Student .h file.

* C++ prohibits circular inclusions like two files including each other.

* The solution is for the student.h file to continue including the address.h file, as we see
on line 28. But instead of having the reverse inclusion, we use a forward reference on line
4 to inform the Address class that the student class exists, without having to include the
Student .h file.

Lines 6-22:

e These lines show the Address class definition.

* Line 8 grants friendship from the Address class to the student class. This gives the student
member functions full access to the private data members of their containee Address object.

* Line 9 grants friendship from the Address class to the where () global function. This gives
the function complete access to the private data members of an Address object.

* The member function implementations for the Address class are not shown, because they
are identical to Program-8.1.

Lines 30-48:

e These lines show the student class definition.

* Line 32 grants friendship from the student class to the where () global function. This gives
the function full access to the private data members of a student object.

* Line 39 declares a new moveTo () member function that updates a student address’s city and
province to new values.

Lines 53-57:

* These lines show the implementation of the moveTo () member function.

* Lines 55-56 update the city and province data members of the containee Address object
to the given parameters. For this to work, it is necessary for the Address class to grant
friendship to the student class, as we see on line 8.

Lines 88-92:

* These lines show the implementation of the where () global function.
* This function prints out the city and province where the given student resides.

* In order for this global function to print out the information, it must have access to the
Student object’s private homeAddr data member, as well as the containee Address object’s
city and province private data members.

* To get access to the needed data, it is necessary for both the student and Address classes
to grant friendship to the where () global function, as we see on lines 9 and 32.

Lines 63-86:

* These lines show the implementation of the main () function.
* The function declares and initializes a student object called matilda on lines 65-66.
* Another student object called joe is declared on line 67, using default values.

* Lines 73-74 call the student class’'s moveTo () member function to update the city and
province of both student objects.

* Lines 81-82 call the where () global function to print out the city and province of both student
objects.

* We see from the program output that the changes on lines 73-74 are performed, and lines
81-82 print out the correct data.
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8.4. Static class members

Most OO programming languages support static class members. When a class has a property that
is specific to the class itself, regardless of any instances of the class, then that property can be
represented as a static data member. If a class provides a service to other classes, independently
of any instances of that class, then that service can be implemented as a static member function.

8.4.1. Concepts

8.4.1.1. What is a static member of a class:

* A static member is a data member or member function that is a property or behaviour of the
class as a whole.

* A static member does not have different values or behaviours for each instance of the class.

8.4.1.2. Characteristics of static members:
* Only one instance of a static member exists for the entire class.

» Static members exist and can be used in the program, even if no objects of the class are ever
created.

» Static members can be accessed either:
- using the class name with the scope resolution operator, or

- using any object of the class

* Be careful of the static keyword in C/C++! When used at file scope, the corresponding
identifier becomes invisible outside that file.

8.4.1.3. What is a static data member:
* A static data member is a data member that's a property of the entire class as a whole.
* |t contains a single value that is shared by all instances of that class.

* Only one value exists at a time for each static data member, and that value belongs to the
entire class and all its objects.

» Static data members must be initialized at file scope. By convention, this initialization is placed
in the source file.
8.4.1.4. What is a static member function:

» A static member function is a member function that performs a service of the class as a whole.

It must behave correctly, even if no objects of the class are ever created.

» A static member function may only access static data members. It cannot use any non-static
data members or call any non-static member functions.

It must be specified as static in the class definition only, and not in the source file, otherwise
it cannot be visible outside the file.
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8.4.2. Coding example: Static class members

1 /% % % % & & & A A A A K A A A ok ok

2 # Filename: Book.h *

3k ok ok ok kA Ak A A A A A A A Ak A

4 class Book

51

6 public:

7 Book (string="Unknown", string="Unknown") ;
8 Book (Booké&) ;

9 ~Book () ;

10 static int getNextId();

11 void print () const;

13 private:

14 static int nextId;

15 int id;

16 string title;

17 string author;

18 };

20 /% F K ok A A K A Kk K K K A Kk A Kk *

21 % Filename: Book.cc *

22k kK kA A kA kA Ak A A A A ok X/

23 int Book::nextId = 1001;

25 Book: :Book (string t, string a)

26 id(nextId++), title(t), author(a)

27 |

28 cout<<"-- default ctor, book id: "<< 1d <<endl;
29 }

31 Book: :Book (Booké& orig)

32 {

33 id = orig.id;

34 title = orig.title;

35 author = orig.author;

36 cout<<"-- copy ctor, book id: "<< id <<endl;
37 }

39 Book: :~Book ()

40 {

41 cout<<"-- dtor, book id: "<< 1d <<endl;
42 '}

44 int Book::getNextId()

45 {

46 return nextId;

47 '}

49 void Book::print () const

50 {

51 cout<<"—--Book: "<< id << " " << title <<" by "<<author<<endl;
52 }
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/*****************
* Filename: main.cc *
* ok ok ok Ak A A A A A A A A A A A A/
int main ()

{
cout<<"Next id: "<< Book::getNextId() <<endl;

cout<<endl<<"Declaring and initializing books 1 to 4..."<<endl;

Book bl ("Ender’s Game", "Orson Scott Card");
Book b2 ("Dune", "Frank Herbert");
Book b3 ("Foundation", "Isaac Asimov");

Book b4 ("Hitch Hiker’s Guide to the Galaxy", "Douglas Adams");

cout<<endl<<"Printing books..."<<endl;
bl.print();
b2.print () ;
b3.print () ;
b4d.print ();

cout<<endl;
cout<<"Next id: "<< Book::getNextId () <<endl;
cout<<"Next 1id: "<< b4 .getNextId() <<endl;

cout<< endl << "End of program" << endl;
return O;

Terminal — -csh — 80x24

Don't Panic ==> pé
Mext id: 1e81

Declaring and initializing books 1 to 4...
-— default ctor, book id: 1881
--— default ctor, book id: 1882
—— default ctor, book id: 1883
-—= default ctor, book id: 1884

Printing books...
--Book: 1881 Ender's Game by Orson Scott Card
--Book: 1882 Dune by Frank Herbert

--Book: 1883 Foundation by Isaac Asimov
--Book: 1884 Hitch Hiker's Guide to the Galaxy by Douglas Adams

Mext id: 1885
Next id: 1885

End of program

—— dtor, book id:
-— dtor, book id:
-— dtor, book id:
—— dtor, book id:
Don't Panic ==> I

Program-8.6: Static class members
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Program purpose:

Program-8.6 demonstrates the use of static data members and static member functions.
The program uses and modifies the Book class from Program-3.6.

Lines 4-18:

These lines show the Book class definition.
Line 14 declares an integer called next1d as a static data member.

As a static data member, next1d stores a single value for the entire Book class, and that
value is shared by all the objects of the class.

In this example, the next 1d data member contains the unique id that our code automatically
assigns to the next Book object that is created.

Line 15 declares the unique id for each Book object. Because it's a non-static data member,
each Book object stores its own separate value for this data member.

Line 10 declares a static member function called getNextId ().

As a static member function, getNext1d () is a service of the entire class, and it can be called
even if no Book objects are ever created.

Line 23:

This line initializes the next1d static data member with an initial value of 1001.

The initialization is performed at file scope, and it must use the class name and scope reso-
lution operator, as shown on line 23.

Lines 25-29:

These lines show the implementation of the default constructor for the Book class.
Line 26 uses member initializer syntax to initialize all the data members of a new Book object.

Line 26 also shows how the new Book object’s unique id is initialized automatically using the
static data member next1d.

Line 26 uses the postfix version of the increment operator, which is discussed in Program-2.1.
The postfix operator increments its operand, but it returns the original value, i.e. the value
before the operand was incremented.

On line 26, this original value is assigned to the id data member of the new Book object, and
the incremented next1d is ready to be assigned the next time a new Book object is created.

Lines 44-47:

These lines show the implementation of the getNext1d () static member function.
As a static member function, it can only access static data members, specifically next 1d.

Lines 56-78:

These lines show the implementation of the main () function.

Line 58 shows a call to the Book class’s getNext1d () static member function, using the class
name and scope resolution operator. Even though no Book objects exist yet on this line, the
nextId static data member has already been initialized on line 23.

Lines 60-71 create four Book objects and print them out. We see from the program output
that the constructor assigns each Book object a sequentially increasing unique book id.

Lines 73-74 both print out the current value of next1d. Line 73 calls getNextId () using the
class name and scope resolution operator, and line 74 uses one of the Book objects.

Because no additional Book objects are created on lines 73-74, they both print the same
value, as we see in the program output.
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8.5. Namespaces

We discuss namespaces and their usage in C++.

8.5.1. Concepts

8.5.1.1. What is a namespace:
* In C++, a namespace defines a self-contained scope.

* It groups together a set of identifiers (for example: variables, functions, data types) under a
unique name.

* A namespace allows the programmer to encapsulate inside a scope a group of variables and
functions that belong together functionally, but that do not represent a class.

8.5.1.2. Characteristics of namespaces:
* A namespace is not a class or a data type.
* No instances of a hamespace can be created, and it occupies no memory.

* There are two ways to use the members of a namespace inside our code:

- the namespace can be scoped in with the using keyword, which brings all the members of
the namespace into the current scope, or

- every usage of a namespace member can be preceded by the namespace identifier and the
scope resolution operator
* For example:
- we use the std namespace for standard 1/0 in most of our coding examples

- to access the I/0O objects and functions, our examples bring into scope the entire std name-
space, with the statement: using namespace std; in our programs

- another way to access each identifier inside the std namespace is to use the scope resolu-
tion operator instead, for example: std::cout << "Hello world!" << std::endl;

* A namespace may be unnamed. An unnamed namespace is automatically scoped in.

8.5.2. Coding example: Namespaces

1 string adama = "Lorne Greene";

3 namespace NewBSG
4 {

5 string starbuck
6 string apollo

7 string adama = "Edward James Olmos";

"Katee Sackhoff";
"Jamie Bamber";

9 wvoid printCast();

11 namespace Nuggets

12 {

13 enum NuggetNames { HOTDOG=101, KAT, CHUCKLES };
14 }

15 }

17 namespace
18 {
19 string thePres = "Mary McDonnell";
20 }
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int main ()

{

cout
cout

cout
cout
cout
cout
cout
cout
cout

<<
<<

<<
<<
<<
<<
<<
<<
<<

endl << "from unnamed space: " << thePres << endl << endl;
"old Adama: "<< adama << endl << endl;

"From namespace NewBSG:"<< endl;

" Starbuck: "<< NewBSG: :starbuck << endl;

" Apollo: "<< NewBSG::apollo << endl;

"  Adama: "<< NewBSG: :adama << endl;

" Hotdog: "<< NewBSG: :Nuggets: :HOTDOG << endl;

"  Kat: "<< NewBSG: :Nuggets: :KAT << endl;

" Chuckles: "<< NewBSG::Nuggets::CHUCKLES << endl;

NewBSG: :printCast () ;
return 0;

void NewBSG: :printCast ()

{
cout
cout
cout
cout
cout
cout
cout

<<
<<
<<
<<
<<
<<
<<

endl << "Printing cast:"

Starbuck: "<
Apollo: "<
Adama: "<
Kat: "<
The Pres: "<
0Old Adama: " <<

Don't Panic ==> p7

from unnamed space:

old Adama:

Lorne Greene

From namespace NewBSG:
Katee Sackhoff

Starbuck:
Apollo:

Adama:

Hotdog:

Kat:

Chuckles:

Jamie Bamber
Edward James
181
182
183

Printing cast:
Katee Sackhoff

Starbuck:
Apollo:

Adama:

Kat:

The Pres:
0l1ld Adama:

Jamie Bamber
Edward James
182

<< endl;

starbuck << endl;
apollo << endl;
adama << endl;

Nuggets: :KAT << endl;
thePres << endl;
::adama << endl << endl;

Olmos

Olmos

Mary McDonnell

Lorne Greene

Don't Panic ==> [§

©Christine Laurendeau
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Mary McDonnell

Program-8.7: Namespaces
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Program purpose:

Program-8.7 demonstrates the use of namespaces to encapsulate identifiers, including vari-
ables, functions, and data types, into a named or unnamed scope.

Line 1:

This line declares a global variable called adama, initialized with the name of actor Lorne
Greene.

Lines 3-15:

These lines declare a namespace called NewBSG.

The namespace contains:

- three string variables (starbuck, apollo, and adama) declared on lines 5-7;
- a function prototype (printcast ()) on line 9; and

- a nested namespace called Nuggets on lines 11-14

The nested namespace Nuggets contains the definition of an enumerated data type called
NuggetNames on line 13.

The NewBSG namespace defines a variable called adama on line 7, initialized with the name of
actor Edward James Olmos, even though another variable of the same name but a different
value has already been declared as a global variable on line 1.

In C++, a variable can be declared in an inner scope with the same name as a variable in
an outer scope. This is a valid technique, but the inner scope variable effectively "hides" the
outer scope variable of the same name.

Because the namespace contains a function prototype, but not the corresponding function
implementation, this implementation must be provided elsewhere in the source file, in this
case on lines 38-47.

Lines 17-20:

These lines declare a unnamed namespace, which contains a single string variable called
thePres.

This namespace is scoped in automatically, which means that the program can use the
thePres variable directly.

Lines 38-47:

These lines contain the implementation of the printcast () function that belongs to the
NewBSG hamespace.

We see on line 38 that, in the function prototype, the function name must include the name-
space name, followed by the scope resolution operator. This is unnecessary on line 9, because
that line is inside the namespace definition.

Lines 41-43 print out the variables from the NewBSG namespace. In particular, line 43 prints
out the value of the inner scope adama variable declared in the namespace.

Line 44 prints out a value from the enumerated data type declared in the nested hamespace
Nuggets. We see how the scope resolution operator is used to access this value.

Line 45 demonstrates that the thepres variable declared in the unnamed namespace can
be accessed directly.

Line 46 shows how a global variable can be accessed, even if another variable with the same
name has been declared in an inner scope. The scope resolution operator, used as a unary
operator, allows a function in the NewBSG namespace to access the adama global variable,
even though a variable of the same name exists inside the namespace.
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Lines 21-36:

These lines show the implementation of the main () function.
Line 23 shows how the function accesses the contents of the unnamed namespace directly.
Line 24 prints out the adama global variable.

Lines 27-32 print out information from the NewBSG namespace and from its nested name-
space, using the scope resolution operator to access each namespace member.

Line 34 calls the NewBSG namespace’s printCast () function, again using the scope resolution
operator.

8.6. Encapsulation example: Linked lists

In sections 8.6 and 8.7, we develop a desigh and implementation example that supports several
of the concepts covered so far in this textbook: pointers, dynamic memory allocation, collection
classes, data abstraction, encapsulation, and the principle of least privilege.

Section 8.6 introduces the concepts behind the linked list data structure, how its design can be
optimized to promote encapsulation, and how the common operations performed on linked lists
can be designed to uphold the principle of least privilege. Section 8.7 illustrates these concepts
with a coding example.

8.6.1. Concepts

8.6.1.1. Use of collections:

When a data processing application requires the storage of data into program memory, how
the data is stored has important implications for computational and memory efficiency.

We want to use the least amount of memory, while maintaining the fastest access to the data.
The trade-off between space (memory) and time (computational efficiency) is the program-
mer’s eternal quandary.

The correct choice of collection type always depends on the nature of the application. There
is no "right choice" that is always correct, and every type of collection has its advantages and
disadvantages.

The major types of collections are:

- sequential (for example: arrays, linked lists, deques)

- associative (for example: sets, maps, trees)

- higher-order (for example: stacks, queues, priority queues)

In the examples of this textbook, we focus mainly on arrays and linked lists.

8.6.1.2. Terminology:

* In computing, the back of a collection means its end, where the last element is located.

* The front of a collection is its beginning, where the first element is.

8.6.1.3. Using arrays:

» Using arrays to store our program data has many advantages:

- array elements are guaranteed to be stored contiguously

- contiguous storage means that the elements are stored all together in a single unbroken
block of memory, without gaps

- this contiguous storage results in faster sequential access to the elements
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* But arrays also incur disadvantages:

- astatically allocated array cannot be resized; it can neither grow nor shrink to accommodate
additional or fewer elements

- resizing a dynamically allocated array is often inefficient, because it requires that elements
be copied from one memory location to another

- adding or removing an element from anywhere in the array except at the back is inefficient

8.6.1.4. Using linked lists:

* Using linked lists to store program data has the following advantages:
- there is no need to ever resize the list

- we only allocate as much memory as we need, no more and no less
- elements can be efficiently added, removed, or shifted anywhere in the list

* And the following disadvantage:
- the elements are not stored contiguously in memory, so sequential access is slower

8.6.1.5. Rationale for implementing linked lists in C++:
* The C++ standard template library (STL) does provide a linked list container called 1ist.

* As we discuss in a later chapter, there are issues with the STL 1ist container that render its
usage problematic for some applications. As a result, it's a far-from-ideal tool for beginner
C++ programmers.

* In this section, we focus on our own implementation of a linked list, as an exercise for deeper
learning of memory management, and OO data abstraction and encapsulation concepts.

List
headI .—_\l/
Node Node Node
next | @ >| next | @ > next | X
data data | @ data | @
Student Student Student

number: 100777888 number: 100567899 number: 100334455
name: Harold name: Matilda name: Timmy
majorPgm: Geography majorPgm: CS majorPgm: CS
gpa: 7.5f gpa: 9.0f gpa: 11.5f

Figure-8.1: Example of linked list classes

8.6.1.6. Classes for implementing a linked list:
* Figure-8.1 shows the major classes involved in our implementation of a linked list.

* Alinked list, represented by the List class, is composed of the following:
a set of Node objects;

a pointer to the first node in the list, called the head;

optionally, a pointer to the last node in the list, called the tail; and

a set of data objects
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The Node class represents a single node, and it contains:
- a pointer to the corresponding data element;

- a next pointer to the following node in the list; and
- optionally, if the list is doubly linked, a prev pointer to the preceding node in the list

The data class represents a single element in the linked list. In Figure-8.1, our example shows
that data are student objects.

8.6.1.7. Characteristics of our linked list implementation:

Do not confuse the name of our List class with the STL 1ist container. Unix-based program-
ming is always case-sensitive, so the two class names are entirely different.

At all times, there is exactly one node for each data element in the linked list. If an element
is added to the list, a new node must be created. If an element is removed, its node must be
deleted.

Nodes can never be reused by different data elements, not even if an element is removed
and then added again. They can never be created in advance, before an element is added.

The next pointer of the last node is set to a null value, as is the prev pointer of the first node
in a doubly linked list.

8.6.1.8. Types of linked lists:

Some linked lists are singly linked:
- each node stores knowledge of the next node in the list

- the node does not keep track of the previous node

- a singly linked list can only be traversed in the forward direction, starting at the head until
the end of the list

Some linked lists are doubly linked:
- each node stores knowledge of the next node in the list

- the node also keeps track of the previous node

- a doubly linked list can be traversed either in the forward direction, starting at the head
until the end of the list, or in the backward direction, starting at the end until the head

All lists maintain a pointer to the first node, called the head.
Some lists maintain a pointer to the last node, called the tail, and some do not.
In all linked lists, the last node’s next node pointer is set to a null value.

In doubly linked lists, the first node’s previous node pointer is set to null.

8.6.1.9. Alternative linked list implementations:

Some linked list implementations use extra nodes, called dummy nodes:
- a dummy node is a placeholder node that has no data element associated with it

- some implementations use one dummy node to represent the list head, and one for the tail

- we do not use dummy nodes in these examples; all the nodes we implement correspond to
a data element

Some linked list implementations are circular:

- in a circular linked list, the last node’s next node pointee is the first node

- in a doubly linked circular list, the first node’s previous node pointee is the last node
- by default, linked lists are not circular
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8.6.1.10. Why are so many classes used in linked list implementation:

We separate our classes by functionality, in order to maintain encapsulation and correct data
abstraction.

We keep the data-related and the list-related knowledge separate:
- it’'s good encapsulation to compartmentalize what knowledge each object contains

- for example, a data object should never know that it’'s an element in a collection

This separation of functionality facilitates code reuse. For example, without nodes, each data
object would be hard-coded to point to a fixed next element. As a result, the same data object
could not be stored as an element in multiple lists, which would be a limiting design.

The separation of data-related and list-related knowledge is good software engineering.

8.6.2. Linked list operations

8.6.2.1. Inserting a list element:

A new element can be inserted anywhere in a linked list, simply by shifting next node pointer
values between different nodes.

When inserting a new element, our implementation must handle the following four cases:
- the new element is added to a currently empty list

- the element is inserted at the beginning of the list

- the element is inserted in the middle of the list

- the element is inserted at the end of the list

8.6.2.2. Removing a list element:

An element can be removed from anywhere in a linked list, simply by shifting pointer values
between different nodes.

When removing an element, our implementation must handle the following six cases:
- the list is empty

the element removed is the only element currently in the list

the element is removed from the beginning of the list
the element is removed from the middle of the list

the element is removed from the end of the list

the element to be removed is not found in the list

8.6.2.3. List cleanup:

A correct implementation of linked lists must use dynamically allocated memory for the nodes,
and most likely for the data as well.

Dynamically allocated memory must always be explicitly deallocated when no longer needed.
In C++, destructors are naturally suited to perform the deallocation tasks.

But what exactly must be deallocated? The nodes only, or both nodes and data? This depends
on the nature of the application.

When to deallocate linked list nodes:
- when an element is removed from the list, the corresponding node must be deallocated

- all nodes must be deallocated when the list itself is deallocated
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* When to deallocate linked list data:
- data must be deallocated only once in the program

- we must ensure that data is deallocated only if it is no longer required in the program

- if the data is not deallocated when the list itself is deallocated, we must ensure that we
retain a pointer to the data, so it can be deallocated later in the program

8.7. Coding example: Linked lists

We combine together the concepts of section 8.6 and demonstrate their implementation in a
coding example.

8.7.1. Class definitions

1 /% % % % * % & *k % ok % K ok K Kk K *
2 # Filename: List.h *
I e I I A A A A A A a4
4 class List

5 {

6 class Node

7 {

8 public:

9 Student* data;

10 Node * next;

11 };

13 public:

14 List ();

15 ~List ();

16 void add (Studentx*) ;

17 void del (const stringé&, Studentxx);
18 void print () const;

20 private:
21 Node* head;
22 };

Program-8.8: Linked list class definitions

Partial program purpose:

 Partial Program-8.8 shows the class definitions used for a linked list that stores student object
pointers as data.

* The student class is identical to Program-8.4, with the addition of a getter for the name data
member.

Lines 6-11:

¢ These lines show the Node class definition, which is defined inside the List class definition.
We call this a nested class.

* The use of nested classes is reserved for cases where there is a strong dependency between
two classes, as there is between List and Node, and we want to prohibit access to the nested
class from outside the outer class.

* Remember that the default access specifier inside a class is private. Lines 6-11 are not under
the public heading on line 13, so the Node class definition is private within the List class. As
a result, no other class can access it or even know that it exists, which is good encapsulation.
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* With the Node class definition private to the List class, we make its data members public
on line 8, so that the List class can access the Node data members directly. This is the only
acceptable use of public data members.

* Line 9 specifies that each list element is stored as a student object pointer.
* Line 10 declares a pointer to the next node in the list.

* These lines also indicate that the list is singly linked. If it was doubly linked, there would be
an additional data member for a pointer to the previous node in the list.

Line 21:

* This line declares the only List data member as the head of the linked list, which is a pointer
to the list’s first node.

e This line also reveals that the linked list does not maintain a tail.

Lines 14-18:

* Line 14 declares a default constructor and line 15 a destructor for the List class, respectively.
* Line 18 declares a printing function that prints out the contents of the linked list to the screen.

e Line 16 line declares the add () member function that adds a new student as an element of
the linked list.

* The add () function takes a student pointer as parameter, and not a Node. It would be very
bad data abstraction and encapsulation for a class or function outside the 1.ist class to have
any knowledge of nodes.

* In this example, the add () member function inserts a new element into the list so that the
students are stored in ascending (increasing) alphabetical order by name.

* Line 17 declares the del () member function that removes from the linked list the student
with the name provided as the first parameter. The function then returns the removed student
to the calling function, using the second parameter.

* The second parameter to del () is a double pointer, because we need to return a single
Student pointer by reference. We do not use the return value to return the student pointer.
Instead, we use an output parameter to practice with both output parameters and double
pointers, which are useful when a function needs to return multiple values.

8.7.2. Initializing the list

1 /% % % * * % % * * * % * ok K & * *

2 + Filename: List.cc (partial) *
3 X A ok A ok kA ok A ok A Kk ok A A A A/
4 List::List () : head(nullptr) { }

Program-8.9: Linked list initialization

Partial program purpose:

* Partial Program-8.9 shows the implementation of the 1.i st constructor that initializes a linked
list as defined in partial Program-8.8.

Line 4:

* The job of any constructor is to initialize all the data members of a new object.

* The List class has only one data member, the head of the list. Since every new list starts
out empty, we initialize the head data member to a null pointer.

* Since we use member initializer syntax to initialize the list head, the constructor body is
empty. The empty braces are still mandatory in order for the compiler to recognize this line
as a function implementation.
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8.7.3. Inserting a list element

1 /% * % * h Kk Kk Kk ok ok Kk ok ok Kk Kk * *
2 * Filename: List.cc (partial) *
3k ok ok ok kA Ak A A A A A A A Ak A
4 void List::add(Studentx newStu)

51

6 Nodex newNode = new Node;

7 newNode—->data newStu;

8 newNode—->next nullptr;

10 Node =*currNode, =*prevNode;
11 currNode = head;
12 prevNode = nullptr;

14 while (currNode != nullptr) {
15 if (newNode->data->getName () < currNode->data->getName ())
16 break;

17 prevNode = currNode;

18 currNode = currNode->next;
19 }

21 if (prevNode == nullptr) {

22 head = newNode;

23 }

24 else {

25 prevNode->next = newNode;
26 }

27 newNode->next = currNode;
28 }

Program-8.10: Linked list insertion

Partial program purpose:

* Partial Program-8.10 shows the implementation of the add () member function of the List
class defined in partial Program-8.8.

* This function inserts a new student into the linked list in its correct position, so that the list
remains in ascending alphabetical order by student name at all times.

Lines 6-8:
* Every data element in the list needs a corresponding node. Since we are adding a new
element, these lines create and initialize a new node for it.
* Line 6 dynamically allocates a new node for the new student element.

* Line 7 sets the new node’s data data member to the new student element, which is passed
in as a parameter to the add () member function.

* At this point, we don’t yet know where in the list the new element belongs. So for now, we
set the new node’s next data member to a null value on line 8.

Lines 10-12:

* Next, we must find the new element’s insertion point, where the new student belongs so that
the list remains in the correct order.

* The end goal in finding the insertion point is to correctly set two Node pointer variables: one
pointer to the current list node that should immediately precede the new element, and one
pointer to the node that should immediately follow the new one.
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* Line 10 declares these two node pointers. The currNode pointer is used as a looping variable

to traverse the list, and it ends up set to the list node that should immediately follow the
new element to be added. The prevNode pointer ends up set to the list node that should
immediately precede the new element.

e Lines 11-12 set both currNode and prevNode to their initial values before the loop that tra-

verses the list looking for the insertion point. As the looping variable, currNode starts at the
list head. As the node preceding currNode, prevNode is initialized to a null value.

Lines 14-19:

Lin

Lin

8.7

These lines show the loop that traverses the linked list and looks at each student element to
find the insertion point for the new student.

Line 14 is the while loop header that terminates the loop if currNode has reached the null
pointer value at the end of the linked list.

The loop in lines 14-19 exits under one of two conditions: we reach the end of the list and
exit at the loop header on line 14, or we find the insertion point and break out of the loop on
line 16. If we reach the end of the list, it means that the new student must be added after
the last element.

Line 15 determines if the loop’s current iteration has found the insertion point. If the new
student’s name is alphabetically less than the current student element we are looking at,
then we have found the insertion point and break out of the loop on line 16.

If the new student’s name is alphabetically greater than the current element, then we haven’t
yet found the insertion point, and we must move on to examine the next element in the list.

Before we advance currNode forward in the list, we must ensure that the prevNode pointer
is always set to the node that precedes currNode. This is done on line 17.

Line 18 advances currNode to the next node in the list, so that the next iteration of the loop
can examine the next student element.

es 21-26:

These lines connect the new student element’s node to the preceding node in the list.

If the new student is added to the beginning of the list as the first element, then the list head
must be updated. We detect this case by checking if prevNode has a null value on line 21. If
it does, then the list head is updated on line 22.

If the new student is added to the middle or end of the list, then its preceding node is stored
in prevNode. We set that node’s next data member to the new element’s node on line 25.

e 27:

This line connects the new student element’s node to the following node in the list, as stored
in the currNode pointer.

In a singly linked list without a tail, there is no special case for linking the new node to the
following one. We set the new element node’s next data member to the following node on
this line. If the new student is added to the end of the list, the following node is a null pointer.

.3.1. Insertion exercise #1: adding to the middle of the list

Figure-8.2 demonstrates the insertion of a new student in the middle of a linked list, using the
List class’s add () member function shown in partial Program-8.10.

Figure-8.2a shows the linked list before the new student is added. The existing list contains
two students named Harold and Matilda. This exercise shows the insertion of new student Joe.
The list head is stored in a node pointer called comp2404 in the program’s main () function.
In Figure-8.2a, the head points the node corresponding to student Harold, and that node points
to the next node corresponding to student Matilda. Matilda’s node is the last node in the list,
so its next pointer value is null, as represented by a red X.
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* Figure-8.2b shows the linked list after the insertion of student Joe, as well as the values of the
temporary pointers inside the add () member function. The new student Joe is passed in to the
function as parameter newstu, and a new node is created for Joe using the newNode pointer.

* In Figure-8.2b, we see that the insertion point for new student Joe is found between stu-
dents Harold and Matilda. So when the control flow breaks out of the loop on line 16 of
partial Program-8.10, the preceding node pointer prevNode’s pointee is Harold’s node, and
the following node pointer currNode’s pointee is Matilda’s node.

* Lines 25 and 27 of partial Program-8.10 reset the next pointers inside both Harold and Joe’s
nodes respectively, so that Joe’s node is inserted into the linked list at the correct position.

newNode

o]

comp2404 1
prevNode : currNode

head

<€-=

1

1

1

1

i
5l€—====——~

—————— L]
1
1
A4
data|next data |next data |next
oo 0|0+ 0 ]x
comp2404 4!
head number: 100889922
C— name: Joe
majorPgm: Physics
gpa: 8.3f
data |next data |next A 4 ? \ 4
D : 2
o ® X number : 100777888 : number : 100567899
name: Harold 1 name: Matilda
v v majorPgm: Geography ll majorPgm: CS
H 7.5£ 5 9.0f
number: 100777888 number: 100567899 i I
name: Harold name: Matilda 1
majorPgm: Geography majorPgm: CS newstu
gpa: 7.5£ gpa: 9.0f
(a) Before insertion (b) After insertion

Figure-8.2: Linked list exercise: adding to the middle of the list

8.7.3.2. Insertion exercise #2: adding to the end of the list

* Figure-8.3 demonstrates the insertion of a new student at the end of a linked list, using the
List class’s add () member function shown in partial Program-8.10.

* Figure-8.2b shows the linked list before the new student is added. The existing list contains
three students named Harold, Joe, and Matilda. This exercise shows the insertion of new
student Timmy.

* Figure-8.3 shows the linked list after the insertion of student Timmy, as well as the values of
the temporary pointers inside the add () member function. In the same figure, we also see
that the insertion point for new student Timmy is found after student Matilda. So when the
control flow breaks out of the loop on line 14 of partial Program-8.10, the preceding node
pointer prevNode’s pointee is Matilda’s node, and the following node pointer currNode is null.

* Lines 25 resets the next pointer inside Matilda’s node, so that Timmy’s node is inserted into
the linked list at the end.

* Line 27 resets the next pointer of Timmy’s node to a null value. Even though this action is
unnecessary, since a new node’s next pointer is always set to null on line 8, we do not add a
new special case to the code. We could place an if-statement on line 27 to not perform this

action when adding to the end of the list, but that would complicate the code and impede its
readability.
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Figure-8.3: Linked list exercise: adding to the end of the list

8.7.3.3. Insertion exercise #3: adding to the beginning of the list

* Figure-8.4 demonstrates the insertion of a new student at the beginning of a linked list, using
the List class’s add () member function shown in partial Program-8.10.

* Figure-8.3 shows the linked list before the new student is added. The existing list contains
four students named Harold, Joe, Matilda, and Timmy. This exercise shows the insertion of
new student Amy.

* Figure-8.4 shows the linked list after the insertion of student Amy, as well as the values of the
temporary pointers inside the add () member function. In the same figure, we also see that the
insertion point for new student Amy is found before student Harold. So when the control flow
breaks out of the loop on line 16 of partial Program-8.10, the preceding node pointer prevNode
has a null value, and the following node pointer currNode’s pointee is Harold’s node.

* Line 21 detects that we are inserting at the beginning of the list, so the list head must be
updated.

* Lines 22 resets the list head from Harold’s node, as shown in Figure-8.3, to Amy’s node, as
shown in Figure-8.4, so that Amy’s node is inserted into the linked list at the beginning.
* Line 27 resets the next pointer of Amy’s node to Harold’s node.

comp2404

head prevNode currNode

? 1 [e]
|_l

newNode jm———————— !
: v
1 data |next data|next data |next data|next data |next
""" > o+ o [ o o+ o | o+ X
newStu v v ,
III number: 100123444 number: 100889922 number: 100334455
1 name: Amy name: Joe name: Timmy
_____ > majorPgm: Math majorPgm: Physics majorPgm: CS
gpa: 10.8f gpa: 8.3€ gpa: 1158
A 4 \L
number: 100777888 number : 100567899
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Figure-8.4: Linked list exercise: adding to the beginning of the list
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8.7.4. Deleting a list element

1 /% * % * h Kk Kk Kk ok ok Kk ok ok Kk Kk * *
2 * Filename: List.cc (partial) *
3k ok ok ok kA Ak A A A A A A A Ak A
4 void List::del (const string& name, Student=** goner)
51

6 Node =xcurrNode, *prevNode;

7 prevNode = nullptr;

8 currNode = head;

10 while (currNode !'= nullptr) {

11 if (currNode->data->getName () == name)
12 break;

13 prevNode = currNode;

14 currNode = currNode—->next;

15 }

17 if (currNode == nullptr) {

18 *goner = nullptr;

19 return;

20 }

22 if (prevNode == nullptr) {

23 head = currNode->next;

24 }

25 else {

26 prevNode—->next = currNode->next;
27 }

28 *goner = currNode—>data;
29 delete currNode;
30 }

Program-8.11: Linked list deletion

Partial program purpose:

* Partial Program-8.11 shows the implementation of the del () member function of the List
class defined in partial Program-8.8.

* This function removes from the linked list a student with the name provided in the name
parameter, so that the list remains fully linked with no gaps between the nodes. The goner
parameter returns to the calling function a pointer to the removed student object.

Lines 6-8:

* First, we must traverse the linked list and find the target student to be deleted and its corre-
sponding node.

* The end goal in finding the target student’s node is to correctly set two Node pointer variables:
one pointer to the target node, and one pointer to the node that immediately precedes it.

* Line 6 declares these two node pointers. The currNode pointer is used as a looping variable
to traverse the list, and it ends up set to the list node that corresponds to the target student
element to be deleted. The prevNode pointer ends up set to the list node that immediately
precedes the target node.

* Lines 7-8 set both currNode and prevNode to their initial values before the loop that traverses
the list looking for the target student. As the looping variable, currNode starts at the list head.
As the node preceding currNode, prevNode is initialized to a null value.
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Lines 10-15:

These lines show the loop that traverses the linked list and looks at each student element to
find the target student to be deleted.

Line 10 is the while loop header that terminates the loop if currNode has reached the null
pointer value at the end of the linked list.

The loop in lines 10-15 exits under one of two conditions: we reach the end of the list and
exit at the loop header on line 10, or we find the target element to be deleted and break
out of the loop on line 12. If we reach the end of the list, it means that we did not find any
student with a name matching the parameter.

Line 11 determines if the loop’s current iteration has found the target student. If the name
of the current student element matches the name parameter, then we have found the target
student and break out of the loop on line 12.

If the current element’s name doesn’t match the parameter, then we haven’t yet found the
target student, and we must move on to examine the next element in the list.

Before we advance currNode forward in the list, we must ensure that the prevNode pointer
is always set to the node that precedes currNode. This is done on line 13.

Line 14 advances currNode to the next node in the list, so that the next iteration of the loop
can examine that next student element.

When we exit the loop, the currNode pointer is set to the target student’s node, if it has been
found, and prevNode is set to its preceding node. If the target student has not been found,
then the end of the list was reached, and currNode has a null pointer value.

Lines 17-20:

These lines deal with the case where we have traversed the entire linked list and the target
student has not been found. In other words, there is no student element in the list whose
name matches the name parameter. In this case, there are no changes to be made to the list.

Line 18 initializes the target student pointer in the goner parameter to a null value, and line
19 returns to the calling function.

Lines 22-27:

These lines connect the target student’s preceding node to the target student’s following
node, effectively removing the target student from the list.

If the target student is located at the very beginning of the list, then the list head must be
updated to the target’s next node in the list, found in currNode->next. We detect this case
by checking if prevNode has a null value on line 22. If it does, then the list head is updated
on line 23.

If the target student is located in the middle or end of the list, then its preceding node
prevNode is linked to the target’s following node, found in currNode->next on line 26.

Lines 28-29:

These lines perform the final housekeeping duties in this function.

Line 28 initializes the target student pointer in the goner parameter to the student pointer
stored in the target node currNode.

Line 29 deallocates the dynamically allocated memory associated with the target student’s
node. Because the only job of a node is to link a data element into the linked list, if the
element is removed from the list, then the node is no longer needed. We do not deallocate
the data, since it is returned in the goner parameter for the calling function to use.
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Figure-8.5: Linked list exercise: removing from the middle or end of the list

8.7.4.1. Deletion exercise #1: removing from the middle or end of the list

Figure-8.5 demonstrates the deletion of a student from the middle or end of a linked list, using
the List class’s del () member function shown in partial Program-8.11.

Figure-8.5a shows the linked list before the student is removed. The existing list contains five
students named Amy, Harold, Joe, Matilda, and Timmy. This exercise shows the deletion of
student Joe.

Figure-8.5b shows the linked list after the deletion of student Joe, as well as the values of the
parameters and temporary pointers inside the del () member function. The student name
"Joe" is passed in to the function as the name parameter.

In Figure-8.5b, we see that student Joe was found. So when the control flow breaks out of
the loop on line 12 of partial Program-8.11, the preceding node pointer prevNode’s pointee is
Harold’s node, and the target node pointer currNode’s pointee is Joe’s node.

Line 26 resets the next pointerinside Harold’s node to the node following Joe, which is Matilda’s
node. That way, Joe’s node is removed from the linked list.
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This logic also works for removing the last element of the list, for example student Timmy. In
that case, the loop ends with prevNode pointing to Matilda’s node and currNode pointing to
Timmy’s node. Setting the next pointer inside Matilda’s node to the node following Timmy,
which is the null value, successfully removes Timmy from the list.

Line 28 sets the goner output parameter’s pointee to the student object corresponding to the
target student Joe.

Line 29 deallocates Joe’s node, since its element is no longer in the list.

8.7.4.2. Deletion exercise #2: removing from the beginning of the list

Figure-8.6 demonstrates the deletion of a student from the beginning of a linked list, using
the List class’s del () member function shown in partial Program-8.11.

Figure-8.5b shows the list before the student is removed. It contains four students named
Amy, Harold, Matilda, and Timmy. This exercise shows the deletion of student Amy.

Figure-8.6 shows the linked list after the deletion of student Amy, as well as the values of the
parameters and temporary pointers inside the del () member function. The student name
"Amy" is passed in to the function as the name parameter.

In Figure-8.6, we see that student Amy was found. So when the control flow breaks out of the
loop on line 12 of Program-8.11, the preceding node pointer prevNode has a null value, and
the target node pointer currNode’s pointee is Amy’s node.

Line 22 detects that we are removing the first element, so the list head must be updated.

Line 23 resets the list head from Amy’s node to the following node, which is Harold’s node.
That way, Amy’s node is removed from the linked list.

Line 28 sets the goner output parameter’s pointee to the student object corresponding to the
deleted student Amy.

Line 29 deallocates Amy’s node, since its element is no longer in the list.
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Figure-8.6: Linked list exercise: removing from the beginning of the list
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8.7.5. Printing the list

1 /% % % % & & & A A A A K A A A ok ok

2 * Filename: List.cc (partial) *
3k ok ok ok kA Ak A A A A A A A Ak A
4 void List::print () const

5 {

6 Nodex currNode;

8 cout << "STUDENTS:" << endl;

9 for (Nodex currNode=head;

10 currNode != nullptr;

11 currNode = currNode->next) {
12 currNode->data->print () ;

13 }

14 }

Program-8.12: Linked list printing

Partial program purpose:

Partial Program-8.12 shows the implementation of the print () member function of the List
class defined in partial Program-8.8.

This function traverses the linked list and prints the student data of every list element.

Line 6:

To traverse the linked list, we need a Node pointer as a looping variable.
Line 6 declares the currNode pointer for this purpose.

Lines 9-13:

These lines show the loop that traverses the linked list and prints each student element.

Lines 9-11 define the loop header of a for-loop that iterates through the list. We could have
used a while loop very similar to both partial Program-8.10 and partial Program-8.11, but
here we use a for-loop to demonstrate an alternative implementation.

The first part of a for-loop header initializes the looping variable. Here, line 9 shows that the
currNode looping variable is initialized to the list head.

The second part of a for-loop header is the iteration condition. As long as this condition is
true, the loop keeps executing for one more iteration. Line 10 shows that the loop iterates
until the end of the list is reached when currNode is set to a null value.

The third part of a for-loop header is the looping variable’s advancing statement, which is
often an increment or decrement operation. Line 11 shows that we advance to the next
element by setting the currNode looping variable to the next element’s node in the list.

Line 12 calls the student class’s print () member function for the current element, which is
the student object corresponding to the current node.

This loop does not try to print the student information itself, since that would be very bad
encapsulation. The List class should have no knowledge of student information. The only
part of the program that should know how to print student data is the student class.
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8.7.6. Cleaning up the list

1 /% * % * h Kk Kk Kk ok ok Kk ok ok Kk Kk * *
2 * Filename: List.cc (partial) *
3k ok ok ok kA Ak A A A A A A A Ak A
4 List::~List ()

51

6 Node *currNode, #*nextNode;

7 currNode = head;

9 while (currNode != nullptr) {

10 nextNode = currNode->next;

11 delete currNode->data;

12 delete currNode;

13 currNode = nextNode;

14 }

15 }

Program-8.13: Linked list cleanup

Partial program purpose:

» Partial Program-8.13 shows the implementation of the List class destructor.
* The destructor is called automatically when a statically allocated r.ist object moves out of

scope, or when a dynamically allocated List object is deallocated.

Lines 6-7:

* The goal of the destructor is to traverse the linked list and deallocate every remaining data

element its corresponding node.

Line 6 declares two node pointers. The currNode pointer is used as the looping variable to
traverse the list, and the nextNode pointer stores the following node as its pointee.

Unlike the add () and del () member functions, the destructor does not store a preceding
node. Instead, it keeps track of a next node because the loop on lines 9-14 is a destructive
loop, which means that it alters the list irreparably. We must save the link to the following
node into a separate variable before we deallocate the current node. Otherwise, when we
deallocate the current node, we lose the rest of the list because the memory where the next
node pointer is stored is no longer accessible.

Line 7 ensures that the list traversal begins at the head.

Lines 9-14:

These lines show the loop that traverses the linked list and deallocates its nodes and data.

Line 9 declares the header of a while loop that terminates if currNode has reached the null
pointer value at the end of the linked list.

Before we deallocate the current element, we save the following node pointer into a separate
nextNode variable on line 10.

Line 11 deallocates the current student data element. This must be done before deallocating
the node, otherwise we lose access to the data element.

Line 12 deallocates the current element’s node.

Line 13 advances currNode to the next node in list, as saved in the nextNode variable, so
that the next iteration of the loop can deallocate the next element.
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Figure-8.7: Linked list exercise: cleaning up the nodes and data

8.7.6.1. Clean up exercise: cleaning up the nodes and data

Figure-8.7 demonstrates the cleaning up of a linked list by deallocating the memory occupied
by its data and nodes, using the L.ist class’s destructor shown in partial Program-8.13. In the
figure, a large X over an object represents the deallocation of that object.

All the memory in the linked list exercise is dynamically allocated, except for the List object
called comp2404 that contains the list head. This variable is local to the main () function, as
we see in the next part of the exercise.

Figure-8.7a shows the linked list at the end of the loop’s first iteration, as well as the val-
ues of the temporary pointers inside the destructor. We see that the current node’s pointee
is Harold’s node, which is the first element deallocated. The following node is saved into
nextNode as a pointer to Matilda’s node.

In Figure-8.7b, we see the second iteration of the loop. The current node’s pointee is Matilda’s
node, which is deallocated. The following node is set as a pointer to Timmy’s node.

Figure-8.7c shows the third and final iteration of the loop. The current node’s pointee is
Timmy’s node, which is deallocated. The following node is set to a null value, since we are at
the last element in the list.

After deallocating Timmy’s data and node, the loop terminates.
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8.7.7. Main control flow

1 /% % % % & & & A A A A K A A A ok ok

2 # Filename: main.cc *

3k ok ok ok kA Ak A A A A A A A Ak A
4 int main ()

51

6 Student *matilda = new Student ("100567899", "Matilda", "CS", 9.0f);

7 Student xharold = new Student ("100777888", "Harold", "Geography",

8 7.5f);

9 Student =*joe = new Student ("100889922", "Joe", "Physics", 8.3f);
10 Student *timmy = new Student ("100334455", "Timmy", "CS", 11.5f);
11 Student xamy = new Student ("100123444", "Amy", "Math", 10.8f);
13 List comp2404;

14 comp2404.add (matilda) ;

15 comp2404.add (harold) ;

16 comp2404.add (joe) ;

17 comp2404.add (timmy) ;

18 comp2404.add (amy) ;

19 comp2404 .print () ;

21 Student* someStu;

22 string stuName = "";

24 while (1) {

25 cout << "Student to be deleted [-1 to quit]: ";
26 cin >> stuName;

27 if (stuName == "-1")

28 break;

30 comp2404.del (stuName, &someStu);

31 if (someStu == NULL) {

32 cout << "—--Could not delete student" << endl;
33 }

34 else {

35 cout << "—--Deleted: " << someStu->getName () << endl;
36 delete someStu;

37 }

39 comp2404.print () ;

40 }

42 return 0;
43 }
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Terminal — -csh — 80x36

Don't Panic ==> p8&

STUDENTS:

Student: 188123444 Amy Math
Student: 1886777888 Harold Geography
Student: 188889922 Joe Physics
Student: 1808567899 Matilda Cs
Student: 188334455 Timmy Cs

Student to be deleted [-1 to quitl: Joe
—==Deleted: Joe

STUDENTS:

Student: 188123444 Amy Math
Student: 188777888 Harold Geography
Student: 188567899 Matilda Cs
Student: 188334455 Timmy CS

Student to be deleted [-1 to quit]: Amy
—-Deleted: Amy

STUDENTS:

Student: 188777888 Harold Geography
Student: 188567899 Matilda Cs
Student: 188334455 Timmy CSs

Student to be deleted [-1 to quit]: Bob
==Could not delete student

STUDENTS:

Student: 188777888 Harold Geography
Student: 108567899 Matilda CS
Student: 188334455 Timmy Cs

Student to be deleted [-1 to guit]: -1
Don't Panic ==> [

Program-8.14: Linked list exercise: main () function

Partial program purpose:

demonstrates the main () function’s use of the List class previously defined
in partial

The program declares a local List object and adds some student objects to it. The end-user
is prompted repeatedly for the name of a student to remove from the list, which is printed
out after every deletion.

Lines 6-19:

These lines allocate and initialize five students, as well as a linked list. They add the students
to the list and print it out to the screen.

Lines 6-11 dynamically allocate and initialize five student objects.

Line 13 declares a List object, as defined partial . This calls the List default
constructor shown in partial

Lines 14-18 add each of the five students to the linked list by calling the List class’s add ()
member function shown in partial

Line 19 calls the print () member function shown in partial
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Lines 24-40:

These lines show the while loop that repeatedly deletes a user-selected student from the
linked list and prints the list.

On lines 25-28, the end-user is prompted to enter a student name, and we break out of the
loop if the sentinel value "-1" is entered.

Line 30 removes from the linked list the student with the user-entered name by calling the
List class’s del () member function shown in partial Program-8.11.

Lines 31-33 deal with the case where the user-entered student name does not appear as an
element in the linked list. This is detected by checking the del () member function’s output
parameter, returned into the somestu local variable, for a null value.

Lines 34-37 deal with the case where the user-entered student name was found in the list.
The student’s name is printed out on line 35, using the returned student pointer. The corre-
sponding student object is deallocated on line 36, as someStu is the only remaining pointer
to that object.

Line 39 prints out the contents of the linked list at the end of each iteration.

Line 42 terminates themain () function. As a result, the statically allocated linked list comp2404
is automatically deallocated, which executes the List object’s destructor and deallocates all
the remaining nodes and student data, as shown in partial Program-8.13.

NOTE: In programming, a sentinel value is a value that has a special meaning. It's often
used as a breaking condition in a loop to indicate the end of the input.
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Chapter 9

Inheritance

Inheritance is a key OO design technique that allows programmers to organize objects into a
generalization and specialization hierarchy. Informally known as an "is-a" relationship, inheritance
between two classes establishes one class as a specialized type of a more generalized class.
Inheritance is a key technique for abstraction, as presented by Liskov [8].

In this chapter, we discuss the basics of inheritance and their implementation in C++, including
the construction and destruction of objects. We also introduce the different types of inheritance
and how C++ enables multiple inheritance.

9.1. Principles

We introduce the principles of inheritance and their terminology in C++, and we discuss how
access specifiers behave with classes in an inheritance relationship.

9.1.1. Terminology

9.1.1.1. What is inheritance:

* In OO design, inheritance is a relationship between two classes where one is a specialized
sub-type of a more generalized one.

* |t is often conceptualized as an is-a relationship between two classes.

* For example, an undergraduate student and a graduate student are both a specialized kind
of student. Both sub-types of students have many attributes in common that can be captured
in the more generalized student class, for example their name, student number, and GPA.

* In less formal terms, the more generalized class is sometimes called the parent class or the
superclass, and the more specialized class is called the child class or the subclass.

* Inheritance is an important technique for the abstraction and encapsulation of object data and
behaviour.

9.1.1.2. C++ terminology:

* In C++, the more generalized class in an inheritance relationship is called the base class,
and the more specialized class is called the derived class.

* In the example above, the student class is the base class, and both Undergradstudent and
Gradstudent are the derived classes. We say that UndergradStudent and GradStudent are
derived from the student class.

* In UML, the inheritance relationship is shown with a clear (not filled) triangle at the superclass
end of the line between the two classes, as discussed in section 7.3.
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9.1.2. Member access

9.1.2.1. Inherited members:
» All class members defined in a base class are automatically inherited by its derived class(es).

* Inherited members class become part of the derived class simply by declaring the inheritance
relationship. These members should never be redefined in the derived class, either in the
code or in a UML class diagram.

* Inherited members include all class members, including data members and member functions,
whether they have public, protected, or private access specifiers.

» Composition relationships are inherited, since every data member of a base class becomes
part of a derived class object, including the base class’s containee objects.

* Friendship is not inherited.

9.1.2.2. Accessing inherited members:

* While all base class members are inherited by the derived class, they are not all directly
accessible from the derived class.

* Only public and protected base class members can be accessed directly in the derived class.
Those members can be accessed as if they were members of the derived class.

* Private base class members are not directly accessible in the derived class.

* If a base class declares some of its members as private, it means that those members are
private to the base class.

* Inherited private base class members are still part of each derived class object! But they are
invisible and inaccessible directly in the derived class.

* Private base class members can be accessed by the derived class using the base class’s public
or protected member functions, or the base class’s friend classes and friend functions.

Base class object Derived class object
private
Base class object Derived class object protected >{ protected >] protected
private ‘—>m_ - public > public >| public
o ase class private | e
protected >| protected —

. - . members protected >{ protected

public > public | - =
— public >{ public

private
derived class

protected = members protected

public _ public

(a) One level of inheritance (b) Two levels of inheritance

Figure-9.1: Class member inheritance

9.1.2.3. Example:
* Figure-9.1 shows the behaviour of access specifiers in derived objects.

* In Figure-9.1a, we see that private members in the base class become invisible in a derived
class object, but public and protected members keep their original access.

* In Figure-9.1b, we see the same effect with two levels of inheritance. Members that are invis-
ible or private in the base class are invisible in the derived class object. Public and protected
members maintain the same access no matter the level of inheritance.
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9.1.3. Coding example: Simple inheritance

The program in this example implements the UML class diagram shown in Figure-9.2.

Animal

#lifespan : float
-name : string

-age : int

+print()

Chicken

-eggCount : int

+print()

Figure-9.2: UML class diagram for Program-9.1

The Animal class:

* We see from Figure-9.2 that the animal class contains three data members: a protected data
member for the animal’s expected lifespan in years, a private data member for the animal’s
name, and a private data member for the animal’s current age in years.

* The animal class has a public member function that prints out the animal’s data.

* It also has other member functions that are not shown in the UML class diagram, including a
default constructor, a destructor, and a getter for the name data member.

The chicken class:

* Figure-9.2 shows that the chicken class is derived from the Animal class.

* The chicken class contains four data members: the three data members inherited from the
Animal class, and a private data member that stores the number of eggs that the chicken is
expected to produce on a daily basis.

* The chicken class has a public member function that prints out the chicken’s data, as well
as a default constructor and a destructor.

1 /% * % o, o K Kk Kk ok ok Kk ok ok Kk Kk * *
2 # Filename: Animal.h *
3*****************/
4 class Animal

51

6 public:

7 Animal (string="Fluffy", int=0, float=0);
8 ~Animal () ;

9 string getName () const;

10 void print () const;

11 protected:

12 float lifespan;

13 private:

14 string name;

15 int age;
16 };
17
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18
19
20
21
22
23
24
25

27
28
29
30

32

34
35
36
37
38

40
41
42
43
44
45
46
47
48
49
50
51

53
54
55
56
57
58
59
60

62
63
64
65

67
68
69
70
71
72
73
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/*****************

* Filename: Animal.cc *

*****************/

Animal::Animal (string n, int a, float 1f)

name (n), age(a), lifespan(lf)

cout << "—-— Animal ctor: " << name <<

Animal::~Animal ()

{

cout << "—— Animal dtor: " << name <<

string Animal::getName () const { return

void Animal::print () const

{

cout << "Animal: " << name << ",

endl;

endl;

name; }

age " << age

<< ", with lifespan " << lifespan << endl;

/*****************
* Filename: Chicken.h *
*****************/

class Chicken : public Animal

{
public:

Chicken(string="Little Red Hen",
~Chicken () ;
void print () const;
private:
int eggCount;
bi

/*****************

* Filename: Chicken.cc *

*****************/

int=0,

Chicken::Chicken(string n, int a, float 1f,

Animal (n,a,l1f), eggCount (ec)

cout << "-— Chicken ctor: " << getName ()

Chicken: :~Chicken ()
{

cout << "—— Chicken dtor: " << getName ()

void Chicken::print () const

{

Animal: :print () ;

float=0,

int ec)

<< endl;

<< endl;

int=0);

cout << " and I'm a chicken that can produce "

<< eggCount << " eggs daily"

<< endl;
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Th4 /% * % % * % * * % * * * * & * & *
75 % Filename: main.cc *

TO % % % % * * & A A A A A A A A A A/
77 int main ()

78 {

79 Animal gertrude ("Gertrude", 8);

80 Chicken matilda ("Matilda", 4, 12, 6);

82 cout << endl << "ANIMALS:" << endl;
83 gertrude.print () ;
84 matilda.print () ;

86 return 0;

87 }
§ Terminal — -csh — 80x24
Don't Panic ==> pl
--= Animal ctor: Gertrude

-— Animal ctor: Matilda
== Chicken ctor: Matilda

ANIMALS:
Animal: Gertrude, age 8, with lifespan @

Animal: Matilda, age &4, with lifespan 12
and I'm a chicken that can produce 6 eggs daily

== Chicken dtor: Matilda
-— Animal dtor: Matilda
== Animal dtor: Gertrude
Don't Panic ==> I

Program-9.1: Simple inheritance

Program purpose:

. demonstrates the use of inheritance in C++ with two classes, based on the
design shown in

Lines 4-16:

e These lines show the Animal class definition.

* Line 12 declares the 1ifespan data member in the protected area defined on line 11, which
means that derived class objects can access the data member directly.

* Lines 14-15 declare the two data members name and age in the private area defined on line
13, which means that derived class objects cannot access them directly.

* We see on line 7 that the default constructor takes three parameters, one for each data
member declared in this class.

Lines 43-51:
e These lines show the chicken class definition.

* Line 43 defines the chicken class as derived from the aAnimal class. The syntax requires that
the derived class name is followed by a colon, then the type of inheritance (public), then the
name of the base class. Types of inheritance are discussed later in this chapter.

* Line 50 declares the eggCount data member as private. We do not redefine the three data
members inherited from animal, but they are still present in every chicken object created.

* We see on line 46 that the default constructor takes four parameters, one for each data
member declared in the Animal class and in the chicken class.
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In section 8.1.1, we noted that correct encapsulation requires that a container object con-
structor only initializes its own data members, and not the containee data members, which
must be initialized by the containee object constructor.

The same encapsulation rules apply to objects related by inheritance. A derived class con-
structor must only initialize its own data members, and not the base class members. The
base class data members must be initialized by the base class constructor.

Lines 56-60:

These lines show the implementation of the chicken class’s default constructor.

We see on line 56 that the chicken constructor takes in all the parameter values necessary
to initialize a new Cchicken object, including both its Animal and its chicken data members.

However, it is not the responsibility of the chicken constructor to initialize the Animal data
members. It must call the animal constructor to do this.

We see how the chicken constructor calls the animal constructor on line 57, using base class
initializer syntax.

Remember member initializer syntax from section in 8.1.1?7 We used member initializer syn-
tax to avoid the default initialization of containee objects when creating a container object.
Similarly, base class initializer syntax avoids the default initialization of base class data mem-
bers by calling the base class constructor with the correct parameter values.

Line 57 does two things:

- it uses base class initializer syntax to call the base class aAnimal constructor with the first
three parameter values, in order to correctly initialize the Animal data members, and

- ituses member initializer syntax to initialize the chicken data member using the remaining
parameter value

Line 59 prints out a debugging statement with the new chicken object’s name. But because
the name data member is private to the Animal base class, the chicken class cannot access
it directly. A public member function in the animal class is called to get the chicken’s name.

Lines 67-72:

These lines show the implementation of the chicken class’s printing member function. This
function is responsible for printing out all the chicken object’s data members, including the
Animal ones. However, correct encapsulation requires that only the Animal class knows how
to print out Animal data members.

The solution is simply for the chicken printing function to output only the chicken data
member, and to call the Animal class’s printing function for the printing of its data members.

We see on line 69 how the Animal printing function is called. This line cannot simply call
print (), since that would create an endless recursive call to the chicken printing function.
Instead, we must use the animal class name followed by the scope resolution operator to
specify that it's the animal printing function that is called on this line.

Lines 77-87:

* These lines show the implementation of the main () function.

Line 79 shows the creation of an aAnimal object. The Animal constructor is called with only
two parameters: the new animal’s name and its age. The constructor uses the default value
indicated on line 7 to initialize the lifespan data member.

Line 80 declares a chicken object. In this case, all four parameter values are provided,
including the egg count.

Lines 83-84 print out the contents of both objects, and we see the correct values in the
program output.
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NOTE: The reader should note that all the animals in these coding examples are highly
fictionalized. This author is aware that hens do not produce multiple eggs per day, but alas
creative license must be suffered.

9.2. Overloading member functions

We discuss the concepts of overloading and overriding member functions in C++ and their con-
sequences for program behaviour.

9.2.1. Concepts

9.2.1.1. Function prototypes and signatures:

* A function prototype is the combination of a function name, the set of its parameter data
types, and its return type.

» A function signature is the combination of a function name and the set of its parameter data
types only, without the return type.

* This distinction is important in all discussions on overloading in C++. The topic is expanded
upon in chapter 12.

9.2.1.2. Overriding a class member function:

* Overriding redefines a function inherited from a base class with another function with the
same name, and with the exact same signature, in a derived class.

* This feature is one of the fundamental requirements for runtime polymorphism, which is a
highly powerful technique in OO design and the topic of chapter 10.

* An overridden base class function can still be accessed in the derived class, but it must be
called using the base class name and the scope resolution operator, as we did on line 69
of Program-9.1.

9.2.1.3. Overloading a class member function:

* Overloading redefines a function, either declared in the same class or inherited from a base
class, with another function of the same name, but with a different signature.

* When a derived class overloads an inherited member function, it effectively hides the base
class function from the derived class objects, even though the base class function is inherited.

* Just as with an overridden function, an overloaded inherited one can still be called using the
scope resolution operator.

* Overloading is an important feature in many OO languages, and we explore this topic further
in chapter 12.
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9.2.2. Coding example: Using inherited member functions

1 /% % % % & & & A A A A K A A A ok ok
2 % Filename: Animal.h *
3 * ok ok Ak Ak A A A A A A A A A A A A/

4 class Animal

51

6 public:

7 Animal (string="Fluffy", int=0, float=0);

8 ~Animal () ;

9 string getName () const;
10 void print () const;
11 void dance (int) const;
12 void dance (double) const;
13 protected:

14 float lifespan;
15 private:

16 string name;

17 int age;

18 };

20 /% F K ok A A K A Kk K K K A Kk A Kk *
21 % Filename: Animal.cc (partial) *
22k kK kA A kA kA Ak A A A A ok X/

23 void Animal: :dance (int mins) const

24 {

25 cout << "Animal " << name << " must dance for "
26 << mins << " minutes." << endl;

27 }

29 void Animal: :dance (double frac) const

30 {

31 cout << "Animal " << name << " must dance for "
32 << frac << " of an hour." << endl;

33 }

35 /% K K Kk A A K A ok A K K A K A ok *
36 # Filename: main.cc *

37 & ok Ak kA Ak kA kA Ak kA kA ok X/
38 int main ()

39 {

40 Animal gertrude ("Gertrude", 8);

41 Chicken matilda ("Matilda", 4, 12, 6);

43 cout << endl << "THE DANCE:" << endl;
44 gertrude.dance (20) ;

45 gertrude.dance (0.5) ;

46 matilda.dance (10) ;

47 matilda.dance (0.33);

48 cout << endl;

50 return 0;
51 }
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] L] Terminal — -csh — 80x24

Don't Panic ==» p2-1

-— Animal ctor: Gertrude
—-— Animal ctor: Matilda
== Chicken ctor: Matilda

THE DAMNCE:
Animal Gertrude must dance for 28 minutes.

Animal Gertrude must dance for 8.5 of an hour.
Animal Matilda must dance for 18 minutes.
Animal Matilda must dance for 8.33 of an hour.

—— Chicken dtor: Matilda
-— Animal dtor: Matilda
== Animal dtor: Gertrude
Don't Panic ==> [}

Program-9.2: Using inherited member functions

Program purpose:

. demonstrates the use of inherited functions without overloading them in the
derived class.

* The program uses the same chicken class defined in

Lines 11-12:
e These lines show the declaration of two member functions called dance () inthe animal class
definition.
e The two dance () member functions are overloaded in the animal class, but not overloaded

in the chicken class. One dance () member function takes an integer as parameter, and the
other takes a double.

Lines 23-33:
* These lines show the implementation of the two dance () member functions.
* Each member function prints out a different message.

Lines 38-51:
* These lines show the implementation of the main () function.
* Lines 40-41 create an Animal object and a chicken object.
* Lines 44-47 show the two dance () member functions called on each object.

* The program output shows that the Animal class’s two dance () member functions are suc-
cessfully called on both the animal object and the chicken object.
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9.2.3. Coding example: Using overloaded inherited member functions

VA T S S S
* Filename: Chicken.h *
*****************/
class Chicken : public Animal
{
public:
Chicken(string="Little Red Hen", int=0, float=0, int=0);
~Chicken () ;
void print () const;
void dance (string) const;
11 private:
12 int eggCount;
13 };

O 00N O UL B~ WN B

=
(@)

15 /% * % * o % * K & ok K Kk k K Kk K Ak ok
16 « Filename: Chicken.cc (partial) +*
17 % % % % ok F ok K Ak ok A ok K Kk K K * */

18 void Chicken::dance(string d) const

19 {

20 cout << "Chicken " << getName () << " must dance the "
21 << d << "." << endl;

22 }

24 /% % K Kk A Kk K K ok K Kk K A Kk A Kk *
25 # Filename: main.cc *

20 & ok A ok A A Kk K kA Ak A A Kk A Kk */
27 int main ()

28 {

29 Animal gertrude ("Gertrude", 8);

30 Chicken matilda ("Matilda", 4, 12, 6);

32 cout << endl << "THE DANCE:" << endl;
33 // gertrude.dance ("tango");

34 gertrude.dance (20) ;

35 gertrude.dance (0.5);

37 // matilda.dance (10);

38 // matilda.dance (0.33);

39 matilda.Animal: :dance (10);
40 matilda.Animal: :dance (0.33);
41 matilda.dance ("cha-cha");

42 cout << endl;

44 return 0;
45 '}
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[ & Terminal — -csh — 80x24

Don't Panic ==> p2-2

-— Animal ctor: Gertrude
== Animal ctor: Matilda
-— Chicken ctor: Matilda

THE DANCE:
Animal Gertrude must dance for 28 minutes.
Animal Gertrude must dance for 8.5 of an hour.

Animal Matilda must dance for 18 minutes.
Animal Matilda must dance for ©.33 of an hour.
Chicken Matilda must dance the cha-cha.

-— Chicken dtor: Matilda
== Animal dtor: Matilda
-— Animal dtor: Gertrude
Don't Panic ==> [}

Program-9.3: Using overloaded inherited member functions

Program purpose:

demonstrates the use of both inherited functions and overloaded inherited func-
tions in the derived class.

The program uses the same Aanimal class defined in

Line 10:

This line shows the declaration of a dance () member function in the chicken class definition.

The Animal base class still contains two dance () member functions with different signatures,
so the dance () member function declared on line 10 overloads the other two.

The chicken class now has three overloaded dance () member functions: two are inherited
from Animal and take an integer and a double as parameter, respectively; and one is over-
loaded in chicken and takes a string as parameter.

Lines 18-22:

These lines show the implementation of the chicken class’s dance () member function that
takes a string as parameter.

Lines 27-45:

These lines show the implementation of the main () function.
Lines 29-30 create an Animal object and a Chicken object.

Line 33 is commented out because it doesn’t compile. It attempts to call the dance () member
function that takes a string as parameter on an animal object. Since that member function
is defined in the chicken class only, it cannot be called on an Animal object.

Lines 34-35 show the two dance () member functions from the animal class called on an
Animal object, which executes successfully.

Lines 37-38 are also commented out because they don’t compile. Although the animal class’s
dance () member functions are inherited in chicken, they cannot be called on a Chicken ob-
ject using the syntax shown on lines 37-38. That’s because the chicken class has overloaded
the dance () member functions with its own version.

Lines 39-40 show the correct syntax necessary to call the base class’s dance () member
functions, using the class name and the scope resolution operator.

Line 41 shows the chicken class’s dance () function called on a chicken object, which uses
regular syntax.
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9.3. Constructing and destroying objects

We discuss the construction and destruction of objects with an inheritance relationship.

9.3.1. Concepts

9.3.1.1. What is base class initializer syntax:

We use base class initializer syntax to provide a base class constructor with parameter val-
ues during the construction of a derived class object. It is closely related to member initializer
syntax.

When a derived class object is allocated and its constructor is called, the base class constructor
also executes automatically. The call to the base class constructor can be implicit, which uses
the constructor’s default arguments, or explicit if base class initializer syntax is used.

We use base class initializer syntax to:

- provide parameter values to the base class constructor

- avoid an automatic call to the base class constructor using default values
- avoid having to provide setter member functions in the base class

Correct encapsulation requires that each constructor initializes its own members only, and
never the members of another class, not even a base class.

For example, allocating a chicken object automatically calls the chicken constructor, which
automatically calls the base class animal constructor. The derived class Cchicken constructor
is responsible for initializing the chicken portion of the object, and the base class constructor
initializes the Animal part.

9.3.1.2. Order of construction of objects with inheritance:

Objects are built "top-down". The base class portion of an object is constructed first, followed
by the derived class part.

For example, in Program-9.3, we know that the chicken class is derived from Animal. So the
construction of the chicken object matilda generates a call to both constructors, as we see
in the program output. The Animal portion of the chicken object matilda is initialized first,
then its Chicken portion.

9.3.1.3. Order of destruction of objects with inheritance:

Objects are destroyed "bottom-up". The derived class portion of an object is destroyed first,
followed by the base class part.

For example, in Program-9.3, the destruction of the Chicken object matilda generates a call
to both destructors, as we see in the program output. The Chicken portion of matilda is
destroyed first, then its Animal portion.

9.3.1.4. Order of construction of objects with both composition and inheritance:

Objects are built top-down and inside-out.

The base class portion of an object is constructed first, with the base class containee objects
built before the base class container.

The derived class portion of an object is constructed last, with the derived class containee
objects built before the derived class container.
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9.3.1.5. Order of destruction of objects with both composition and inheritance:
* Objects are destroyed bottom-up and outside-in.

* The derived class portion of an object is destroyed first, with the derived class container object
destroyed before the derived class containees.

* The base class portion of an object is destroyed last, with the base class container object
destroyed before the base class containees.

* Destructors are usually invoked in the reverse order of constructors.

9.3.2. Coding example: Inheritance and composition

The program in this example implements the UML class diagram shown in Figure-9.3.

Animal

#lifespan : float
-name : string

-age :int

+print(}

I

Chicken Egg

-eggCount : int -size : string

+print() +print()

Figure-9.3: UML class diagram for Program-9.4

The Animal class:

* The Animal class in Figure-9.3 is identical to Figure-9.2.

The chicken class:

* Figure-9.3 shows that the chicken class is derived from the animal class.

* The chicken class also has a composition relationship with the Egg class. From the arrow,
we know that this is a unidirectional relationship, so each chicken object contains an Egg
object, but the Egg does not contain a chicken. The multiplicity of 1 specifies that a chicken
object contains exactly one Egg object.

* Figure-9.3 indicates that the chicken class has five data members: three members inherited
from the Animal class, a private data member that stores the number of eggs that the chicken
is expected to produce on a daily basis, and a containee Egg object.

The Egg class:

* The Egg class in Figure-9.3 contains one private data member that represents the average
size of an egg, for example "medium" or "large".

* The class also provides a print member function, as well as a constructor and destructor.
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1 /4 % % * % Kk % A Kk K A K A K A Kk *
2 * Filename: Chicken.h *
3 X A ok A ok A A ok A A A A kA A A A/

4 class Chicken : public Animal

51

6 public:

7 Chicken(string="Little Red Hen", int=0, float=0,
8 int=0, string="");

9 ~Chicken () ;

10 void print () const;

11 private:

12 int eggCount;

13 Egg eggQuality;

14 };

16 /% #* % % 4 % ok % A Kk & ok K Kk K A ok
17 + Filename: Chicken.cc *
18 X A ok A ok Kk A ok K Ak A A ok A A * A/

19 Chicken::Chicken(string n, int a, float 1f, int ec, string s)

20 : Animal (n,a,1f), eggCount (ec), eggQuality(s)
21 {

22 cout<<"—-- Chicken ctor: "<<getName ()<<endl;
23}

25 Chicken: :~Chicken ()

26 {

27 cout<<"—-- Chicken dtor: "<<getName ()<<endl;
28 }

30 void Chicken::print () const
31 {
32 Animal: :print () ;

33 cout << " and I'm a chicken that can produce " << eggCount

34 eggQuality.print (); cout << endl;
35 }

37 /4 k& ok ok Ak A A A A K A A A A A A A
38 x Filename: Egg.h *
39 X ok ok Ak A A A A A A A A A A A A A/

40 class Egg

41 |

42 public:

43 Egg (string="mini");
44 ~Egg () ;

45 void print () const;
46 private:

47 string size;

48 };

50 /4 * * 4 * K K * K K K A A A A A *
51 «* Filename: Egg.cc *
52 ok ok ok ok ok ok k Kk Kk K K K K K * * */
53 Egg::Egg(string s) : size(s)

54 {

55 cout<<"-- Egg ctor"<<endl;

56 }
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Egg::~Egg ()
{
cout<<"-- Egg dtor"<<endl;

void Egg::print () const
{

cout << size << " eggs daily";

/* * * * * * * * * * * * * * * * *
* Filename: main.cc *
* * * * * * * * * * * * * * * * */
int main ()
{
Chicken matilda ("Matilda", 4, 12, 6, "medium");
Chicken stanley ("Stanley", 2, 12, 10, "large");

cout<<endl<<"ANIMALS: "<<endl;
matilda.print () ;
stanley.print () ;

cout<<endl;

return 0;

Terminal — -csh — 80x24

Don't Panic ==> p3

-= Animal ctor: Matilda

-- Egg ctor

-== Chicken ctor: Matilda
—— Animal ctor: Stanley

-- Egg ctor

-= Chicken ctor: Stanley

ANIMALS:
Animal: Matilda, age 4, with lifespan 12

and I'm a chicken that can produce 6 medium eggs daily
Animal: Stanley, age 2, with lifespan 12
and I'm a chicken that can produce 18 large eggs daily

-= Chicken dtor: Stanley
-- Egg dtor

—-— Animal dtor: Stanley

-== Chicken dtor: Matilda
-- Egg dtor

—— Animal dtor: Matilda

Don't Panic ==> I

Program-9.4: Inheritance and composition
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Program purpose:

* Program-9.4 demonstrates the use of both inheritance and composition together, based on
the design shown in Figure-9.3.

* The program uses the same Animal class defined in Program-9.1.

Lines 4-14:

e These lines show the chicken class definition.

* Lines 7-8 indicate that the constructor now takes an additional string parameter to initialize
the containee Egg object.

* Line 13 shows the declaration of an Egg object as a containee data member.

Lines 19-23:

* These lines show the implementation of the chicken constructor.

* Line 20 shows that base class initializer syntax is used to call the animal constructor with the
correct parameter values; then member initializer syntax is used to both initialize the Chicken
data member and call the containee Egg object’s constructor with the correct parameter
value. The same syntax is used to call a containee object constructor in Program-8.1.

Lines 30-35:

* These lines show the implementation of the chicken printing function.

* Line 34 shows that the Egg printing function is called to print out the chicken object’s egg
information.

Lines 40-48:

* These lines show the Egg class definition.
* Line 43 indicates that the constructor takes a string parameter to initialize the data member.
* Line 47 declares the size data member.

Lines 70-81:

* These lines show the implementation of the main () function.

* Lines 72-73 create two Cchicken objects. Each constructor call provides all the parameter
values required to initialize the Animal and Cchicken portions of each object, as well as its
Egg containee object.

* Lines 76-77 print out the contents of both chicken objects, and we see from the program
output that all the data members are correctly initialized.
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9.4. Types of inheritance

C++ supports a unique feature that provides a programmer with control over the inheritance of
class member access specifiers, based on the type of inheritance. We discuss the different types
and their usage.

9.4.1. Concepts

9.4.1.1. What are the different types of inheritance:

C++ allows for three types of inheritance: public, protected, and private.
Only public inheritance is a true is-a relationship between two classes.

Private and protected inheritance are used as an alternative to composition. They are not a
class relationship based on generalization and specialization.

The use of private (or protected) inheritance ensures that a class has efficient access to the
members of its base class, but without the violations of encapsulation that public inheritance
can introduce.

9.4.1.2. Public inheritance:

Public inheritance is the only type of inheritance in C++ that implements a true is-a relation-
ship between a superclass and a subclass.

To use public inheritance, we specify the public keyword in the inheritance declaration of the
derived class definition. For example, in Program-9.1, we indicate that the chicken class is
derived publicly from Animal by declaring it as:

class Chicken : public Animal {/% class content =*/};

All the coding examples so far in this chapter have used public inheritance.

9.4.1.3. Private and protected inheritance:

Private and protected inheritance are not is-a relationships.

They are are used to restrict access to the inherited base class members, in order to uphold
the principle of least privilege and maintain correct encapsulation.

Private and protected inheritance are an advanced OO programming technique that is avail-
able in C++, but not in many other OO languages.

They are an alternative to composition and delegation.
Composition was discussed in section 8.1.1.

Delegation occurs when an object hands over responsibility for an operation to another object.
For example, in Program-9.4 on lines 30-35, the chicken printing function uses delegation
twice: on line 32, it delegates responsibility for printing the animal part of the chicken to the
Animal class’s printing function; then on line 34, it delegates to the Egg class the responsibility
for printing the chicken’s egg information.
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9.4.1.4. Example:

» With public inheritance, private members in the base class are invisible in the derived class,
and public and protected members keep the same access, as we saw in Figure-9.1a.

* Figure-9.4 shows the access specifiers of inherited members in non-public inheritance in C++.

* Figure-9.4a shows how access specifiers are inherited with private inheritance. We see that
private members in the base class become invisible in the derived class, but public and pro-
tected members become private inside the derived class.

* Figure-9.4b shows how access specifiers are inherited with protected inheritance. Private
members in the base class become invisible in the derived class, but public and protected
members become protected inside the derived class.

* Non-public inheritance basically places a cap on the access to inherited members. With private
inheritance, the maximum access specifier of inherited members is private, so other classes
in the program cannot use them at all. With protected inheritance, the maximum access
specifier of inherited members is protected, so only derived classes have access.

Base class object Derived class object Base class object Derived class object

protected > private — n::em;::: protected >! protected — r::,en;:fss

public > private [_| public > protected |_|

— —

private private
derived class derived class

protected —  members protected =  members

public _ public _

(a) Private inheritance (b) Protected inheritance

Figure-9.4: Non-public inheritance

9.4.2. Coding example: Stack example using public inheritance

class Stackl : public vector<int>

1

2 {

3 public:
4 void push (int num) { push_back (num); } //calls vector::push_back ()
5 };

7 int main ()
8 {
9 Stackl stack;

11 for (int i=0; 1<10; i++) {
12 stack.push ((i+1) *2);
13 }

15 stack[1l] = 99;
16 for (int i=0; i<10; i++) {

17 cout << stack[i] << " ";
18 }

19 return 0;

20 }

Program-9.5: Stack example using public inheritance
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Program purpose:

Program-9.5 demonstrates the use of public inheritance as an alternative to composition and
delegation, resulting in serious encapsulation issues.

NOTE: This example uses the vector class from the standard template library (STL), which
has not yet been discussed in this textbook. It’s sufficient to note that a vector is a collec-
tion class of same-type elements, and it provides many member functions and overloaded
operators. In particular, the push_back () member function adds a new element to the back
of the vector, and the subscript operator ([ 1) allows direct access to an element at a given
index, similar to a primitive array.

Lines 1-5:

These lines show the stackl class definition.

A stackl object is a collection that stores integers as elements in a stack-like data structure
that should behave in a strict last-in-first-out (LIFO) manner.

Line 1 indicates that the stack1 class uses public inheritance to derive from the STL vector
class that stores integers.

The goal of using inheritance in this example is to automatically get access to a vector object
in which to store the stack elements, and to get very efficient access to the vector class’s
member functions and overloaded operators.

Line 4 shows the implementation of the stackl class’s push () member function, which calls
the vector class’s push_back () member function. Since all member functions and operators
are declared with public access specifiers in the vector base class, the stack1 derived class
has direct access to these members.

Lines 7-20:

These lines show the implementation of the main () function.
Line 9 declares a stack1l object.

Lines 11-13 use the stack1l class’s push () member function implemented on line 4 to add
even numbers to the stack.

Lines 15-18 demonstrate how the use of public inheritance in this way has unintended con-
sequences.

Line 15 uses the subscript operator ([1) on the stackl object to arbitrarily set the second
element to the value 99. The syntax allows this because the vector class provides a public
implementation of the subscript operator, which is inherited by the stack1 class. With public
inheritance, the inherited member functions that are public in the base class remain public
in the derived class. So the main () function is able to use them with its stack1 object.

The subscript operation on line 15 violates every rule of encapsulation, because stacks are
meant to be strictly LIFO structures. Directly accessing and modifying a specific element
should never be possible. Yet our stackl implementation allows it.

Lines 16-18 show the same issue, where line 17 uses the subscript operator to print out each
element. Again, this should never be allowed in a stack-like data structure.

So public inheritance works, but it breaks encapsulation.
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9.4.3. Coding example: Stack example using composition

1 class Stack?

2 {

3 public:

4 void push (int num) { myStuff.push_back (num); }
5 private:

6 vector<int> myStuff;

7}

9 int main ()

10 {

11 Stack2 stack;

12 for (int i=0; 1i<10; i++) {
13 stack.push ((1i+1) *2);

14 }

16 /*

17 stack.myStuff[1] = 99;

18 for (int 1i=0; 1<10; i++) {

19 cout << stack.myStuff[i] << " ";
20 }

21 */

22 return 0;

23}

Program-9.6: Stack example using composition

Program purpose:

* Program-9.6 demonstrates the same example as Program-9.5, but it uses composition and

delegation instead of inheritance.

Lines 1-7:

These lines show the stack?2 class definition, and line 1 shows that the stack2 class does
not use inheritance.

Line 6 declares a private data member called mystuff, which is an STL vector object, as
the underlying data structure for the class. In this composition relationship, a stack2 object
behaves as a container, and a vector object is the containee that stores integers.

Line 4 shows the implementation of the stack2 class’s push () member function, which uses
delegation to call the push_back () member function on the containee vector object.

Lines 9-23:

These lines show the implementation of the main () function.

Line 11 declares a stack2 object, and lines 12-14 use the stack2 class’s push () member
function implemented on line 4 to add even numbers to the stack.

Lines 17-20 have been commented out because they do not compile. This is a very good
thing, because it means that themain () function cannot access the vector object’s subscript
operator. That's because the vector object is a private data member inside the stack2 class.

This implementation is much better encapsulation than the stackl class in Program-9.5,
but it does have a minor efficiency issue. In the implementation of stack2’s push () member
function, there is an additional step required to fetch the mystuff vector from memory before
calling its push_back () member function.

Composition and delegation work fine, but their usage results in a minor performance issue.
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9.4.4. Coding example: Stack example using private inheritance

1 class Stack3 : private vector<int>

2 {

3 public:

4 void push (int num) { push_back (num); }
51};

~

int main ()

{

9 Stack3 stack;

10 for (int i=0; 1<10; i++) {
11 stack.push ((i+1) *2);

12 }

(0]

14 /*

15 stack[1] = 99;

16 for (int 1i=0; 1i<10; i++) A
17 cout << stack[i] << " ";
18 }

19 */

20 return 0;

21}

Program-9.7: Stack example using private inheritance

Program purpose:

Program-9.7 demonstrates the same example as Program-9.5 and Program-9.6, but using
private inheritance.

This technique addresses the encapsulation issues with public inheritance and maintains
better efficiency over the use of composition.

Lines 1-5:

These lines show the stack3 class definition.

Line 1 shows that the stack3 class inherits privately from the STL vector class that stores
integers.

Line 4 shows the implementation of the stack3 class’s push () member function, which calls
the vector class’s push_back () member function. Since all member functions and operators
are declared with public access specifiers in the vector base class, the stack3 derived class
has direct access to these members.

Lines 7-21:

These lines show the implementation of the main () function.

Line 9 declares a stack3 object, and lines 10-12 use the stack3 class’s push () member
function implemented on line 4 to add even numbers to the stack.

Lines 15-18 have been commented out because they do not compile. This is a very good
thing, because the main () function cannot access the vector class’s subscript operator.

Lines 15 and 17 attempt to use the subscript operator on the stack3 object, but this syntax
is not allowed. With private inheritance, the vector class’s public members become private
to the stack3 derived class when they are inherited. So the main () function is unable to use
the private subscript operator with its stack3 object.

This implementation fixes the encapsulation issue we found in Program-9.5, and it avoids the
minor efficiency issue with the composition relationship in Program-9.6.
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9.5. Multiple inheritance

Multiple inheritance is a common OO design concept that can be challenging to support in any
OO language. In C++, this feature is available because of the scope resolution operator.

In this section, we discuss the concepts of multiple inheritance, the challenges that can develop
because of it, and their solution.

9.5.1. Concepts

9.5.1.1. What is multiple inheritance:

* Multiple inheritance occurs when a class inherits from more than one superclass. In other
words, a class is derived from two or more base classes.

* This technique is not supported in all OO programming languages.

* The feature that enables multiple inheritance in C++ is the scope resolution operator. It allows
for the resolution of ambiguity when a derived class has multiple base classes that contain
class members named with the same identifier.

9.5.1.2. Issues with multiple inheritance:

* Problems arise if a derived class has multiple base classes that share a common base class,
so a child class has parent classes that share a common parent.

* If a derived class has multiple base classes that have no common parent, it is said to have
distinct base classes. This design causes no issues.

» If a derived class has multiple base classes that do have a common parent, it results in a
diamond hierarchy design, which can be problematic.

9.5.1.3. What is a diamond hierarchy:

* A diamond hierarchy is formed when a derived class has multiple base classes that have a
common base class.

* This creates an inheritance hierarchy that is shaped like a diamond (imagine a square rotated
by 45°), as we see in Figure-9.5.

* In Figure-9.5, the Faun class has two base classes, Human and Goat, that share a common base
class Animal.

Animal

¢

Human Goat

+name : string

-numFeet : int -numHoofs : int

T 3

Faun

Figure-9.5: UML class diagram for Program-9.8 and Program-9.9
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9.5.1.4. Issues with a diamond hierarchy:

* In Figure-9.5, the animal class has a name data member that is inherited by each of its derived
classes Human and Goat. Since Faun derives from both Human and Goat, by default it inherits
two instances of the name data member: one from its Human base class, and another from its
Goat base class.

* In some cases, this is not a problem. If it makes sense in an OO design for a derived class in
a diamond hierarchy to have multiple instances of the same class member, then the solution
is to accept the situation as multiple inclusion base class, as we demonstrate in Program-9.8.

* In other cases, it can be a problem for a derived class to inherit multiple instances of the
same class member. In those situations, the solution is to use virtual inheritance, as we see
in Program-9.9.

* The virtual inheritance solution ensures that the derived class, for example Faun, inherits only
one instance of the Animal class members. This solution treats the Faun class as if it was
directly derived from Animal, in addition to Human and Goat.

9.5.2. Coding example: Diamond hierarchy with multiple inclusion base class

1 class Animal

2 {

3 public:

4 Animal (string n) : name(n) { }
5 string name;

6 };

8 class Human : public Animal

9 {

10 public:

11 Human (int f, string n) : numFeet (f), Animal(n) { }
12 private:

13 int numFeet;

14 };

16 class Goat : public Animal

17 {

18 public:

19 Goat (int h, string n) : numHoofs (h), Animal(n) { }
20 private:

21 int numHoofs;

22 };

24 class Faun : public Human, public Goat

25 {

26 public:

27 Faun (int f, int h, string n) : Human(f,n), Goat(h,n) { }
28 };

29
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30 int main ()
31 {
32 Faun mrTumnus (0, 2, "Tumnus") ;

34 // cout<<"name: "<< mrTumnus.name << endl;

35 cout<<"Human name: "<< mrTumnus.Human::name << endl;

36 cout<<"Goat name: "<< mrTumnus.Goat::name << endl;

38 mrTumnus .Human: :name = "Doris";

39 cout<<endl<<"Human name: "<< mrTumnus.Human::name << endl;
40 cout<<"Goat name: "<< mrTumnus.Goat::name << endl;

42 return 0;

r
& & Terminal — -csh — 80x24

Don't Panic ==> p&5-1
Human name: Tumnus
Goat name: Tumnus

Human name: Doris

Goat name: Tumnus
Don't Panic ==> [

Program-9.8: Diamond hierarchy with multiple inclusion base class

Program purpose:

* Program-9.8 demonstrates the diamond hierarchy problem in multiple inheritance, with a
multiple inclusion base class, based on the design shown in Figure-9.5.

* With the multiple inclusion base class approach, the presence of multiple instances of the
same inherited class members, in this case the Animal class’s name data member, is accepted
as a correct design.

Lines 1-6:
* These lines show the animal class definition at the top of the inheritance hierarchy.

e |n addition to a constructor, the class contains one data member for the animal’s name. The
data member is declared with public access in the examples of this section only.

Lines 8-14:
e These lines show the Human class definition, which is derived from animal.
e Line 13 declares one data member to indicate the number of feet.

e Line 11 shows that the constructor initializes the data member and calls the Animal base
class constructor using the parameters provided.

Lines 16-22:

e These lines show the Goat class definition, which is also derived from Animal.
e Line 21 declares one data member to indicate the number of hoofs.

e Line 19 shows that the constructor initializes the data member and calls the Animal base
class constructor using the parameters provided.
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Lines 24-28:

These lines show the Faun class definition, which is derived from both Human and Goat.
The class contains no data members.

Line 27 indicates that the constructor calls both the Human and the Goat base class construc-
tors using the parameters provided.

Lines 30-43:

These lines show the implementation of the main () function.
Line 32 allocates and initializes a Faun object in a variable called mrTumnus.

Line 34 is commented out because it does not compile. It attempts to print the Faun object’s
name, but the object contains two name data members: one inherited from the Human class,
and the other from Goat. Because the compiler does not know which name should be printed
on line 34, the compilation fails.

In contrast, lines 35-36 do work correctly, because we use the scope resolution operator to
specify which Faun name should be printed. Line 35 explicitly indicates that the object’s
Human name is printed, and line 36 prints the Goat name.

Line 38 changes the Faun object’s Human name to "Doris", which leaves its Goat name
unchanged.

We see from the program output of lines 39-40 that the Faun object does indeed have two
separate data members for its name, so they can both have separate values.

9.5.3. Coding example: Diamond hierarchy with virtual inheritance

1 class Animal

2 {

3 public:

4 Animal (string n) : name(n) { }

5 string name;

6 };

8 class Human : virtual public Animal

9 {

10 public:

11 Human (int £, string n) : numFeet (f), Animal(n) { }
12 private:

13 int numFeet;

14 };

16 class Goat : virtual public Animal

17 {

18 public:

19 Goat (int h, string n) : numHoofs (h), Animal(n) { }
20 private:

21 int numHoofs;

22 };

24 class Faun : public Human, public Goat

25 {

26 public:

27 Faun (int f, int h, string n) : Animal (n),

28 Human (£f,n), Goat(h,n) { }
29 };
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30 int main ()

31 {
32

34
35
36

38
39
40

Faun mrTumnus (0, 2, "Tumnus") ;

cout<<"name: "<< mrTumnus.name << endl;

cout<<"Human name: "<< mrTumnus.Human: :name << endl;
cout<<"Goat name: "<< mrTumnus.Goat::name << endl;
mrTumnus .Human: :name = "Doris";

cout<<endl<<"Human name: "<< mrTumnus.Human::name << endl;
cout<<"Goat name: "<< mrTumnus.Goat::name << endl;

return 0;

& & Terminal — -csh — 80x24

Don't Panic ==> p&5-2
name: Tumnus

Human name: Tumnus
Goat name: Tumnus

Human name: Doris

Goat name: Doris
Don't Panic ==> [}

Program-9.9: Diamond hierarchy with virtual inheritance

Program purpose:

demonstrates the diamond hierarchy problem in multiple inheritance, with a

virtual inheritance solution, based on the design shown in
* Themain () function is identical to , with line 34 uncommented.

* The virtual inheritance approach eliminates the inheritance of multiple instances of the same
class members and reduces them to a single instance of each inherited member.

Lines 1-6:
* These lines show the animal class definition, unchanged from

Lines 8-14:

* These lines show the Human class definition, as derived from animal using virtual inheritance,
as shown on line 8.

* The data member and constructor are unchanged from

Lines 16-22:

* These lines show the Goat class definition, as derived from Animal using virtual inheritance,
as shown on line 16.

* The data member and constructor are unchanged from
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Lines 24-29:

These lines show the Faun class definition, which is derived from both Human and Goat.

Line 27 indicates that, in addition to calls to both the Human and Goat base class constructors
on line 28, the Faun constructor now needs to also call the animal constructor directly.

This is because, with virtual inheritance, the animal class is now a virtual base class of Faun.

Lines 30-43:

These lines show the implementation of the main () function.
The function is identical to Program-9.8, except for the uncommenting of line 34.

We see from the program output that the line 34 is now able to print the Faun object’s name
without ambiguity. That's because the object now only has a single instance of the inherited
name data member, instead of two.

With virtual inheritance, when line 38 changes the Faun object’s Human hame to "Doris", it
changes the object’s only name to that value.

When lines 39-40 print out both the object’s Human and Goat names, the same unique name
is printed out, as we see from the program output.
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Chapter 10

Polymorphism

Runtime polymorphism is one of the most powerful OO design techniques available to program-
mers. It is a crucial tool for facilitating independence between classes, which in turn makes them
more resilient to change. Many design patterns, which are also an important OO design tool, use
polymorphic techniques. Design patterns are discussed in chapter 11.

In this chapter, we introduce the basics of runtime polymorphism and its implementation in C++,
including the foundational principles of dynamic binding.

10.1. Principles

We discuss the purpose and terminology of runtime polymorphism, as well as the role it plays in
the development of correctly engineered software.

10.1.1. Basics

10.1.1.1. What is polymorphism:
* In the English language, the root poly means "many", and morph means "shape".

* In OO design, polymorphism allows a program to:
- define multiple functions to do the same task in different ways, and

- choose between the different functions that perform this task

* With polymorphism, a base class can define a class interface, while the implementation of
that interface may be provided by multiple derived classes.

10.1.1.2. Two types of polymorphism:
* Compile-time polymorphism:
- this is also known as static polymorphism
- in C++, it's the same as function overloading, which is a topic in chapter 12
* Runtime polymorphism:
- this is also known as dynamic polymorphism, which is the focus of this chapter

- everywhere that the term polymorphism is used henceforth in this textbook can be as-
sumed to mean runtime polymorphism
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10.1.1.3. Polymorphism is not the same concept as inheritance:

Inheritance is a structural relationship between two classes and doesn’t change at runtime.

Runtime polymorphism changes the behaviour of the program. It selects which member
function to execute at runtime, based on the object type.

Polymorphism uses inheritance. It’'s an OO design technique that builds upon inheritance,
but it’s neither the equivalent nor a substitute for it.

10.1.2. Software engineering considerations

10.1.2.1. Some important terminology for this chapter:

A software system is a program or application that is very large and contains many interacting
components. At this level of complexity, we no longer call it simply a program.

A client is the person or company that is paying us or our company to design and develop
software for them. Clients provide requirements, and they receive a tested and installed
software system in return.

The end-users are the persons who will be using our system after it’s delivered and installed.
They typically work for or with the client.

From a programmer’s point of view, a client class is the class or group of classes that is
using our code:

we normally write code for other programmers as part of a large system

our code is used by other programmers and their classes in order to achieve a result

those other programmers are our class users, and their classes are our client classes

a client class has nothing to do with a client; the former is a part of an OO design, and the
latter is a person or company paying for software delivery

10.1.2.2. Change is the arch-enemy of timely software development:

Clients often request changes because they want more features than originally planned.

Software designers sometimes misunderstand the client requirements and must change the
design after implementation has begun.

Changes may be required due to external factors, for example a lack of available personnel
or issues with third-party vendors or their products.

All changes have an impact on the timeline for software delivery and may result in software
that is late or incomplete.

Planning for changes becomes a crucial aspect of correct software design.

In a modular design, software is organized in clearly delineated independent components
that communicate over well-designed minimalist interfaces. This is essential for isolating
software components from each other so that they can change and evolve independently.

Ideally, if a software system has a modular design, any changes required will be isolated to
a minimal number of components, with little to no impact on the rest of the system.

There are several important OO design techniques for creating a modular design, includ-
ing the use design patterns, as we see in chapter 11. Runtime polymorphism is a crucial
foundation for many of these techniques.
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10.1.2.3. Resilience to change:

* With runtime polymorphism, we can isolate client classes from our class implementations
and isolate our classes from each other.

* When classes are separated and isolated from each other as much as possible, changes can
be made to one without affecting the others. Our system becomes more resilient to change.

* With polymorphism, client classes use a base class interface to manipulate derived class
objects. Client classes do not know what kind of derived object they are actually using.
They only know that the object is derived from a specific base class that provides a defined
class interface. This technique requires that our implementation uses base class pointers to
manipulate derived class objects, which is illustrated in the next coding example.

10.1.3. How runtime polymorphism works

10.1.3.1. At the base class:
* The base class provides a class interface, as a set of public member functions.

* Polymorphic function prototypes are defined in the class interface, but no implementations
are provided in the base class. Only the derived classes provide these implementations.

* The base class is often abstract, as it is normally too generalized to be instantiated. Abstract
classes are discussed later in this chapter.

10.1.3.2. At the derived class:

* Each derived class overrides the polymorphic member functions that comprise the base class
interface.

* The derived class provides an implementation for each overridden polymorphic member
function, with its own unique, specialized behaviour that is specific to the derived class.

10.1.3.3. At the client class:

* The client class interacts with derived class objects as if they are base class objects, using
the provided base class interface:

- the client class uses base class pointers to manipulate derived class objects

- it calls the generalized member function at the base class, even if it has no implementation
in that class

- the function that executes is one of the overridden implementations in the derived classes
- the client class never needs to know the kind of derived object that it is manipulating

- if the code has to check the type of object, then polymorphism is not being used correctly
* When the client class calls a polymorphic member function, the actual function that executes
is chosen at runtime:

- the choice of which function to execute is done implicitly behind the scenes, based on the
kind of derived object on which the member function is called

- this selection of the correct function is called dynamic binding, which is discussed shortly

* It’s crucial to note that polymorphism occurs only when the executed function is selected
implicitly, at runtime, with dynamic binding. Polymorphism does not occur if any class makes
an explicit selection, for example by using a switch or if-statement to check the type of
derived object.
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10.1.3.4. Advantages of using polymorphism:
* Polymorphism enables the generalized use of a class hierarchy.
* |t isolates the client class from any changes required in the derived class implementations.
* Polymorphism promotes independence between classes:
- independence of the client class from the derived classes
- independence of the derived classes from each other

* Adding a new derived class should have no impact on the existing classes, neither the client
class nor the existing base and derived classes.

* Independence between classes is crucial to good OO design and helps to minimize the impact
of changes.

10.1.3.5. Two unbreakable rules of polymorphism:

* Polymorphism only works with classes related to each other by inheritance. Without it, we
cannot implement polymorphism.

* Polymorphism only works with pointers to objects, and not the objects themselves.

10.1.3.6. Underlying idea behind polymorphism implementation in C++:

* Given an inheritance hierarchy, a derived class object can always be treated as if it's an
instance of the base class, even if the base class is abstract.

* This works because the derived class object "is-a" kind of base class object, so we can use
base class pointers with derived class object pointees.

* For example:

- in a typical application, the client class can have a collection of what it thinks are base
class objects, which it stores using base class pointers

- but in reality, the collection contains an assortment of derived class objects

- the client class can then invoke polymorphic functions on each object in the collection, with-
out knowing the object type, as long as the functions are defined (but not implemented)
in the base class

- dynamic binding ensures that the correct function is called at runtime, based on the type
of derived object

10.1.4. Coding example: Using pointers with base and derived class objects
The program in this example implements the UML class diagram shown in Figure-10.1.

The Animal class:

* Figure-10.1 shows that the animal class has one protected data member that represents the
animal’s name.

* It also has a public member function called sing (), as well as a default constructor.

The Bird class:

* As we see in Figure-10.1, the Bird class is derived from the Animal class.
* It has no data members or member functions, except for a default constructor.

The chicken class:

* Figure-10.1 shows that the chicken class is derived from the Bird class.

* |t has no data members or member functions, except for a default constructor.
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The cat class:

* Figure-10.1 also shows that the cat class is derived from the Animal class.
* It has no data members or member functions, except for a default constructor.
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Figure-10.1: UML class diagram for Program-10.1
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int main ()

{

Animal gertrude ("Gertrude") ;
Bird birtrude ("Birtrude") ;
Chicken redHen ("Little Red Hen");
Cat lady ("Lady") ;

Animalx ap;
Birdx bp;
Chickenx* cp;

cout << "Base class pointer points to base class object...";

ap = &gertrude;

cout << "all good" << endl;

ap->sing () ;

cout << "Derived class pointer points to derived class object...";
bp = &birtrude;

cp = &redHen;

cout << "all good" << endl;

ap—>sing () ;
bp->sing () ;
cp->sing () ;

cout << "Base class pointer points to derived class object...";
ap = &lady;

bp = &redHen;

cout << "all good" << endl;

ap->sing () ;
bp->sing () ;

// cout << "Derived class pointer points to base class object...";
// cp = &gertrude;

//  cp=>sing();

// cout << "all good" << endl;

return O;

& o Terminal — -esh — 80x24

Don't Panic ==> pl

Base class pointer points to base class object...all good

—- animal Gertrude sings!

Derived class pointer points to derived class object...all good
—— animal Gertrude sings!

—— animal Birtrude sings!

——= animal Little Red Hen sings!

Base class pointer points to derived class object...all good
—— animal Lady sings!

—— animal Little Red Hen sings!

Don't Panic ==> I

Program-10.1: Using pointers with base and derived class objects
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Program purpose:

* Program-10.1 demonstrates how pointers of specific data types may or may not be used
with objects of different types, based on the design shown in Figure-10.1. Understanding
which types of pointers may point to which types of objects is crucial in understanding the
polymorphism examples in this chapter.

e This program does not use polymorphism. But it illustrates an important ingredient in its
implementation, where a base class pointer can have a derived class pointee.

Lines 1-26:

e Lines 1-8 show the animal class definition.

* Line 5 contains the implementation of a sing () member function in the animal class that
prints out a message to the end-user.

e Lines 10-14 show the Bird class definition that is derived from animal.
e Lines 16-20 show the chicken class definition that is derived from Bird.
e Lines 22-26 show the cat class definition that is derived from Animal.

* The Bird, Chicken, and cat classes all inherit the sing () member function implementation
from animal, and none of them overrides it.

* When the sing () member function is called on a derived class object, the implementation
defined in the Animal base class executes.

Lines 30-37:

* Lines 30-33 declare four objects locally within the main () function, with one object for each
type of class defined on lines 1-26.

* Lines 35-37 declare three pointers to different types of objects.

* The program demonstrates which of the three pointers can correctly point to which types of
objects.

Lines 40 and 42:

* These lines show how a base class Animal pointer ap can point to a base class animal object
gertrude.

* Both pointer and pointee are of the same class, so these lines work correctly.

Lines 45-46 and 50-51:

* These lines show how derived class Bird and Chicken pointers, bp and cp respectively, can
point to the derived class Bird and Chicken objects, birtrude and redHen respectively.

* Both pointers and pointees are of the same class as each other, so these lines work correctly.

Lines 54-55 and 58-59:

* These lines show how base class animal and Bird pointers, ap and bp respectively, can have
derived class objects as pointees.

* Line 54 sets an Animal pointer ap with a cat object as its pointee. This works because the
cat class is derived from Animal, so every cat is a kind of animal. It's perfectly fine to use
an Animal pointer to perform operations on the animal portion of a cat object.

* Line 55 sets a Bird pointer bp with a chicken object as its pointee. This is also fine because
Chicken is derived from the base class Bird.

* In general, a base class pointer can have any instance of its derived classes as pointee, as
long as the pointer’s class is a base class of the pointee object.
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Lines 62-63:

* These lines are commented out because they do not compile.
* Line 62 tries to set a Chicken pointer cp with an Animal object gertrude as its pointee.

* These lines fail to compile because the Animal class is not derived from chicken, and animals
are not a kind of chicken.

10.1.5. Pointers and class hierarchy

Type of object
base class derived class
base class Works Works
(polymorphism)
Type of
poTitas derived class Doesn't Works
compile

Figure-10.2: Pointer and object data type combinations

10.1.5.1. Base class pointers:

* The first row of Figure-10.2 illustrates what happens when we use a base class pointer with
different types of objects.

* A base class pointer with a base class object as its pointee works fine.

* Abase class pointer with a derived class object as its pointee also works fine. It's an important
technique that enables the implementation of runtime polymorphism.

10.1.5.2. Derived class pointers:

* The second row of Figure-10.2 shows what happens when we use a derived class pointer with
different types of objects.

* A derived class pointer with a base class object as its pointee causes a compilation error, as
we discussed in Program-10.1.

» A derived class pointer with a derived class object as its pointee works fine.

10.2. Dynamic binding

We discuss the dynamic binding of functions as a mandatory requirement to enable polymorphic
behaviour in our programs.

10.2.1. Concepts

10.2.1.1. What is a handle to an object:

* A handle is the identifier that we use in a program to refer to a specific object. It can be the
variable name of an object, or a pointer or reference to the object.

* For example in Program-10.1, only one instance of the chicken class is allocated, but after
line 55, that same object has three handles to it: the redHen variable, the cp pointer, and
the bp pointer. All three identifiers are handles to the same object.

* When polymorphism is used, the choice of handle to an object (variable name or pointer) is
a critical factor in deciding which member function is executed.
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10.2.1.2. What is function binding:
* Function binding is the selection of the correct function to execute when a function is called.

* In most cases, there is no ambiguity. For example, if a member function is called on an
object that is not part of an inheritance hierarchy, or if there are no overridden functions in
the hierarchy, the choice is clear.

* However, when an overridden function is called, there are two important factors to consider:
- the type of object handle that is used to call the member function, and

- whether the called member function is virtual or non-virtual

* Virtual and non-virtual functions are discussed later in this chapter.

10.2.1.3. Static function binding:
» With static binding, the selection of which function to execute is made at compile time.

* This happens when the compiler has sufficient, unambiguous knowledge regarding which
function must execute.

» Static binding always occurs if a member function is called on an object variable handle,
instead of an object pointer handle.

* |t can occur when a member function is called using an object pointer handle, but only if the
member function is non-virtual.

10.2.1.4. Dynamic function binding:
* With dynamic binding, the selection of which function to execute is made at runtime.

* This happens when the compiler only has ambiguous knowledge regarding which function
must execute. In that case, the decision is delayed until runtime.

* Dynamic binding never occurs if a member function is called on an object variable handle.

* |t can occur when a member function is called using an object pointer handle, but only if the
member function is virtual.

* Dynamic binding is a mandatory condition for polymorphism to work. If a polymorphic
function is called, but static binding is used, then polymorphic behaviour does not occur.
10.2.1.5. Characteristics of function binding:

* With dynamic binding, the function that is chosen for execution is selected based on the type
of object, and not the type of handle.

* With static binding, the selection is always based on the type of handle.

* In C++, dynamic binding is enabled with virtual functions.

10.2.1.6. Conditions for polymorphic behaviour:

* For our programs to invoke polymorphic behaviour, we must ensure that dynamic binding
occurs when a polymorphic member function is called.

* There are two conditions that must be present to trigger the use of dynamic binding:
- we must call the polymorphic member function using an object pointer handle, and
- the member function must be declared as virtual, as we see later in Program-10.3
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10.2.2. Coding example: Using non-virtual functions

The program in this example implements the UML class diagram shown in Figure-10.3.

Animal

#name : string

+sing()

T

Bird
+sing()
Chicken
+sing()

Cat

+sing()

Figure-10.3: UML class diagram for Program-10.2 and Program-10.3

The Animal class:

* The animal class shown in Figure-10.3 is the same as in Figure-10.1.

The Bird, Chicken, and cat classes:

* Figure-10.3 shows that the Bird and cat classes are derived from the animal class, and
Chicken is derived from Bird.

* All three classes override the sing () member function inherited from their base class, and
each one provides its own implementation.

class Animal

{
public:

Animal (string n="")
{ cout<<

protected:

1

2

3

4

5 void sing ()
6

7 string name;
8

}i

name (n) { }

10 class Bird : public Animal

11 {

12 public:

13 Bird(string
14 void sing ()
15 };

17 class Chicken

18 {

19 public:

20 Chicken(string n="")
21 void sing () { cout<<
22 };

23

©Christine Laurendeau

=" W)

{ cout<<

"—— animal

Animal (n) { }

public Bird

"—— bird "<<name<<"

Bird(n) { }
"—— chicken

"<<name<<"

sings!"<<endl; }

says tweet-tweet!"<<endl; }

"<<name<<"

says cluck-cluck!"<<endl;
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class Cat : public Animal

{

public:
Cat (string n="") : Animal(n) { }
void sing () { cout<< "-- cat "<<name<<" says meow!"<<endl; }

b g

int main ()

{

Animal gertrude ("Gertrude") ;
Bird birtrude ("Birtrude") ;
Chicken redHen ("Little Red Hen");
Cat lady ("Lady") ;

Animalx apl;
Animalx ap2;
Birdx bp;
Chickenx* cp;

cout<<"Static binding:"<<endl;
gertrude.sing () ;
birtrude.sing() ;
redHen.sing () ;

cout<<endl<<"Base ptr to derived obj:"<<endl;
apl = &birtrude;

ap2 = &lady;

bp = &redHen;

apl->sing () ;

ap2->sing () ;

bp->sing () ;

return 0;

&

& Terminal — -csh — 80x24

Don't Panic ==> p2-1

Static binding:

—— animal Gertrude sings!

—— bird Birtrude says tweet-—tweet!

—— chicken Little Red Hen says cluck—-cluck!

Base ptr to derived obij:

—— animal Birtrude sings!

== animal Lady sings!

—— bird Little Red Hen says tweet-tweet!
Don't Panic ==> J§

Program-10.2: Using non-virtual functions
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Program purpose:

* Program-10.2 demonstrates the non-polymorphic behaviour that results from static binding

and non-virtual functions, based on the design shown in Figure-10.3.

Each class in the program has its own implementation of the sing () member function, which
is overridden in every derived class.

This program does not show polymorphic behaviour. It illustrates which sing () member
function executes when it is not defined as virtual and it is called on a derived class object.

Lines 1-29:

These lines show the class definitions for Animal, Bird, Chicken, and Cat.
The animal class implements the sing () member function on line 5.

The Bird, Chicken, and cat derived classes all inherit the sing () member function from
their base class, and they override it with their own unique implementation on lines 14, 21,
and 28 respectively.

We see that the sing () member functions in all four classes are non-virtual because they do
not use the virtual keyword.

Lines 33-41:

Lines 33-36 declare four objects locally within the main () function, with one object for each
class defined on lines 1-29.

Lines 38-41 declare four pointers to different types of objects in the class hierarchy.

Lines 44-46:

These lines show an example of static binding.

It’s known at compile time which sing () member function is called on lines 44-46 because
the function is called using object variable handles, and not object pointer handles.

With object variable handles, the compiler uses the type of handle to choose which sing ()
member function to call.

On line 44, the handle used to call the function is the gertrude object variable, which is an
Animal object, as declared on line 33. So the Animal class’s sing () function is called.

On line 45, the handle used to call the function is the birtrude object variable, which is a
Bird object, as declared on line 34. So the Bird class’s sing () function is called.

On line 46, the handle used to call the function is the redHen object variable, which is a
Chicken object, as declared on line 35. So the chicken class’s sing () function is called.

We see from the first part of the program output which sing () functions execute for lines
44-46.

Lines 49-54:

These lines also show an example of static binding.

It’s known at compile time which sing () member function is called on lines 52-54 because
the sing () member functions are non-virtual.

We see on lines 49-51 that the three base class pointers are each assigned pointees from a
derived class.

Line 49 shows that Animal pointer ap1 is assigned a Bird object pointee.
On line 50, an Animal pointer ap2 is assigned a cat object pointee.
Line 51 shows that Bird pointer bp is assigned a Chicken object pointee.

Because the sing () member functions are non-virtual, the compiler uses the type of handle
to choose which sing () member function to call.
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* Online 52, the handle used to call the function is the ap1 pointer, which is an animal pointer,
as declared on line 38. So the Animal class’s sing () function is called.

* Online 53, the handle used to call the function is the ap2 pointer, which is an Animal pointer,
as declared on line 39. So the Animal class’s sing () function is called.

* On line 54, the handle used to call the function is the bp pointer, which is a Bird pointer, as
declared on line 40. So the Bird class’s sing () function is called.

* We see from the second part of the program output which sing () functions execute for lines
52-54.

Program output:

* The first part of the program output is intuitive because the sing () member functions are
called on object variable handles.

* This results in the Animal class’s sing () function called for the Animal object, the Bird
class’s function called for the Bird object, and the chicken class’s function called for the
Chicken object, which makes sense.

* The second part of the program output is less intuitive and probably not what the programmer
intended. We are using base class pointers, but the pointees are all derived class objects.
So we would expect the derived class sing () functions to be called. But because non-virtual
functions always invoke static binding, it's the pointer class’s sing () functions that are called.

10.2.3. Coding example: Using virtual functions

1 class Animal

2 {

3 public:

4 Animal (string n="") : name(n) { }

5 virtual void sing () { cout<< "-- animal "<<name<<" sings!"<<endl; }
6 protected:

7 string name;

8

I 8

10 class Bird : public Animal

11 {

12 public:

13 Bird(string n="") : Animal (n) { }

14 virtual void sing() { cout<< "-- bird "<<name<<" says tweet-tweet!"<<endl; }
15 };

17 class Chicken : public Bird

18 {

19 public:

20 Chicken(string n="") : Bird(n) { }

21 virtual void sing () { cout<< "—-- chicken "<<name<<" says cluck-cluck!"<<endl;}
22 };

24 class Cat : public Animal

25 {

26 public:

27 Cat (string n="") : Animal(n) { }

28 virtual void sing () { cout<< "-- cat "<<name<<" says meow!"<<endl; }
29 };

30
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31 int main ()

32 {

33 Animal gertrude ("Gertrude") ;

34 Bird birtrude ("Birtrude") ;

35 Chicken redHen ("Little Red Hen");
36 Cat lady ("Lady") ;

38 Animalx apl;
39 Animalx ap2;
40 Birdx bp;
41 Chickenx* cp;

43 cout<<"Base ptr to derived obj:"<<endl;
44 apl = &birtrude;

45 ap2 = &lady;

46 bp = &redHen;

47 apl->sing () ;

48 ap2->sing () ;

49 bp->sing () ;

51 return O;

il L&) Terminal — -csh — 80x24

Don't Panic ==> p2-2
Base ptr to derived obj:
—— bird Birtrude says tweet—tweet!

-- cat Lady says meow!
== chicken Little Red Hen says cluck-cluck!
Don't Panic ==> J§

Program-10.3: Using virtual functions

Program purpose:
. is a variation of , and it also implements the class hierarchy shown
in
* As in , each class in the program has its own implementation of the sing ()
member function, which is overridden in every derived class.
* The difference in this example is that the sing () member functions are defined as virtual.

* This program does show polymorphic behaviour. Itillustrates which sing () member function
executes when it is defined as virtual and it is called on a derived class object.

Lines 1-29:

* These lines show the class definitions for Animal, Bird, Chicken, and Cat.
* The Animal class implements the sing () member function on line 5.

* The Bird, Chicken, and cat derived classes all inherit the sing () member function from
their base class, and they override it with their own unique implementation on lines 14, 21,
and 28 respectively.

* We see that the sing () member functions in all four classes are virtual because they use the
virtual keyword before the function prototypes on lines 5, 14, 21, and 28.
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Lines 33-41:
* Lines 33-36 declare four objects locally within the main () function, with one object for each
class defined on lines 1-29.
» Lines 38-41 declare four pointers to different types of objects in the class hierarchy.

Lines 44-49:

* These lines show an example of dynamic binding.

* It’s not known at compile time which implementation of the sing () member function is called
on lines 47-49. With object pointer handles and virtual functions, the program uses the type
of object to choose which sing () member function to call.

* Lines 44-46 assign derived class pointees to the three base class pointers. Line 44 assigns
a Bird object pointee to the Animal pointer ap1; line 45 assigns a cat object pointee to the
Animal pointer ap2; and line 46 assigns a Chicken object pointee to the Bird pointer bp.

* Online 47, the handle used to call the function is the ap1 pointer, which is an animal pointer,
as declared on line 38. However, because the sing () functions are virtual, the program looks
at the the type of object, and not the type of handle. Since the object on which the function
is called on line 47 is actually a Bird object, the Bird class’s sing () function is called.

* On line 48, the handle used is the ap2 pointer, which is an Animal pointer. But with a virtual
function, the program looks at the type of object, and not the type of handle. Since the object
on which the function is called on line 48 is a cat object, the cat class’s sing () function is
executed.

* On line 49, the handle used is the bp pointer, which is a Bird pointer. Since the object
on which the function is called on line 49 is a chicken object, the Chicken class’s sing ()
function is called.

* We see from the program output which sing () functions execute for lines 47-49.

10.3. Virtual functions

We discuss the role of virtual functions as the C++ programming language feature used to enable
the implementation of polymorphism.

10.3.1. Concepts

10.3.1.1. What is a virtual function:
* In C++, a virtual function is a member function that is subject to dynamic binding. It is
selected for execution at runtime instead of at compile time.
» A virtual function is selected for execution based on the type of the object it is called on:

for example in Program-10.3 on line 47, the sing () member function is called on the
Animal pointer apl that is set to a pointee Bird object on line 44

because sing () is declared as a virtual function in this program, the executing function is
selected based on the type of object pointee, which is a Bird

as a result, the Bird class’s sing () function executes on line 47

* A non-virtual function is selected for execution based on the type of the handle it's called on:

for example in Program-10.2 on line 52, the sing () member function is called on the
Animal pointer apl that is set to a pointee Bird object on line 49

because sing () is declared as a non-virtual function in this program, the executing function
is selected based on the type of handle, which is an Animal pointer

as a result, the animal class’s sing () function executes on line 52

* Global functions and static member functions cannot be virtual.
©Christine Laurendeau Chapter 10. Polymorphism 209



10.3.1.2. Characteristics of virtual functions:

* Once a member function is declared as virtual in a base class, the "virtual-ness" is inherited
by all the derived classes, all the way down the inheritance hierarchy.

e A derived class that inherits a virtual member function cannot make that function a non-
virtual one. It cannot "turn off" the virtual-ness.

* Based strictly on C++ syntax, the virtual keyword is only required at the base class and
does not need to be repeated in the derived classes.

* However, based on the important software engineering principle of code readability, it is an
established programming convention to repeat the virtual keyword in every class definition
where the virtual member function is overridden. By implicitly documenting our code this
way, we assist the programmers who use our class as a base class in the future.

10.3.2. Functions selected for execution

Type of object
base class derived class
base base class base class
NON Type class function function
VIRTUAL of
FUNCTION pointer
derived doesn’t compile derived class
class function
VIRTUAL Type base base class derived class
FUNCTION of class function function
pointer
derived doesn’t compile derived class
class function

Figure-10.4: Pointer and object data type combinations with virtual functions

10.3.2.1. With non-virtual functions:

* The top two rows of Figure-10.4 illustrate which member function executes when a non-virtual
function is called using different types of pointers with different types of objects.

* In all cases, with a non-virtual function, the choice of function to execute is based on the type
of the object handle, in this case the type of pointer.

* Base class pointer:

- with a base class pointer, the base class function is called regardless of the type of object
pointee

* Derived class pointer:

- a derived class pointer with a base class object pointee causes a compilation error, as we
discussed in Program-10.1

- with a derived class pointer and a derived class object pointee, the derived class function
is called
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10.3.2.2. With virtual functions:

* The bottom two rows of Figure-10.4 show which member function executes when a virtual
function is called using different types of pointers with different types of objects.

 In all cases, with a virtual function and a pointer as the object handle, the choice of function
to execute is based on the type of the object itself.

* Base class pointer:
- with a base class pointer and a base class object pointee, the base class function is called

- with a base class pointer and a derived class object pointee, the derived class function is
called

* Derived class pointer:

- a derived class pointer with a base class object pointee causes a compilation error, as we
discussed in Program-10.1

- with a derived class pointer and a derived class object pointee, the derived class function
is called

10.3.3. Coding example: Polymorphism with virtual functions

1 int main ()

2

3 Animal gertrudeObj ("Gertrude") ;

4 Bird birtrudeObj ("Birtrude");

5 Chicken redHenObj("Little Red Hen");
6 Cat ladyObj ("Lady") ;

8 vector<Animal> barnyardObij;

9 barnyardObj.push_back (gertrudeObij) ;
10 barnyardObj.push_back (birtrudeObj) ;
11 barnyardObj.push_back (redHenOb7j) ;
12 barnyardObj.push_back (1ladyObj) ;

14 cout<<endl<<"Barnyard harmony using objects:"<<endl;
15 for (int i=0; i<barnyardObj.size(); ++1i) {

16 barnyardObj[i].sing () ;

17 }

19 Animal=* gertrude = new Animal ("Gertrude");
20 Birdx birtrude = new Bird("Birtrude");

21 Chicken* redHen new Chicken ("Little Red Hen");
22 Catx lady = new Cat ("Lady");

24 vector<Animalx> barnyard;

25 barnyard.push_back (gertrude) ;
26 barnyard.push_back (birtrude) ;
27 barnyard.push_back (redHen) ;
28 barnyard.push_back (lady) ;

30 cout<<endl<<"Barnyard harmony using pointers:"<<endl;
31 for (int i=0; i<barnyard.size(); ++i) {

32 barnyard[i]->sing() ;

33 }

35 return 0;
36 }
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[ NN Terminal — -csh — 80x24

Don't Panic ==> p3

Barnyard harmony using objects:
animal Gertrude sings!
animal Birtrude sings!
animal Little Red Hen sings!
animal Lady sings!

Barnyard harmony using pointers:

—— animal Gertrude sings!

—— bird Birtrude says tweet-tweet!

—=- chicken Little Red Hen says cluck-cluck!
-— cat Lady says meow!

Don't Panic ==>

Program-10.4: Polymorphism with virtual functions

Program purpose:

Program-10.4 demonstrates a typical example of polymorphic behaviour, where a collection
contains an assortment of different derived class objects which are treated as if they are base
class objects.

We see how a collection of objects of mixed data types behaves, first using static binding,
and then with dynamic binding.

Program-10.4 uses the same class hierarchy shown in Figure-10.3 and the classes defined
in Program-10.3.

This program uses the vector container from the standard template library (STL), which we
discuss in chapter 15.

Lines 3-17:

These lines show an example of a collection containing mixed-type objects, and how this
results in static binding to determine which sing () member function executes.

Lines 3-6 declare four objects within the animal inheritance hierarchy, with one object for
each type of class.

Line 8 declares the barnyardob variable as an STL vector that contains Animal objects. As
we discussed in section 10.1.3, any object of a class derived from Animal can be treated as
if itis an Animal object.

Lines 9-12 add the four objects to the barnyardobij container.

Lines 15-17 loop over the barnyardobj container and call the sing () member function for
each of its elements.

Even though the sing () member functions are defined as virtual, line 16 calls the function
using an object handle, instead of an object pointer handle. This invokes static binding, as
we saw in the first part of Program-10.2.

With static binding, the called function is selected based on the type of handle. Because the
barnyardObj container is declared as a collection of Animal objects on line 8, each of its
elements is accessed with an Animal object handle.

As a result, the animal class’s sing () function is called for each element in the container,
as we see from the first part of the program output.

Lines 19-33:

These lines show an example of a collection of mixed-type object pointers, and how this
results in dynamic binding to determine which sing () member function executes.
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* Lines 19-22 dynamically allocate four objects from the animal class hierarchy, with one object
for each type of class.

* Line 24 declares the barnyard variable as an STL vector of Animal object pointers.
* Lines 25-28 add the four object pointers to the barnyard container.

* Lines 31-33 loop over the barnyard container and call the sing () member function for each
of its elements.

* The sing () member functions are defined as virtual, and the barnyard container is declared
as a collection of Animal object pointers on line 24, so each of its elements is accessed with
an Animal object pointer handle. Because of this, line 32 invokes dynamic binding, as we
saw in the second part of Program-10.2.

* With dynamic binding, the called function is selected based on the type of object. So the
function that is called on line 32 is based on the type of object that each container element
pointee actually is.

* As a result, the sing () function called for each element in the container is the one corre-
sponding to the actual type of object, as we see from the second part of the program output.

10.4. Virtual destructors

We discuss virtual destructors and their purpose in programs that use polymorphism.

10.4.1. Concepts

10.4.1.1. What is a virtual destructor:
e Avirtual destructor is a class destructor that has been declared as a virtual member function.

* |t ensures that the derived class destructor is called on a derived class object, even if a base
class pointer is used to trigger the implicit call to the destructor.

* |If a class destructor is non-virtual, static binding dictates that only the base class destructor
executes, even with a derived class object. This can result in incomplete object cleanup.

10.4.1.2. With a non-virtual destructor:

* Declaring a destructor as non-virtual means that, when an object is deallocated, the selection
of which destructor executes is based on the type of handle.

* If we use a base class pointer to deallocate a derived class object, declaring a non-virtual
destructor means that only the base class destructor is called.

* In some platforms, declaring non-virtual destructors in classes that implement polymorphic
behaviour may result in unpredictable behaviour.

NOTE: The term unpredictable behaviour in library or compiler documentation is an
unofficial euphemism for behaviour that is only sometimes correct, and even the people
who wrote the compiler code can’t predict the outcome. Overall, it's always a good rule
of thumb to avoid anything to do with unpredictable behaviour.

10.4.1.3. With a virtual destructor:

* Declaring a destructor as virtual means that, when an object is deallocated, the selection of
which destructor executes is based on the type of object, and not on the type of handle.

* If we use a base class pointer to deallocate a derived class object, having a virtual destructor
means that the derived class destructor is called.

* Since an object is destroyed bottom-up, after the derived class destructor finishes executing,
the base class destructor is called always automatically, as we discussed in section 9.3.
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10.4.2. Coding example: Using non-virtual destructors

1 class Animal

2 {

3 public:

4 Animal (string n="") : name(n) { }

5 ~Animal () { cout<< "—— animal "<<name<<" is destroyed"<<endl; }
6 virtual void sing () { cout<< "-- animal "<<name<<" sings!"<<endl; }

7 protected:

8 string name;

9

1

11 class Bird : public Animal

12 {

13 public:

14 Bird(string n="") : Animal (n) { }

15 ~Bird() { cout<< "-- bird "<<name<<" is destroyed"<<endl; }

16 virtual void sing() { cout<< "-— bird "<<name<<" says tweet-tweet!"<<endl; }
17 };

19 class Chicken : public Bird

20 {

21 public:

22 Chicken(string n="") : Bird(n) { }

23 ~Chicken () { cout<< "-- chicken "<<name<<" is destroyed"<<endl; }

24 virtual void sing() { cout<< "-- chicken "<<name<<" says cluck-cluck!"<<endl; }
25 };

27 class Cat : public Animal

28 {

29 public:

30 Cat (string n="") : Animal (n) { }

31 ~Cat () { cout<< "-- cat "<<name<<" is destroyed"<<endl; }
32 virtual void sing () { cout<< "-- cat "<<name<<" says meow!"<<endl; }
33 };

35 int main ()

36 {

37 Animal* gertrude = new Animal ("Gertrude");

38 Birdx* birtrude = new Bird("Birtrude");

39 Chicken* redHen = new Chicken ("Little Red Hen");
40 Cat * lady = new Cat ("Lady");

42 vector<Animalx> barnyard;

43 barnyard.push_back (gertrude) ;
44 barnyard.push_back (birtrude) ;
45 barnyard.push_back (redHen) ;
46 barnyard.push_back (lady) ;

48 cout<<endl<<"Barnyard harmony:"<<endl;
49 for (int i1=0; i<barnyard.size(); ++i) {
50 barnyard[i]->sing() ;

51 }

52
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53 cout<<endl<<"Barnyard slaughter:"<<endl;
54 for (int 1=0; i<barnyard.size(); ++1i) {
55 delete barnyard[i];

56 }

58 return O;

Terminal — -csh — 80x24

Don't Panic ==> p&

Barnyard harmony:
animal Gertrude sings!
bird Birtrude says tweet—-tweet!
chicken Little Red Hen says cluck-cluck!
cat Lady says meow!

Barnyard slaughter:

—- animal Gertrude is destroyed

—— animal Birtrude is destroyed

—— animal Little Red Hen is destroyed
—— animal Lady is destroyed

Don't Panic ==>

Program-10.5: Using non-virtual destructors

Program purpose:

. demonstrates which destructors are executed when they are not defined as
virtual and a derived class object is deallocated.

* As in , we are working with an STL vector that contains objects of different
derived classes and are treated as if they are base class objects.

. uses the same class hierarchy shown in

Lines 1-33:

* These lines show the class definitions for Animal, Bird, Chicken, and Cat.
* We seeonlines 5, 15, 23, and 31 that a non-virtual destructor is implemented for each class.

Lines 37-46:

* These lines show the allocation and initialization of a collection of mixed-type object pointers.

* Lines 37-40 dynamically allocate four objects from the Animal class hierarchy, with one object
for each type of class.

* Line 42 declares the barnyard variable as an STL vector of Animal object pointers.
* Lines 43-46 add the four object pointers to the barnyard container.

Lines 49-51:

* These lines loop over the barnyard container and call the sing () member function for each
of its elements.

* Because the sing () member functions are defined as virtual, and line 50 calls the function
using an object pointer handle, this invokes dynamic binding, and the function is selected
based on the type of object.

* As a result, the sing () function called for each element in the container is the one corre-

sponding to the actual type of object, as we see from the first part of the program output.
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Lines 54-56:

* These lines loop over the barnyard container and deallocate the memory for each of its
elements. The delete operator automatically calls the destructor for each element.

e Because the destructors are not defined as virtual, line 55 invokes the destructor for each
element in the container based on the type of handle, which are all animal pointers.

* As aresult, only the Animal destructor executes for each element in the container, as we see
from the second part of the program output.

10.4.3. Coding example: Using virtual destructors

1 class Animal

2

3 public:

4 Animal (string n="") : name(n) { }

5 virtual ~Animal () { cout<< "-- animal "<<name<<" is destroyed"<<endl; }
6 virtual void sing () { cout<< "-- animal "<<name<<" sings!"<<endl; }

7 protected:

8 string name;

9 };

11 class Bird : public Animal

12 {

13 public:

14 Bird(string n="") : Animal (n) { }

15 virtual ~Bird() { cout<< "-— bird "<<name<<" is destroyed"<<endl; }

16 virtual void sing () { cout<< "-- bird "<<name<<" says tweet-tweet!"<<endl; }
17 };

19 class Chicken : public Bird

20 {

21 public:

22 Chicken(string n="") : Bird(n) { }

23 virtual ~Chicken () { cout<< "-- chicken "<<name<<" is destroyed"<<endl; }

24 virtual void sing() { cout<< "-- chicken "<<name<<" says cluck-cluck!"<<endl; }
25 };

27 class Cat : public Animal

28 {

29 public:

30 Cat (string n="") : Animal(n) { }

31 virtual ~Cat () { cout<< "—-- cat "<<name<<" is destroyed"<<endl; }
32 virtual void sing() { cout<< "—-- cat "<<name<<" says meow!"<<endl; }
33 };
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Terminal — -csh — 80x24

Don't Panic ==> p&

Barnyard harmony:

—— animal Gertrude sings!

—— bird Birtrude says tweet—tweet!

—— chicken Little Red Hen says cluck—-cluck!
—— cat Lady says meow!

Barnyard slaughter:
—— animal Gertrude is destroyed

bird Birtrude is destroyed
animal Birtrude is destroyed

chicken Little Red Hen is destroyed
bird Little Red Hen is destroyed
animal Little Red Hen is destroyed

cat Lady is destroyed
animal Lady is destroyed

Don't Panic ==> §

Program-10.6: Using virtual destructors

Program purpose:

. is a variation of , and it illustrates which destructors are executed
when they are defined as virtual and a derived class object is deallocated.

e The main () function is identical to

Lines 1-33:
e These lines show the class definitions for Animal, Bird, Chicken, and Cat.

* We see on lines 5, 15, 23, and 31 that a virtual destructor is declared and implemented for
each class.

Program execution:

* Lines 54-56 from loop over the barnyard container and deallocate the memory
for each of its elements. The delete operator automatically calls the destructor for each
element.

* Because the destructors are defined as virtual, line 55 calls the destructor for each element
in the container based on the type of object that each element pointee actually is.

* As a result, the correct destructors are called to clean up every part of each derived class
object in the container, as we see from the second part of the program output.
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10.5. Abstract classes

We discuss the principles of abstract classes in OO design and how they are implemented in C++.

10.5.1. Concepts

10.5.1.1. What is an abstract class:

* An abstract class is a class that is too generalized to be instantiated. In other words, a
program cannot create any instances of the class.

e A class that can be instantiated is called a concrete class.

* When using polymorphism, it’'s common to design an abstract base class that provides a
generalized interface, while the concrete derived classes implement individual functionality.

* In OO design, abstract classes are a key tool for promoting data abstraction by grouping
together common data and behaviour inside a base class.

10.5.1.2. Characteristics of abstract classes:
* No objects of an abstract class can ever be created.
* Unlike some other OO languages, there is no keyword in C++ to declare a class as abstract.
* An abstract class in C++ is a class that contains at least one pure virtual function.

* We represent an abstract class in a UML class diagram with its class name in italics.

10.5.2. Pure virtual functions

10.5.2.1. What is a pure virtual function:

* A pure virtual function is a virtual member function that is declared in a class definition as
having no implementation.

* This is not simply a question of declaring a member function prototype with either no corre-
sponding implementation or an empty one. There is a special syntax that must be used to
declare a member function as never having an implementation.

* For example, we declare a dance () member function as pure virtual in the Animal class
definition with the following syntax: virtual void dance() = 0;

10.5.2.2. Characteristics of pure virtual functions:
* Declaring at least one pure virtual member function makes a class abstract.

* This means that all derived classes must override the pure virtual function and provide an
implementation in order to be concrete.

* If a derived class does not override an inherited pure virtual function, then the derived class
is also abstract.

10.5.3. Coding example: Abstract classes

The program in this example implements the UML class diagram shown in Figure-10.5.

The Animal class:

* The Animal class shown in Figure-10.5 contains the same data member and sing () member
function as Figure-10.3. The class is also defined as abstract, with its name shown in italics.

* It contains a dance () member function that is also shown in italics, to denote it as a pure
virtual function.
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+dancef)
Bird Cat Pig
+sing() +5ing() +sing()
+dance() +dance() +dance()

Chicken

+5ing()
+dance()

Figure-10.5: UML class diagram for Program-10.7

The Bird, Cat, Chicken, and Pig classes:

* Figure-10.5 shows that the Bird, cat, and pig classes are derived from the Animal class,

and Chicken is derived from Bizrd.

¢ We see that all four are concrete classes, because their names are not shown in italics.

* The concrete classes also override the dance () member function inherited from its base
class. and each one provides its own implementation. Each one also overrides and provides

an implementation for the sing () member function.

class Animal
{
public:
Animal (string n="") : name(n) { }
virtual ~Animal () { cout<< "-— animal "<<name<<" 1is destroyed"<<endl;
virtual void sing() { cout<< "-- animal "<<name<<" sings!"<<endl; }
virtual void dance() = 0;
protected:
string name;
}i
class Bird : public Animal
{
public:
Bird(string n="") : Animal (n) { }
virtual ~Bird() { cout<< "—— bird "<<name<<" is destroyed"<<endl; }
virtual void sing() { cout<< "-- bird "<<name<<" says tweet-tweet!"<<endl;
virtual void dance () { cout<< "-— bird "<<name<<" flies!"<<endl; }
}i
class Chicken : public Bird
{
public:
Chicken(string n="") : Bird(n) { }
virtual ~Chicken () { cout<< "-- chicken "<<name<<" is destroyed"<<endl; }
virtual void sing () { cout<< "—- chicken "<<name<<" says cluck-cluck!"<<endl;}
virtual void dance () {cout<< "—- chicken "<<name<<" does the chicken dance"<<endl;}

b3
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27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

44
45
46
47
48
49

51
52
53
54
55

57
58
59
60

62
63
64
65

67
68
69
70
71

73
74

class Cat : public Animal

{

public:
Cat (string n="") : Animal(n) { }
virtual ~Cat () { cout<< "—- cat
virtual void sing() { cout<< "—-- cat
virtual void dance () { cout<< "—-- cat

}i
class Pig : public Animal

{

public:
Pig(string n="") : Animal(n) { }
virtual ~Pig() { cout<< "-- pig "<<name<<"
virtual void sing () { cout<< "-- pig "<<name<<"
virtual void dance () { cout<< "-- pig "<<name<<"
}i
int main ()
{
Bird=* birtrude = new Bird("Birtrude");
Chicken* redHen = new Chicken("Little Red Hen");
Cat* lady = new Cat ("Lady");
Pigx wilbur = new Pig("Wilbur");

vector<Animalx> barnyard;
barnyard.push_back (birtrude) ;
barnyard.push_back (redHen) ;
barnyard.push_back (lady) ;
barnyard.push_back (wilbur) ;

cout<<endl<<"Barnyard harmony:"<<endl;
for (int i=0; i<barnyard.size(); ++i) {
barnyard[i]->sing() ;

cout<<endl<<"Barnyard dance:"<<endl;
for (int i=0; i<barnyard.size(); ++i) {
barnyard[i]—->dance () ;

cout<<endl<<"Barnyard slaughter:"<<endl;

for (int i=0; i<barnyard.size(); ++i) {
delete barnyard[i];
cout<<endl;

return 0;

}
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is destroyed"<<endl; }
says meow!"<<endl; }
pounces!"<<endl; }

is destroyed"<<endl; }
says oink!"<<endl; }
rolls in the mud!"<<endl;

}
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Terminal — -csh — 80x29

Don't Panic ==> p&

Barnyard harmony:

—— bird Birtrude says tweet—tweet!

—— chicken Little Red Hen says cluck-cluck!
—— cat Lady says meow!

—— pig Wilbur says oink!

Barnyard dance:

== bird Birtrude flies!

—= chicken Little Red Hen does the chicken dance
-- cat Lady pounces!

—— pig Wilbur rolls in the mud!

Barnyard slaughter:
bird Birtrude is destroyed
animal Birtrude is destroyed

chicken Little Red Hen is destroyed
bird Little Red Hen is destroyed
animal Little Red Hen is destroyed

cat Lady is destroyed
animal Lady is destroyed

pig Wilbur is destroyed
animal Wilbur is destroyed

Don't Panic ==> l

Program-10.7: Abstract classes

Program purpose:

. demonstrates the use of an abstract class and its concrete derived classes,
based on the design shown in

* Each class in the program has its own implementation of the sing () member function, which
is overridden in every derived class.

* Each concrete class also overrides and implements the dance () member function.

Lines 1-42:

* These lines show the class definitions for Animal, Bird, Chicken, Cat, and Pig.

* The Animal class implements the sing () member function on line 6. The Bird, Chicken,
cat, and pig derived classes all inherit the sing () member function from their base class,
and they override it with their own unique implementation on lines 16, 24, 32, and 40.

* Line 7 shows the declaration of the Animal class’s pure virtual dance () member function.
No implementation is provided for this function in the animal class, and the declaration uses
the special syntax

* The Bird, Chicken, Cat, and pPig classes all override the pure virtual dance () member func-
tion that they inherit from their base class with their own unique implementation on lines 17,
25, 33, and 41.
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Lines 44-74:

These lines show the implementation of the main () function.
The main () function is almost identical to Program-10.6, with the following changes.

We no longer create an animal object. Since the animal class is now abstract, trying to
create an instance of it would result in a compilation error.

Line 49 dynamically allocates a new pig object, and line 55 adds it to the barnyard container
with all the other animals.

Lines 63-65 loop over the barnyard container and call the dance () member function for each
of its elements.

Because dance () is defined as a virtual function and called using object pointer handles,
dynamic binding is invoked. The called function is selected based on the type of object that
each container element pointee actually is, and the correct messages are printed, as we see
from the program output.

Timmy Tortoise Prince Harold the Hare

10.6. Design example: A race between a Tortoise and a Hare

We illustrate two possible OO designs for a program that simulates a foot race between a Tortoise
and a Hare. The first design uses neither inheritance nor polymorphism, and the second one uses
both. We discuss the advantages of the latter in terms of good software engineering practice.

10.6.1. Rules of the race

10.6.1.1. Goal:

The program we are designing is the simulation of a race between Timmy Tortoise and Prince
Harold the Hare.

Both runners start at the bottom of the Mount of Doom, and the first to reach the top of the
mountain wins the race.

10.6.1.2. The path:

Our two heroes are racing up the steep mountain on a path too narrow to run side-by-side.

We represent the path as an array of 40 characters, with each hero’s avatar in their current
position. The runners begin at position zero at the bottom of the mountain, and the first to
reach position 40 at the top wins the race.

Timmy is represented with the avatar ‘T’ and Harold with "H’.

At the beginning of the program, the path contains a snack at every 10 positions. If a runner
lands on a snack, they eat it. Once a snack is eaten, it is removed from the path.
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10.6.1.3. Runner movements:

* The runners movements are randomized, and each one moves differently, in accordance
with their nature. Tortoises are slow and steady. Hares are faster, but they tend to nap.
Because the mountain path is slippery, runners sometimes slide down the mountain instead
of moving upward.

* The Tortoise moves as follows:
- 50% of the time, it plods quickly uphill by 3 positions, which takes 2 energy points
- 30% of the time, it plods slowly uphill by 1 position, for 1 energy point
- 20% of the time, it takes a slip downhill by 6 positions, for no energy points

* The Hare moves as follows:
20% of the time, it takes a big hop uphill by 9 positions, which takes 3 energy points

30% of the time, it takes a small hop uphill by 1 position, for 1 energy point

10% of the time, it takes a big slip downhill by 12 positions, for no energy points

20% of the time, it takes a small slip downhill by 2 positions, for no energy points

20% of the time, it takes a nap and stays in the same position, for no energy points

* At every iteration of the race, the program randomly chooses the next move for each runner,
from that runner’s set of possible moves, in accordance with the associated probability.

10.6.1.4. Runner energy level:

* Each hero begins with an energy level of 25 points, and they lose points as they move up
the mountain.

* If the two runners collide by landing on the same spot on the path at the same time, the
Tortoise bites the Hare, and the Hare loses 3 energy points.

* If a runner eats a snack, their energy level increase back to the maximum of 25 points.

* If a runner’s energy level reaches zero, that runner dies.

10.6.2. Design without inheritance and polymorphism

We consider two designs in this example. The original design is demonstrated in the UML class
diagram shown in Figure-10.7, and it does not use inheritance or polymorphism.

Race 1 Path
-over : bool —1{ +TOP_POS : int
+update() +moveCharacter(in avatar:char, in oldPos:int, in newPos:int)
+isOver() : bool +getPathPos(in index:int) : Position
+setCollision(in pos:int)
+removeSnack(in pos:int)
+print()
1 1
W
Tortoise Hare
-avatar : char -avatar : char *
-currentPosition : int -currentPosition : int
-energylLevel : int -energyLevel : int
-maxEnergy : int -maxEnergy : int Position
-down : bool -down : bool -pceupant : char
-gnack : bool
+updatePosition{) : int +updatePosition() : int
+eatSnack() +eatSnack()
+collide()

Figure-10.7: Tortoise and Hare: original design
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The Race class:

The race class serves as the control object in this program. It is responsible for the overall
control flow of the race between the Tortoise and the Hare.

We see from Figure-10.7 that the race class contains four data members: a flag that indicates
whether or not the race is over, a Path object that represents the path up the Mount of Doom,
a Tortoise oObject and a Hare object that represent our runners.

In this program, the main () function creates a rRace object and loops until the race is over
(similar to a game loop). At every iteration, it updates the race object.

The rRace class has a public member function called update (), which implements one itera-
tion of the game loop, and an isover () member function that reports if the race is finished.

At every iteration, the update () member function does the following:
compute a new position for each runner, i.e. both Tortoise and Hare

move each runner’s avatar on the path from their previous position to their new one

detect if a collision has occurred between the two runners at their new positions

> if so, place a '!’ character in that position on the path to indicate a collision, and have
the Hare handle the collision

> if not, check if each runner has landed on a snack; if so, the runner eats the snack and
it is removed from the path

print out the path to the screen

check if the race has concluded; the race is finished if either:
> both runners have died, or
> one runner has reached the top of the Mount of Doom

if the race is over, print out a message announcing either the winner or the deaths of both
runners

The RrRace class also contains two member functions that are not shown in the UML class
diagram: a default constructor and a destructor.

The Position class:

The position class represents a single position on the race path.

We see from Figure-10.7 that the position class contains two data members: a flag that
indicates whether or not the position stores a snack, and a character that represents the
current occupant of the position.

If the position is currently occupied by a runner, the position occupant is set to that runner’s
avatar. If the position is empty, the occupant is simply a space character.

The position class also has other member functions that are not shown in the UML class
diagram, including a default constructor, and getters and setters for both data members.

The path class:

The path class represents the path used for the race.

We see from Figure-10.7 that the path class contains two data members: a static data mem-
ber that stores the path’s maximum position (40), and a collection of Position objects. There
is one Position object for each position on the path, so the collection contains 40 elements.

The path class provides a moveCharacter () member function that moves a runner from one
position on the path to another, to simulate that runner’'s movement. The function erases
the runner’s avatar from its previous position and places it at the new one.

The getPathPos () member function returns a reference to the position object stored in the
positions collection at the index provided in the parameter.

The setCollision () member function places a '!’ character as the occupant at the given
position where a collision has occurred.
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* The removeSnack () member function removes a snack from a specific position.

* The print () member function prints out the occupant of every position in the path, as well

as the current energy levels of both the Tortoise and the Hare.

* The path class also contains a default constructor that sets a snack at every 10 positions.

The Tortoise class:

e The Tortoise class stores the information for the Tortoise runner.

* Figure-10.7 shows that the Tortoise class contains five data members: its avatar, its current

position on the path as the index in the path’s positions collection where the Tortoise is
currently located, its current energy level, the maximum energy level that it can store, and
a flag to indicate if the Tortoise is dead.

* The Tortoise class provides an updatePosition () member function that computes the Tor-

toise’s next position on the path, based on its set of possible movements, as follows:
- check if the Tortoise is dead or has won the race; if so, it doesn’t move

- randomly compute the Tortoise’s next move from its set of possible moves

- decrease the runner’s energy level by the amount corresponding to the next move

- compute the runner’'s new position based on its current position and the direction and
number of positions of the next move

- return the newly computed position as an index in the path’s positions collection
The eatSnack () member function resets the runner’s energy level to the maximum.

The Tortoise class also has other member functions that are not shown in the UML class
diagram, including a default constructor, and getters for the avatar, current position, current
energy level, and death flag data members.

It also provides private member functions for setting the energy level and current position
data members. These are private because they must only be used by the Tortoise class to
perform boundary checking. Negative values are reset to zero, and a current position that
exceeds the top of the mountain is reset to the maximum position.

The Hare class:

The Hare class stores the information for the Hare runner.
Figure-10.7 shows that the Hare class contains the same five data members as Tortoise.

The Hare class also provides an updatePosition () member function that does the same
as the equivalent in the Tortoise class, but it chooses a next move from the Hare’s set of
possible moves.

The eatsnack () member function is identical to the Tortoise class.
The collide () member function decreases the Hare's energy level by 3 points.

The Hare class also has other member functions that are not shown in the UML class diagram,
including a default constructor, and the same getters and setters as the Tortoise class.

Design discussion:

As we can see, this is an example of a terrible design.

There is a significant amount of code that is identical in both the Tortoise and Hare classes,
resulting in code duplication.

The rRace class cannot treat the runners generically, so it must always be aware of which
runneris a Tortoise and which one is a Hare so that it can call the correct member functions.

If we added more types of runners that move differently, the race class would constantly
require updates to reflect these changes.

This results in poor data abstraction and encapsulation, which we address in the next section.
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10.6.3. Design with inheritance and polymorphism

A better design is captured in the UML class diagram shown in Figure-10.8, and it uses both
inheritance or polymorphism.

Race 1 Path
-over : bool == +TOP_POS : int
+update() +moveCharacter(in avatar:char, in oldPos:int, in newPos:int)
+isOver() : bool +getPathPos(in index:int) : Position&
+setCollision(in pos:int)
+removeSnack(in pos:int)
+print()
Runner
#avatar : char
#currentPosition : int
#energyLevel : int
#maxEnergy : int -
#down : bool
Position
+UpdatePosition(} : inl
+collide() -occupant : char
+eatSnack() -snack : bool
Tortoise Hare
=
+updatePosition{) : int +updatePaosition() : int
1 | +collide() +eolide()
N
1

Figure-10.8: Tortoise and Hare: better design

The Race class:

e The Race class is identical to the one in section 10.6.2. It contains the same data members,
as well as the same member functions with identical function implementations.

* The update () member function contains the same logic: it tells each runner to compute its
next position; it gets the path to move the runner avatars to the new positions; it detects
and deals with collisions; it checks for snacks at the new runner positions; it gets the path to
print itself; and finally it checks if the race is over.

The pPath and Position classes :

* The path and Position classes are identical to the ones in section 10.6.2. They contain the
same data members and member functions with identical function implementations.

The Runner class:

* We introduce a new Runner class to capture all the commonality between the Tortoise and
Hare classes into an inheritance hierarchy, as shown in Figure-10.8.

* The UML class diagram in Figure-10.8 illustrates that rRunner is an abstract class, and it is
used as a base class with both Tortoise and Hare derived from it.

* The rRunner class contains all five data members that were common to both Tortoise and
Hare in section 10.6.2: the runner’s avatar, its current position on the path as the index in
the path’s positions collection where the runner is currently located, its current energy level,
the maximum energy level that it can store, and a flag to indicate if the runner is dead.
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The

The

Figure-10.8 also indicates that the five data members are now declared as protected, so that
they can be accessed directly in Runner’s derived classes.

The Runner class declares an updatePosition () member function as a polymorphic func-
tion, which is implemented in C++ as a pure virtual function. There are no moves possible
for runners in general, so Runner cannot provide an implementation. Instead, this member
function must be overridden by all concrete derived classes.

The collide () member function is also declared as polymorphic. Even though collisions only
affect the Hare, it’s a better design to keep collisions generic. If we need additional derived
classes to represent more kinds of runners in the future, some may require specialized col-
lision functionality. Implementing this functionality inside an overridden function allows the
Race class to be independent from how individual runners handle collisions.

The eatSnack () member function is now implemented in Runner, as it is identical for both
derived classes.

The Runner class also has other member functions that are not shown in the class diagram,
including a default constructor and a destructor. The getter and setter member functions
that were present in both Tortoise and Hare classes are now in the Runner class.

Tortoise class:

In this design, the Tortoise class is now derived from the Runner class. It must implement
only the member functions that are specific to the Tortoise, and it must override the poly-
morphic member functions declared in Runner.

The Tortoise class overrides the updatePosition () member function that computes the
Tortoise’s next position on the path, based on its set of possible moves. This implementation
is identical to the one described in section 10.6.2.

The Tortoise class must also override the collide () member function inherited from Runner.
Since the Tortoise does not suffer any effects when it collides with the Hare, the function has
an empty implementation.

The Tortoise class also provides a default constructor.

Hare class:

The Hare class is also now derived from the Runner class. It must implement only the mem-
ber functions that are specific to the Hare, and it must override the polymorphic member
functions declared in Runner.

The Hare class overrides the updatePosition () member function that computes the Hare’s
next position on the path, based on its set of possible moves. This implementation is identical
to the one described in section 10.6.2.

The Hare class must also override the collide () member function inherited from Runner,
with the same implementation as in section 10.6.2.

The Hare class also provides a default constructor.

NOTE: Functional equivalency does not imply equal design quality. Two programs can have
the same behaviour without their designs having equivalent software engineering qualities.

In this design, it may be tempting to provide an empty implementation of the collide ()
member function in the Runner class, so that it can be inherited in Tortoise and overridden
in Hare. But while that option is functionally equivalent to the provided design, it is not
of equal quality. It makes no sense to provide default collision behaviour at the base class
because rRunner is too generic. Declaring the member function as polymorphic in the base
class forces the designers of the derived classes to think about their class behaviour. If a
derived class is not affected by collisions, it’s better design to force it to explicitly provide
an empty implementation.
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Design discussion:

* This is an example of a good design.

* The code duplication between the Tortoise and Hare classes from section 10.6.2 has been
eliminated by introducing the Runner base class.

* The race class can now treat the runners generically, and it no longer needs to be aware of
which runneris a Tortoise and which one is a Hare. Because they are both a kind of Runner,
the polymorphic member functions can be called using Runner pointer handles. Dynamic
binding will ensure that the correct implementation executes.

* With this design, adding more types of runners is no longer problematic. As long as the
correct behaviour is implemented in the derived classes, the race class no longer requires
updates to accommodate new runners and their behaviour.

* This is good data abstraction and encapsulation, and it upholds the principles of correct
software engineering.

10.7. Behaviour classes

We examine an established technique for separating behaviour from our entity classes, based on
the Strategy design pattern, which is discussed in chapter 11. Behaviour classes use polymor-
phism to model program behaviour as objects that can be seamlessly switched at runtime.

10.7.1. Concepts

10.7.1.1. What is a behaviour class:
* A behaviour class is a class that represents and encapsulates a specific behaviour.

* Behaviour classes are usually organized as an inheritance hierarchy where each derived class
represents a different, specialized behaviour.

10.7.1.2. Why use behaviour classes:

* Representing a behaviour as an instance of a behaviour class allows a client class to easily
change at runtime which behaviour is executed.

* Changing behaviour is done by switching to a different behaviour class object.

* Behaviour classes are crucial in making our classes resilient in the face of future changes.

10.7.2. Design example: Changing behaviour using entity classes

We consider two alternative designs for this example. The first is shown in this section, and it
encapsulates polymorphic behaviour inside the entity classes. The second design is discussed in
section 10.7.3, and it uses behaviour classes.

The UML class diagram shown in Figure-10.9 suggests a possible class hierarchy for game char-
acters with a polymorphic moving behaviour. This design is similar to previous examples we’ve
seen with polymorphism, where changing behaviour is encapsulated within the entity classes.

The GameCharacter class:

* The GameCharacter class is an abstract class that represents game characters in a zombie
apocalypse game.

* In this game, the hero characters are types of students, characterized by their behaviour in
the face of zombies: some run away, others fight the zombies, and some just stand there
and scream. The zombies are game characters that chase the students.

* This base class declares the polymorphic move () member function, but it does not provide

an implementation for it.
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GameCharacter

+move()
Student Fombie
+mave() +move()
Runner Screamer
+maove() +maove()
Fighter

+move()

Figure-10.9: Changing behaviour using entity classes

The student class:

e The student class is derived from GameCharacter, and it is also abstract.
* It provides no implementation for the move () member function.

The zombie class:

e The zombie class is derived from GameCharacter, and it is a concrete class.

* |t overrides the move () member function and provides an implementation for it that models
the way that zombies chase students in the game.

The Runner, Fighter, and Screamer classes:

* These classes are derived from student, and they are concrete classes.

* Each class overrides the move () member function and provides an implementation for it,
based on the class’s specific behaviour (running, fighting, or screaming).

Design discussion:

* This is a perfectly valid design. It uses inheritance and polymorphism, and it provides good
data abstraction and encapsulation.

* However, a serious issue arises if a game character’s behaviour needs to change at runtime.

* For example, when a screamer gets caught by the zombies (and you know they will be), how
can their behaviour change to chasing students instead?

* Implementing a fundamental change in behaviour using a design based on entity classes is
neither easy nor pretty. A far more elegant solution involves the use of behaviour classes
instead, as we see in section 10.7.3.
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10.7.3. Design example: Changing behaviour using behaviour classes

The UML class diagram in Figure-10.10 represents an alternative design for the apocalypse game
presented in section 10.7.2. It illustrates two class hierarchies: one for the game characters, and
another for the behaviour classes.

In this design, the move () member function in the GameCharacter hierarchy is not polymorphic,
and none of the derived classes provide an implementation for it. Instead, every concrete derived
class inherits a data member that's a MoveBehaviour object. The GameCharacter base class
provides an implementation for the move () member function that simply delegates the moving
behaviour to a game character’'s MoveBehaviour containee object.

The MoveBehaviour hierarchy consists of: an abstract base class with a polymorphic move ()
member function; and a concrete derived class for each type of behaviour, where the derived
class overrides the move () member function and provides its own unique implementation.

GameCharacter 1 MoveBehaviour
—
+maove() +HMove()
Run Scream SlowWalk
Zombie Student
A +move() +move() +movel()
Fight Eat
Runner Screamer
+maove() +move()
Fighter

Figure-10.10: Changing behaviour using behaviour classes

The GameCharacter class:

* The GameCharacter class remains an abstract class that represents a game character in the
zombie apocalypse game.

* This base class has one containee object that’'s an instance of one of the concrete classes
derived from MoveBehaviour.

* GameCharacter provides an implementation for the move () member function, which simply
calls the same function on its containee MoveBehaviour object.

The MoveBehaviour class:

* The MoveBehaviour class is an abstract class representing a moving behaviour in the game.

* This base class declares the polymorphic move () member function, but it does not provide
an implementation for it.

The Run, Fight, Scream, SlowWalk, and Eat classes:

* These classes are derived from MoveBehaviour, and they are concrete classes.

* Each class overrides the move () member function and provides an implementation for it,
based on the class’s specific behaviour.
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The student class:

The student class is derived from GameCharacter, and it is also abstract.
It inherits the MoveBehaviour data member from GameCharacter.
It provides no implementation for the move () member function.

The Zombie class:

The zombie class is derived from GameCharacter, and it is a concrete class.
It inherits the MoveBehaviour data member from GameCharacter.

It does not provide an implementation for the move () member function, but it inherits the
one provided in GameCharacter.

When a zombie object is created, its class constructor must initialize the MoveBehaviour
containee data member to a new instance of a moving behaviour that makes sense for a
zombie, so either slow walking or eating.

The Runner, Fighter, and Screamer classes:

These classes are derived from student, and they are concrete classes.
They inherit the MoveBehaviour data member from student.

None of these classes provide an implementation for the move () member function, but they
inherit the one provided in GameCharacter.

When an instance of these classes is created, the class constructor must initialize its be-
haviour to one that makes sense for that type of student.

The rRunner class constructor must initialize its MoveBehaviour containee data member to
a new instance of the run behaviour class; the righter class constructor initializes its con-
tainee to a new instance of the Fight behaviour class; and the screamer class constructor
initializes it to a new instance of the scream behaviour class.

At any time during the game, a Runner, Fighter, Or Screamer object can modify its behaviour
simply by updating its containee to a different type of MoveBehaviour object.

Design discussion:

Like the design shown in section 10.7.2, this one uses inheritance and polymorphism, and it
provides good data abstraction and encapsulation.

This design also addresses the issue that arises from using only entity classes, specifically
how a game character’s behaviour can change at runtime.

With this design, the actual behaviour is delegated to an inheritance hierarchy of behaviour
classes. Using polymorphism, the derived classes provide the implementations of their own
unique style of moving behaviour.

Changing a behaviour becomes a simple update of the containee behaviour object to a dif-
ferent type of behaviour.

For example, the screamer is initialized with screaming behaviour. But when it is caught by
the zombies, its behaviour can change to slow walking or eating other characters.

There are other advantages to using behaviour classes:

- adding a new behaviour simply requires adding a new behaviour class, with no need to
change the entity classes

- we can reuse behaviours; for example, if we want zombies to fight each other, we can
reuse the fighting behaviour

- if a cure is found, zombies can become students again

©Christine Laurendeau Chapter 10. Polymorphism 231



10.7.4. Coding example: Behaviour classes

The program in this example implements the UML class diagram shown in Figure-10.11. Itis a
variation of Program-10.7, but with the dancing implemented inside behaviour classes instead of

within the entity classes.

Animal
#name : string 1,““ DanceSeheviolr
-
+sing() +dance()
+dance() le
! I Fly Roll DoChickenDance
Bird Cat
: : +dance() +dance() +dance()
+sing() +sing()
+spook(in target: Animal®)
ZF‘ Pounce CantDance
Chicken Pig sdincell +dance()
+sing() +sing()

Figure-10.11: UML class diagram for Program-10.8

The Animal class:

* The animal class shown in Figure-10.11 contains a name data member and a polymorphic

sing () member function.
* This class is also defined as abstract, with its name represented in italics.

e The class has an additional data member, which is an instance of one of the concrete classes
derived from DanceBehaviour. So every animal has a containee object that encapsulates

the dancing behaviour of that particular animal.

* Unlike Program-10.7, the animal class in this program does provide an implementation for
the dance () member function. It calls the same function on its containee DanceBehaviour

object.

The DanceBehaviour class:

* The DanceBehaviour class is an abstract class representing a dancing behaviour.

* This base class declares the polymorphic dance () member function, but it does not provide

an implementation for it.

The Fly, Pounce, Roll, CantDance, and DoChickenDance classes:

* These classes are derived from DanceBehaviour, and they are concrete classes.

* Each class overrides the dance () member function and provides an implementation for it,

based on the class’s specific behaviour.

The Bird, Chicken, Cat, and Pig classes:

* These classes are derived from Animal, directly or indirectly, and they are concrete classes.

* They inherit the DanceBehaviour data member from their base class.
* Each class overrides the sing () member function and provides its own implementation.

* None of these classes provide an implementation for the dance () member function, but they

inherit the one provided in Animal.

e When an instance of these classes is created, the class constructor must initialize its be-

haviour to one that makes sense for that type of animal.
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* At any time during the program, the derived class object can modify its behaviour simply by

updating its containee to a different type of banceBehaviour object.

* The cat class also provides a spook () member function. This function is called when a
cat attacks another animal and that animal is injured. During their recovery, the injured
animal cannot dance. So the spook () function resets the injured animal’s dance behaviour

to indicate that it can no longer dance.

/*****************
+ Filename: Animals.h *
*****************/

class Animal

{

public:
Animal (string="", DanceBehaviourx b=nullptr);
virtual void sing() = 0;

void dance () ;

volid setDanceB (DanceBehaviours*) ;
protected:

string name;

DanceBehaviour =*danceBehaviour;

}i

class Bird : public Animal
{
public:
Bird(string="", DanceBehaviour* b=new Fly);
virtual void sing();

1

class Chicken : public Bird

{
public:

Chicken(string="", DanceBehaviourx b=new DoChickenDance) ;

virtual void sing();

) 8

class Cat : public Animal
{
public:
Cat (string="", DanceBehaviourx b=new Pounce) ;
virtual void sing();
void spook (Animalx) ;
bi

class Pig : public Animal
{
public:
Pig(string="", DanceBehaviourx b=new Roll);
virtual void sing();

1
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/*****************

* Filename: Animals.cc *
*****************/
Animal::Animal (string n, DanceBehaviourx b) : name (n), danceBehaviour (b) {
Bird::Bird(string n, DanceBehaviour* b) : Animal (n, b) { }
Chicken::Chicken (string n, DanceBehaviour* b) : Bird(n, b) { }
Cat::Cat (string n, DanceBehaviourx b) : Animal(n, b) { }
Pig::Pig(string n, DanceBehaviour* b) : Animal(n, b) { }
void Animal: :setDanceB (DanceBehaviour* Db)
{
if (danceBehaviour != nullptr) {
delete danceBehaviour;
}
danceBehaviour = b;
}
void Animal: :dance ()
{
cout <<"-— " <<name<< " ";
danceBehaviour—>dance () ;
cout <<"!"<<endl;
}
void Bird::sing/() { cout <<"-——= " <<name<< " says tweet-tweet!" << endl;
void Chicken::sing () { cout <<"-—- " <<name<< " says cluck-cluck!" << endl;
void Cat::sing() { cout <<"-— " <<name<< " says meow!" << endl; }
void Pig::sing() { cout <<"-— " <<name<< " says oink!" << endl; }
void Cat::spook (Animalx a) { a->setDanceB(new CantDance); }
JAk A A A Ak A A A A kA ok ok ok ok ok ok
* Filename: DanceBehaviour.h *
*****************/
class DanceBehaviour
{
public:
virtual ~DanceBehaviour () { };
virtual void dance () = 0;
i
class CantDance : public DanceBehaviour { public: virtual void dance (
class Pounce : public DanceBehaviour { public: virtual void dance (
class DoChickenDance : public DanceBehaviour { public: virtual void dance (
class Fly : public DanceBehaviour { public: virtual void dance (
class Roll : public DanceBehaviour { public: virtual void dance (
/*****************
* Filename: DanceBehaviour.cc %
*****************/
void CantDance: :dance () { cout << "does nothing"; }
void Pounce: :dance () { cout << "pounces"; }
void DoChickenDance: :dance () { cout << "does the chicken dance"; }
void Fly::dance () { cout << "flies!"; }
void Roll: :dance () { cout << "rolls around in the mud"; }
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}
}

4

4

}i
}i
}i
}i
}i
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/*****************
* Filename: main.cc *
X ok ok Ak Ak A A A A A A A A A A A A
int main ()

{

Bird=* birtrude = new Bird("Birtrude");

Chicken* redHen = new Chicken("Little Red Hen");
Cat* lady = new Cat ("Lady");

Pigx wilbur = new Pig("Wilbur");

vector<Animal«*> barnyard;
barnyard.push_back (birtrude) ;
barnyard.push_back (redHen) ;
barnyard.push_back (lady) ;
barnyard.push_back (wilbur) ;

cout<<endl<<"Barnyard harmony:"<<endl;
for (int 1=0; i<barnyard.size(); ++1i) {
barnyard[i]->sing() ;

cout<<endl<<"Barnyard dance before the incident:"<<endl;
for (int i=0; i<barnyard.size(); ++i) {
barnyard[i]->dance () ;

lady—->spook (redHen) ;

cout<<endl<<"Barnyard dance after the incident:"<<endl;
for (int i=0; i<barnyard.size(); ++i) {
barnyard[i]->dance () ;

return O;

Terminal — -csh — 100x24

Don't Panic ==> p8

Barnyard harmony:

—— Birtrude says tweet—tweet!

—— Little Red Hen says cluck—-cluck!
—— Lady says meow!

—— Wilbur says oink!

Barnyard dance before the incident:

== Birtrude flies!!

== Little Red Hen does the chicken dance!
—- Lady pounces!

—= Wilbur rolls around in the mud!

Barnyard dance after the incident:
—— Birtrude flies!!

—— Little Red Hen does nothing!

—- Lady pounces!

== Wilbur rolls around in the mud!
Don't Panic ==> I

Program-10.8: Behaviour classes
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Program purpose:

Program-10.8 demonstrates an implementation of runtime changes using behaviour classes.

In this scenario, we have our usual complement of barnyard animals: Birtrude the bird, Little
Red Hen the chicken, Lady the cat, and Wilbur the pig. They are all singing and dancing
until the cat decides to chase the chicken, and the chicken falls off the fence and breaks its
little leg. A kind veterinarian sets the chicken’s leg in a cast, so it will be perfectly healed
in six weeks. But for the time being, the chicken can no longer dance. We must modify the
chicken’s behaviour at runtime from doing the chicken dance to being unable to dance.

Program-10.8 implements the class hierarchy shown in Figure-10.11. While Program-10.7
implements behaviour inside the entity classes of the Animal hierarchy, Program-10.8 en-
capsulates behaviour inside a second hierarchy of behaviour classes.

While this program focuses on dancing behaviour, the behaviour classes approach could be
applied to singing behaviour as well.

Lines 4-43:

These lines show the class definitions for Animal, Bird, Chicken, Cat, and Pig.
The animal class is abstract, and the other four are concrete.

Line 13 shows that the Animal class declares a DanceBehaviour containee object. This is
declared as a pointer to support the use of a polymorphic function.

Line 10 declares a setter for the dance behaviour containee.

Line 9 declares a non-virtual dance () member function, which is given an implementation in
this class.

None of the concrete classes override the dance () member function.

Line 19 shows the declaration of the Bird constructor. We see that the default dance be-
haviour of every new bird is a new rl1y object.

Line 26 declares the chicken constructor, with the default dance behaviour of every new
chicken set to a DoChickenbDance object.

On line 33, the cat constructor specifies the default dance behaviour to be a Pounce object.
Line 41 declares the pig constructor, with the default dance behaviour set to a Ro11 object.

Lines 48-74:

These lines contain the member function implementations for the Animal hierarchy classes.

Lines 48-52 show the default constructor implementations. The derived class constructors
call the base class constructor, which initializes the new dance behaviour containee object.

Lines 54-60 implement the setter member function for the dance behaviour containee object.
Since the object is always dynamically allocated, the previous behaviour object must be
explicitly deallocated before the containee is set to a new object. Otherwise, we would create
a memory leak.

Lines 62-67 show the implementation of the Animal class’s dance () member function. It
prints the animal’s name before delegating the printing of a specific message to the dance
behaviour containee object on line 65.

Lines 69-72 contain the concrete implementations of the sing () member functions that are
overridden by each concrete class.

Line 74 shows how a cat attacking another animal results in the target animal’s dance be-
haviour changing at runtime so that it can no longer dance.
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Lines 79-90:

These lines show the class definitions for the abstract DanceRehaviour class and its five
concrete derived classes.

Lines 79-84 contain the DanceBehaviour class definition. We see from line 83 that the
dance () member function is polymorphic and must be overridden by the concrete classes.

Lines 86-90 show the concrete class definitions. They are all derived from DanceBehaviour,
and each one overrides the dance () member function.

Lines 95-99:

These lines contain the implementations of the overridden dance () member functions in the
five concrete classes.

When any animal is told to dance, line 65 invokes the DanceBehaviour object’s overridden
dance () member function. So depending on the type of DanceBehaviour object, line 65
results in the execution of one of the implementations shown on lines 95-99.

Lines 104-135:

These lines show the implementation of the main () function.

Lines 106-109 allocate and initialize four animal objects, each of a different type.

Lines 111-115 declare a container of Animal pointers and add each animal to it.

Lines 118-120 conduct the barnyard sing-along, where each animal sings in its own way.

Lines 123-125 show the initial barnyard dance before the incident. We see from the program
output that each animal dances in accordance with its default dance behaviour, as initialized
in the derived class constructors.

On line 127, the cat attacks the chicken, which results in the chicken breaking its leg and
changing its dancing behaviour.

Lines 130-132 show the barnyard dance after the incident. We see from the program out-
put that each animal dances in accordance with its default dance behaviour, except for the
chicken that can no longer dance.
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Chapter 11

Design Patterns

Design patterns are an important tool in OO design. They provide consistent and reliable solutions
to some common OO design issues. Each pattern is defined as a set of predefined classes, with
prescribed associations between them and sometimes operations within them, in order to address
a specific type of problem. Most design patterns make use of inheritance and often polymorphism
to provide additional separation between the client classes and the pattern classes. [9]

In this chapter, we introduce the principles of design patterns and their general categories, and
we cover a few of the more commonly used patterns.

11.1. Principles

We discuss the concepts and different types of design patterns in OO computing.

11.1.1. Basics

11.1.1.1. What is a design pattern:
* In general, a pattern is the regular and consistent way in which something is repeated.

* A design pattern in computing is a solution to a commonly occurring OO programming prob-
lem. It's an established way of organizing classes in order to solve one of these problems.

* Design patterns are specific to OO design and programming. They have no equivalent in
other programming paradigms like imperative, functional, or logic.

11.1.1.2. How are design patterns used:
* There are several established, well-defined design patterns.

* Each pattern is meant to solve a very specific computing problem. It is a specialized tool
meant to be used exclusively for the purpose for which it was designed.

* A design pattern should never be applied to a problem it was not designed to solve. A good
OO design only uses the design patterns that are known to fit with the situation.

» Each design pattern dictates the precise usage of:
- inheritance and polymorphism
- delegation through composition
- specific operations to be implemented
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11.1.1.3. The authoritative textbook on design patterns:

 All official design patterns are defined in the following textbook [9]: Design Patterns: Ele-
ments of Reusable Object-Oriented Software, by Erich Gamma, Richard Helm, Ralph Johnson,
John Vlissides, 1994.

* The authors are collectively and colloguially known as the "Gang of Four".

* The design pattern definitions in this textbook uses the term client class in the same way
we used it in section 10.1.2. A client class is a class that is using the classes in the design
pattern.

11.1.1.4. What are the types of design patterns:

* There are three types of design patterns defined in the Gang of Four textbook:
- creational

- structural
- behavioural

* Architectural patterns also exist, but they are not true design patterns. They work on a larger
scale and usually involve the organization of large groups of classes called subsystems and/or
components. Architectural patterns are outside the scope of this textbook.

11.1.2. Types of design patterns

11.1.2.1. Creational design patterns:

* Creational design patterns are used for specifying how objects are created, including which
objects are created and which objects create other objects.

* Examples of creational design patterns include Factory, Abstract Factory, and Singleton.

11.1.2.2. Structural design patterns:

» Structural design patterns specify how objects are associated with each other, usually through
inheritance and composition.

* Examples of structural design patterns include Facade, Bridge, Decorator, and Proxy.

11.1.2.3. Behavioural design patterns:

* Behavioural design patterns specify how objects communicate with each other, specifically
which objects call what operations on which other objects.

* Examples of behavioural design patterns include Observer, Strategy, and Visitor.

11.1.2.4. Architectural patterns are not design patterns:

* Architectural patterns determine how objects are grouped together into subsystems and/or
components, which are groups of classes that belong together functionally.

* Examples of architectural patterns include client-server, peer-to-peer, model-view-controller
(MVC), layered, and a few others.
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11.2. Selected design patterns

We illustrate and discuss a sample of the design patterns defined in the Gang of Four textbook.

11.2.1. Facade

11.2.1.1. What is the Facade design pattern:

* Facade is a structural design pattern. Its name comes from a French word that means an

artificial outward appearance.

* With this pattern, we implement a Facade class that serves as a gateway to other classes.

* We don’t usually name this class Fagcade, because that’s its job, not its name.

11.2.1.2. How is Facade used:

* Facade simplifies the interface to a group of complex classes:

- the client class calls the simplified operations defined in the Facade class

- the Facade class takes care of calling the correct operation(s) on the actual class(es), by

using delegation

* The operations on the actual classes are still available to the client class, but it's simpler to

use the Facade class interface instead.

* The Facade class serves to encapsulate the details of the actual classes that provide the

operations.
Client R 1
|
I
PR S S U S R S Facade —
| Complex Complex Complex
Class 1 Class 2 Class 3

Figure-11.1: Facade design pattern

11.2.1.3. Structure of the Facade design pattern:

* Figure-11.1 illustrates the layout of the Facade design pattern.

* We see that the client class uses the operations on the Facade class, which has its own
relationships with the complex classes that do the actual work.

* In a UML class diagram, a dashed line represents a "uses" relationship, where one class uses

the services of another, for example calling its operations.
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11.2.1.4. Example of Facade:

Figure-11.2 shows an example of the Facade design pattern.

In this example, a user interface (Ul) is the client class, and the Facade class is a control class
responsible for implementing a one-click-ordering feature on an online vendor web site.

The Ul can still access the individual classes that do the work of collecting user profile, billing,
and shipping information. But these individual steps are simplified with the one-click-ordering
feature, which gathers all the same information from the same classes.

The end result is a higher level of abstraction for the Ul, which can remain isolated from any
future changes in the way that profile, billing, and shipping information is used.

E L s o
|
I
|
— 1-clieck |  __ __ __ ___
| ordering =
| User Billing Shipping Product
profile info info info |

Figure-11.2: Example of Fagcade design pattern

11.2.2. Observer

11.2.2.1. What is the Observer design pattern:

©Christine Laurendeau

Observer is a behavioural design pattern. It specifies the set of classes and operations that
must be implemented as part of this pattern.

It allows observer objects to track changes in the state of a subject object and react to those
changes.

A subject’s state is information about the subject on which an observer’s behaviour is depen-
dent. If the subject’s state changes, its observers must be notified so that they can update
their behaviour accordingly.

The exact nature of observer objects, and subject objects and their state is entirely depen-
dent on the particular system being designed.

The purpose of the Observer design pattern is to facilitate some measure of independence
between classes that have an inherent dependence on each other. Observer and subject
classes can still change and evolve separately with minimal impact on one another, as long
as their interactions are limited to those prescribed by the Observer pattern.
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11.2.2.2. How is Observer used:

* Observer provides a generic way for classes to react to the changing state of other classes
in a way that maintains their independence from each other.

* A class hierarchy of subject classes must be implemented:
the subject maintains a collection of the observers that are following its current state

the subject notifies all its observers any time that its state changes

* A class hierarchy of observer classes must be implemented:
the observer subscribes to notifications from the subject that it's interested in

the observer updates itself every time it’s notified of a change in the subject’s state

* In some systems, subject/observer classes are also called publisher/subscriber.

Subject
Observer
0..*

+subscribe () :}

+unsubscribe () +update ()

+notify () %

ConcreteObserveri
+update ()
ConcreteSubject
1
-state <
+getState() ConcreteObserver2
+updatea(}

Figure-11.3: Observer design pattern

11.2.2.3. Structure of the Observer design pattern:
* Figure-11.3 illustrates the layout of the Observer design pattern.

* The subject base class is abstract, and it must maintain, as a containee, a collection of the
observer objects that are interested in tracking a subject’s state.

* This subject base class also must provide the operations necessary for observers to subscribe
and unsubscribe from a subject’s collection of observers. In addition, it must provide a noti-
fication operation that loops over the subject’s collection of observers and calls the update
operation on each one.

» Concrete subject classes store their state and make it available to observers.

* The observer base class is abstract, and it must provide an update operation that’'s called
when a subject notifies its observers of a change in state.

* Concrete observer classes may contain a reference to the subject that they are tracking, in
order to query the subject for its updated state.
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11.2.2.4. Example of Observer:

Figure-11.4 shows an example of the Observer design pattern.

In this example, the subject class hierarchy represents a variety of online games accessible
through a web browser. There is one concrete subject, which is a chess game.

The subject base class contains a collection of observers, each of which is a different type of
view of an online game in progress.

The observer base class represents the different types of views that may be available for
participants to interact with an online game.

We see two different types of views as concrete observer classes: the player view and the
spectator view. The two views are very different from each other, since they provide different
interfaces to the game being played.

When a chess player makes a new move, the Ul for both the players and the spectators
watching the game must be updated accordingly. The notification operation allows the game
subject to tell its view observers that a change occurred, so that they can update their Ul.

WebGame
0. . View
+aubscribe () )
+unsubscribe () +update ()}
+notify () %
PlayerView
tupdate ()
Chess
1
-state <
+getState () SpectatorView
+update ()}

Figure-11.4: Example of Observer design pattern

11.2.3. Strategy

11.2.3.1. What is the Strategy design pattern:

Strategy is a behavioural design pattern. It defines an abstract interface for a family of
algorithms.

It can also provide an interface for a set of behaviours, as we discussed in section 10.7.

11.2.3.2. How is Strategy used:

» Strategy provides a class interface at the base class class, and it encapsulates each type of

algorithm inside a derived class.

* Program behaviour can change at runtime because each type of behaviour is encapsulated

within an object. Switching from one type of derived class object to another at runtime, as
needed, changes which concrete implementation of the algorithm is executed.

* The behaviour classes in section 10.7 are an example of the Strategy design pattern.
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Context Strategy

N4

+contextInterface () +strategyInterface ()

ConcreteStrategy1 ConcreteStrategy3

+strategyInterface () +strategyInterface()

ConcreteStrategy2

4+atrategyInterface ()

Figure-11.5: Strategy design pattern

11.2.3.3. Structure of the Strategy design pattern:
* Figure-11.5 illustrates the layout of the Strategy design pattern.

* A client class, possibly a control object, provides the context or conditions for deciding to
switch algorithms or behaviours at runtime.

* An abstract base class provides the interface to the Strategy class hierarchy.

* Each type of concrete derived class overrides and implements the polymorphic operations
defined in the base class interface.

AppControl SortAlgorithms

>

+sortStudents () +sort ()

BubbleSort HeapSort

+sort () +sort ()

InsertionSort

+sort ()

Figure-11.6: Example of Strategy design pattern

11.2.3.4. Example of Strategy:
* Figure-11.6 shows an example of the Strategy design pattern.

* In this example, an application control object decides which sorting algorithm to use and
when to switch to a different one.

* The class hierarchy of sorting algorithms defines the sorting operation in the base class
interface.

» Each type of algorithm overrides the sorting operation and implements it in its own way.
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11.2.4. Factory

11.2.4.1. What is the Factory design pattern:

* Factory is a creational design pattern. It encapsulates the creation of derived class objects,
which separates the object creation from the client class.

* The object creation is performed by a Factory object, and the created objects belong to a
Product class hierarchy.

11.2.4.2. How is Factory used:

* A class hierarchy of products is defined. It consists of an abstract base class that provides
a generalized interface, and concrete derived classes that override and provide different
implementations for the base class interface operations.

* The client class delegates the creation of derived class objects to a Factory object.

* The Factory creates a new object and returns it to the client class. The client doesn’t know
which kind of derived object was created, but it does know that it’s a type derived from the
Product base class.

* The client class interacts with the new derived object through the polymorphic operations
declared in the base class interface and overridden by the derived classes.

Client

Factory |- =<gre2te”Z . = Product

i\

ConcreteProducti ConcreteProduct3

ConcreteProduct2

Figure-11.7: Factory design pattern

11.2.4.3. Structure of the Factory design pattern:
* Figure-11.7 illustrates the layout of the Factory design pattern.
* The client class interacts with both a Factory object and some concrete Product objects.

* The Factory object creates different types of products, all derived from the Product abstract
base class, and returns these Product objects to the client.

* The client class manipulates the Product objects by calling the polymorphic operations de-
clared in the Product base class interface and overridden in its concrete derived classes.
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Figure-11.8: Example of Factory design pattern

11.2.4.4. Example of Factory:
* Figure-11.8 shows an example of the Factory design pattern.

* |In this example, the client class is the control object for an animal management system.

An animal factory creates concrete animal objects on behalf of the client class.

The role of the animal base class is to provide a class interface with operations for the client
class to manipulate any kind of animal.

The client class has no knowledge of the specific type of animals that it’'s managing. It only
knows that they are some kind of animal.

11.2.5. Anti-patterns

11.2.5.1. What is an anti-pattern:

* An anti-pattern is a common bad programming habit. It's a solution to a commonly occurring
computing problem that appears to be effective but ends up violating the principles of good
software engineering.

* There are too many of these to count.

11.2.5.2. The God object:

* One type of anti-pattern is called the Blob or the God object. It consists of one class that
contains most of the program functionality.

* This is a risk when designing control objects that don’t delegate sufficient functionality to the
entity classes.

* It can also be a danger when implementing the Facade design pattern. It's easy for the
Facade class to get overloaded with too much functionality.

11.2.5.3. The Big Ball of Mud:

* Another type of anti-pattern is called the Big Ball of Mud, where a program is implemented
with no actual design or architecture.

* It's the modern-day equivalent of spaghetti code, an unstructured mess of code that was
more common with older programming languages that provided fewer control structures.
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Chapter 12

Overloading

Overloading allows a programmer to give multiple meanings to the same language construct. For
example, in C++, we can overload functions and operators. This is a useful feature for ensuring
that our code is streamlined, concise, and self-documenting.

In this chapter, we introduce both types of overloading in C++: function overloading and operator
overloading. We discuss the different types of overloaded operators and the advantages of using
this technique in our classes.

12.1. Function overloading

We discuss the basics of function overloading, in this case global functions. The same principles
apply to member functions as well.

12.1.1. Concepts

12.1.1.1. What is overloading:

* In computing, overloading is the practice of providing multiple definitions for something.
C++ allows the overloading of functions and operators.

* We overload a global function or a member function by reusing the same function name, but
with different parameters.

* Operators can be overloaded to work with the classes that we define.

12.1.1.2. What are overloaded functions:

e QOverloaded functions are functions that have the same name as each other, but with different
functionality.

* Both global functions and member functions can be overloaded.

12.1.1.3. Characteristics of overloaded functions:

* Overloaded functions have the same name, but they must be different in the order or data
types of their parameters. Otherwise, the compiler cannot resolve the ambiguity when the
function is called.

* They must have a unique signature. It's insufficient for two overloaded functions of the same
name to have a unique prototype.

* By convention, overloaded functions should be used only for functionally related tasks.
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12.1.1.4. How does function overloading work:

* The compiler converts our overloaded function name into a unique name for each function.
This is done by mangling the function name.

* Mangling changes the function name to a combination of the original function name and the
ordered parameter data types. The result is a unique name for each function.

* When the compiler processes a call to an overloaded function, it chooses which function
should execute, based on the order of the parameters and their data types.

12.1.2. Coding example: Function overloading

1 bool checkNum(int) ;
2 void doubleNum(int, inté&);
3 void doubleNum(int, int=*);

int main ()
{
bool inputOk = false;
int num, resultl, result2;

0 N O U

10 /# User input loop is not shown */

11 doubleNum (num, resultl);

12 doubleNum (num, &result?);

13 /+ The rest of the program is not shown */
14 }

i Terminal — ssh access.scs.carleton.ca — 80x24

_Z9doubleMumiRi:
.LFB1732:

.cfi_startproc
endbré4

. Terminal — ssh access.scs.carleton.ca — 80x 24

_Z9doubleMNumiPi:
.LFB1733:

.cfi_startproc
endbré4

Program-12.1: Function overloading

Program purpose:

. is identical to , S0 only the relevant portions are shown.

* In this program, the doubleNum () global function is overloaded with two versions. The corre-

sponding assembly language shows how the function name is mangled to produce a unique
name for each version.

Line 2:

* This line declares the doubleNum () function that takes an integer and an integer reference
as parameters.

* We see from the first part of the assembly language how the function name has been mangled
for this version of the function.
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* Ifweignorethe _z9 prefix, we see that the function name has been changed to doubleNumiRi.

The function name doubleNum is followed by the two parameter data types: i for integer and
Ri for reference to an integer.

Line 3:

* This line declares the doubleNum () function that takes an integer and an integer pointer as

parameters.

* We see from the second part of the assembly language how the function name has been

mangled for this version of the function.

* Again ignoring the prefix, we see that the function name has been changed to doubleNumiPi.

The function name doubleNum is followed by the two parameter data types: i for integer and
pi for pointer to an integer.

Line 11:

This line calls the doubleNum () function with two integers as parameters (num and result1).

Because the second parameter is an integer and not a pointer, the compiler decides that it’s
an integer passed into the function as a reference.

So the compiler translates line 11 to a call to the version of doubleNum () that takes an integer
and an integer reference as parameters.

Line 12:

This line calls the doubleNum () function with an integer and the address of an integer variable
as parameters (num and sresult?2).

Because the second parameter is an address, the compiler sees that it’'s a pointer to an
existing integer variable.

So the compiler translates line 12 to a call to the version of doubleNum () that takes an integer
and an integer pointer as parameters.

12.2. Operator overloading

We discuss the basics concepts of operator overloading, and its implementation in C++.

12.2.1. Concepts

12.2.1.1. What is an overloaded operator:

An overloaded operator is an operator that works with our user-defined data types, specifi-
cally the classes that we design and implement.

When we design a class in C++, we must decide which operators (if any) should be imple-
mented to work with an object of this class as an operand.

If we think of an operator as a function, then an overloaded operator is a function written by
the class developer, instead of built into the programming language.

We cannot rewrite the implementation of operators for primitive data types, like integers.
We can only implement operators for our own classes.

The operators we implement are considered "overloaded" because they are already defined
for primitive data types. By providing an implementation for an operator’s behaviour with
our own data types, we are overloading that operator with additional definitions.

©Christine Laurendeau Chapter 12. Overloading 249



12.2.1.2. Example of an overloaded operator:

 In partial Program-12.2, assuming that the student class is defined, what does line 2 mean?
How do we compare two student objects with the greater-than (>) operator?

* The beauty of overloaded operators is that the class developer decides what the greater-
than operator does. We choose whether the operator compares student names, or student
numbers, or GPAs, and we write the corresponding code.

1 Student matilda, joe;

2 1f (matilda > joe) {

3 cout << "Matilda wins!" << endl;
4}

5 else {

6 cout << "Joe wins!" << endl;

7

}
Program-12.2: Using overloaded operators

12.2.1.3. Why overload an operator:
* There are many good reasons why the C++ language provides this feature.

* Language consistency: We can use operators with primitive data types as operands, so it
makes sense to do the same with instances of our own classes.

* Code readability: The use of recognizable operators makes the code more streamlined and
easier to read, as long as the operators work in the same way they do for primitive types.

* Because we can: We should neverignore the "coolness" factor when designing a new feature.
The authors of C++ figured out how to implement this feature, so why not provide it?

12.2.1.4. Limitations to overloading operators:
* We cannot change the implementation of operators for primitive data types.
» We cannot create new operators.
* We cannot change an operator’s arity, precedence, or associativity.

* We cannot overload non-overloadable operators. These include the dot, scope resolution,
and conditional operators, and a few more.

12.2.1.5. Overloaded operators in the string class:

* The string class defined in the C++ standard library already provides many overloaded
operators.

* These include: the assignment operator (=) that copies a literal or variable value into a string
variable, relational operators that compare two strings, the subscript operator that accesses
a single characterin a string, stream insertion and extraction operators that perform standard
I/O with strings, and many more.
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12.2.2. Implicit and explicit overloading

12.2.2.1. Implicitly overloaded operators:

* Implicitly overloaded operators are operators that are provided for our classes by the C++
language, even if we do not implement them.

* They include the assignment operator (=), the address-of operator (&), and the sequencing
operator (, ).

12.2.2.2. Explicitly overloaded operators:

* Explicitly overloaded operators are operators that we implement for our classes ourselves.
We as the class developer decide which operators make sense for our classes.

* Almost all operators can be overloaded, but there are exceptions.
* Each operator must be overloaded separately. There are no freebies.

* For example, if we implement the addition (+) and assignment operators (=), we do not
automatically get the addition-assignment operator (+=). These are considered to be three
different operators, although correct design principles dictate that their implementations
should call each other, wherever possible.

NOTE: We discuss the role of the this object in overloaded operator implementations later
in this chapter. However, it’'s worth nothing that this concept is nearly identical in Java. In a
member function, the this object is the object on which the member function is called. In
Java, the this object is an object reference, but in C++, it's an object pointer. To access
the object from within a member function in C++4, we must dereference the this pointer.

12.2.3. Approach to overloading

12.2.3.1. How do we overload an operator:
* In general, an operator is a function, and its operands are its parameters.

* Most operators can be implemented as either a global function or a member function, but
not both at the same time. However, correct encapsulation principles dictate that we should
implement an overloaded operator as a member function, wherever possible.

* When an operator is implemented as a member function:
- the operator is called on the left-hand side (LHS) operand

- so inside the overloaded operator function, the LHS operand is the this object

- with a binary operator, the right-hand side (RHS) operand is passed into the function as a
parameter

* |f an overloaded operator is implemented as a global function, all operands are parameters.

12.2.3.2. Overloaded operator function name:

* The name of an overloaded operator function consists of the keyword operator, followed by
the operator symbol.

* For example, the function name of an overloaded equality operator would be: operator==
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12.2.3.3. Overloaded operator function parameters:

* The parameters of an overloaded operator function depend of the operator’s arity.

With a binary operator, an operator member function is called with the LHS operand as the
this object and the RHS operand passed in to the function as a parameter.

With a unary operator, an operator member function is called with the LHS operand as the
this object and no parameters.

12.2.3.4. Overloaded operator function example:

Assume that:
we have defined a Time class

the Time class implements a member function with the prototype: bool operator==(Times)

our program declares two Time objects called now and then

the two objects are compared using the overloaded equality operator using the syntax:
(now == then)

Because the LHS operand (now) is an instance of the Time class, its operator==() member
function is automatically called.

Inside the member function, now is the this object because it's the LHS operand.
The then object is passed in to the member function as a parameter.

So the expression (now == then) is converted internally by the compiler to the function call:
now.operator==(then)

12.2.3.5. Overloaded operator function return type:

It's imperative that we pay close attention to an overloaded operator’s return type.

Every built-in operator for every primitive data type in C, C++, and Java returns a non-void
value. Therefore, our overloaded operator implementations should never have void as a
return type.

When unsure, think about how the same operator works with integers. If we implement an
equality operator (==), we know that comparing two integers returns a boolean value. So our
implementation of the same operator for our classes should also return a boolean.

For the operators that don’t return a boolean, we must make sure that we enable cascading,
so that operators can be chained together within the same expression. We discuss cascading
later in this chapter.

©Christine Laurendeau Chapter 12. Overloading 252



12.2.4. Coding example: Overloaded relational operators

1 /% * % * h Kk Kk Kk ok ok Kk ok ok Kk Kk * *

2 # Filename: Time.h *
3k ok ok ok kA Ak A A A A A A A Ak A
4 class Time

51

6 public:

7 Time (int=0, int=0, int=0);

8 void setTime (int, int, int);

9 void print () const;

10 bool operator==(Time&) const;
11 bool operator!=(Time&) ;

12 bool operator< (Timeé&) const;
13 bool operator<=(Timeé&) const;
14 bool operator>(Time&) const;
15 bool operator>=(Timeé&) const;
16 private:

17 int hours;

18 int minutes;

19 int seconds;

20 int convertToSecs () const;

21 };

23 /o ok ok ok ok Ak A A A A A A A A A A A
24 x Filename: Time.cc *
25 ok ok ok ok ok ok ok Kk K Kk A K A A A A */
26 Time: :Time (int h, int m, int s)

27 {

28 setTime (h, m, s);

29 }

31 void Time: :setTime (int h, int m, int s)
32 {

33 hours = (h > 0 && h < 24) 2 h : 0;
34 minutes (m > 0 && m < 60) 2 m : O0;
35 seconds (s > 0 && s < 60) ? s : 0;
36 }

38 int Time::convertToSecs () const

39 {

40 return (hours+3600 + minutes+60 + seconds);
41 }

43 void Time: :print () const

44 {

45 cout<<setfill ("0’ )<<setw(2)<<hours<<":"

46 <<setfill ('0")<<setw(2)<<minutes<<":"
47 <<setfill ("0’)<<setw(2)<<seconds<<endl;
48 }

50 bool Time::operator==(Time& t) const

51 {

52 return ( convertToSecs () == t.convertToSecs () );
53 }

54
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55 bool Time: :operator!=(Time& t)

56
57
58

60
61
62
63

65
66
67
68

70
71
72
73

75
76
77
78

80
81
82
83
84
85
86

88
89
90
91
92
93
94
95
96
97
98
99

101
102
103
104
105
106
107
108
109
110

{

return

bool Time::

{

return (

bool Time::

{

return (

bool Time:

{

return

bool Time::

{

return

! (xthis == t);

operator< (Timeé& t)

convertToSecs ()

operator<=(Time& t)

(xthis < t) ||

:operator> (Time& t)

! (xthis <= t);

operator>=(Time& t)

! (xthis < t);

const

const

(xthis ==

const

const

/* L S . S R S R S SR S SR S S N S 4

* Filename:

main.cc

*

E A A SR S S S S S . A SR SR SR . SR 4 */

int main ()

{

Time wakeup (5,45,0);
Time lunch(12,0,0);

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<<

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<<

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<< |

cout<<"wakeup vs.

<< |
return 0;

}
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lunch: equal?
(wakeup == lunch) ? "yes"
lunch: not equal?
(wakeup != lunch) ? "yes"
lunch: gt? "
(wakeup > lunch) ? "yes"
lunch: ge? "
(wakeup >= lunch) ? "yes"
lunch: 1t? "
(wakeup < lunch) ? "yes"
lunch: 1le? "
(wakeup <= lunch) ? "yes"
wakeup: gt? "
(wakeup > wakeup) ? "yes"
wakeup: ge? "
(wakeup >= wakeup) ? "yes"
wakeup: 1t? "
(wakeup < wakeup) ? "yes"
wakeup: le? "
(wakeup <= wakeup) ? "yes"

)

) ;

"1’10"

"nO"

"nol!

"no"

"noll

"noll

"nO"

"nO"

"flO"

"nol'
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< t.convertToSecs ()

)

)

)

)

<<endl;

<<endl<<endl;

<<endl;

<<endl;

<<endl;

<<endl<<endl;

<<endl;

<<endl;

<<endl;

<<endl;
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Program-12.3: Overloaded relational operators

Program purpose:

demonstrates the implementation of several overloaded relational operators
as member functions of the Time class.

Lines 4-21:

These lines show the Time class definition.

Lines 17-19 indicate that the class has three data members that represent the current time
in a 24-hour clock: the hours, the minutes, and the seconds.

Lines 7-9 declare some basic member functions: a default constructor, a setter, and a printing
function.

Line 20 is a private helper function that converts a Time object’s hours, minutes and seconds
to a total number of seconds and returns that value.

Lines 10-15 declare the function prototypes for the six overloaded relational operators.

On line 10, we see that the equality operator member function is called operator==, it takes
a single Time object reference as parameter, and it returns a boolean, just as the equality
operator does for integers.

Lines 11-15 show the rest of the operator prototypes with their unique names. They all take
a Time object reference as parameter, and they return a boolean.

Remember that objects can access all the members of another object of the same class,
even the private ones, as we saw in the discussion on copy constructors in section . We
do not need to provide getters to access the members of the parameter object.

NOTE: Overloaded operator function prototypes are neither arbitrary nor negotiable. Object
parameters are always passed as a . We do not pass objects by value because
that makes a copy of the object, which is inefficient and a waste of computational resources.
We do not pass objects using pointers because it results in very messy syntax that negates
the entire point of overloading operators for improved code readability.

Lines 26-48:

These lines contain the basic member function implementations for the Time class.
Lines 26-29 show the default constructor.
Lines 31-36 set the Time object to the given parameters after validating each one.
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Lines 38-41 convert the data members of the Time object to a total number of seconds.
Lines 43-48 show how a Time object is printed out.

Lines 50-78:

These lines contain the member function implementations of the Time class’s overloaded
relational operators.

We know that relational operators are all binary operators. So in the body of each member
function implementation, the LHS operand is the this object, and the RHS operand is the
function parameter.

Lines 50-53 implement the overloaded equality operator. Both LHS and RHS operands are
converted to a total number of seconds, and the two resulting integers are compared for
equality.

The first call to convertToSecs () on line 52 converts the this object (the LHS operand) to
seconds, and the second call does the same for the parameter (the RHS operand).

In accordance with good design principles, we strive to reuse code by calling existing func-
tions as much as possible within these operator implementations. With relational operators
in general, it's a standard rule-of-thumb that only the equality and less-than operators must
be written from scratch. All others can be implemented by calling combinations of these two.

Lines 55-58 show the implementation of the inequality operator that simply calls the equality
operator that's implemented on lines 50-53.

Line 57 calls the equality operator with the same operands used for the call to the inequality
operator. The dereferenced this object is again used as the LHS operand and the given
parameter as the RHS.

Lines 60-63 implement the less-than operator from scratch by converting both operands to
seconds and using the integer less-than operator for comparison.

Lines 65-68 show the implementation of the less-than-or-equal-to operator that calls both
the less-than operator implemented on lines 60-63 and the equality operator implemented
on lines 50-53.

Lines 70-73 implement the greater-than operator that calls the less-than-or-equal-to operator
that’s implemented on lines 65-68.

Lines 75-78 show the implementation of the greater-than-or-equal-to operator that calls the
less-than operator that’s implemented on lines 60-63.

PRO TIP: Notice how the function implementations on lines 50 through 78 do not contain

A any if-statements. When a function returns a boolean, it is never elegant to structure the

code as follows: if (<condition> == true) {return true;} else {return false;}
It is always better to simply use: return <condition>;

For example, in the equality operator on line 52, the logic can be understood as "return true
if both operands convert to the same total number of seconds, and false otherwise".

Lines 83-110:

These lines show the implementation of the main () function.

Lines 85-86 declare two Time objects with variable names wakeup and lunch. The wakeup
time is initialized to 6:45:00 am, and lunch time to 12:00:00 pm.

Lines 88-99 compare the two Time objects, wakeup and lunch, using the corresponding over-
loaded operators implemented on lines 50-78. Either "yes" or "no" is printed out, depending
on the resulting comparison.

Lines 101-108 compare the wakeup object with itself, using the same overloaded operators.
We see from the program output that the overloaded operators return the correct results.
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12.3. Cascading

We discuss the use of a non-void return type for overloaded operator implementations in C++,
and how it is necessary for language consistency.

12.3.1. Concepts

12.3.1.1. You must remember this:

As in the Java programming language, C++ uses the this keyword inside the implementation
of a member function to refer to the object on which the function is called.

The crucial difference in C++ is that this is a pointer, and not a reference. Any explicit use
of this in the body of the member function must dereference the pointer in order to access
the corresponding object.

The this object is passed in to all non-static member functions as an implicit parameter.
In each member function, the this object can be used either implicitly or explicitly.

For example in Program-12.3:

- the setTime () member function on lines 31-36 uses the Time data members implicitly

- the function sets the values of hours, minutes, and seconds without specifying that these
are data members of the this object; their membership in the Time class is implied, rather
than explicitly stated

- the corresponding explicit use of the this object would have lines 33-35 setting the data
members using this->hours, this->minutes, and this->seconds, respectively

Experienced programmers only use the this object explicitly in portions of the program
where it’s needed for better clarity or readability. It's normal practice to use this implicitly
most of the time.

12.3.1.2. What is cascading:

Cascading is the chaining together of multiple operations within a single expression.

For example in Program-2.1, recall that line 8 had four operators combined together in the
same statement: z = y + 2 * x - 3;

In that program, all three variables %, y, and z were declared as integers, so the built-in
operators were used.

But what if x, y, and z were all Time objects? We would need to implement the four overloaded
operators ourselves, but we would also need to think very carefully about their return values.
If the operators returned void, we would only be able to use one of them in an expression,
because void is not a valid operand to any operator.

In order to use multiple operators in the same expression, we must enable cascading in our
overloaded operator implementations.

12.3.1.3. How does cascading work:

We enable cascading in our member functions by having them return the correct value.

Every overloaded operator that is implemented as a member function uses the this object as
its LHS operand. So if we want to chain together multiple operators in the same expression,
we need to use the this object as the return value.

If a member function does its work and returns the this object, then we can call another
member function on that same returned object within the same expression.

We can use this technique in any member function, including overloaded operators.
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12.3.2. Coding example: Cascading member functions

1 /% * % * h Kk Kk Kk ok ok Kk ok ok Kk Kk * *

O© 00N O Ul A WN

[ e e e I = N = R SR
N o o WN PR O

19
20
21
22
23
24
25

27
28
29
30
31
32
33

35
36
37
38
39

41
42
43
44
45

47
48
49
50
51
52
53

*

Filename:

Time.h

*

*****************/

cl
{

bi

/%

*

ass Time

public:

Time (int=0,
void print ()
Time& setTime (int,

int=0,
const;

int=0) ;

int, int);

Time& setHours (int);
Time& setMinutes (int);
Time& setSeconds (int);

private:
int hours;

int minutes;
int seconds;

L S . S . S S 4

Filename:

Time.

F o A S S S S I 4

cc

*

E A S S S S S S (S R . SR SR . SR 4 */

Time::Time (int h,

{

setTime (h, m,

S

int m, int s)

Time& Time::setTime (int h,int m, int s)

{

setHours (h) ;

setMinutes (m
setSeconds (s

) ;
) 8

return *this;

Time& Time: :setHours (int h)

{

hours = ((h >>= 0 && h < 24) 2 h : 0;
return *this;

Time& Time: :setMinutes (int m)

{

minutes = ( m >=
return *this;

0 && m < 60) ? m : O;

Time& Time: :setSeconds (int s)

{

}
/%

seconds = (

s >=

return *this;

0 && s < 60) 2?2 s : 0;

Time: :print () function is not shown */
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54 /% % % * & & & A K K A K A K K Kk ok
55 « Filename: main.cc *
56 4 F ok k A ok K ok A A K K Kk & A % */
57 int main ()

58 {

59 Time wakeup, lunch;

61 wakeup.setHours (5) . setMinutes (45) .setSeconds (0) ;
62 wakeup.print () ;
63 lunch.setTime (12,0,0) .print () ;

65 return O;
66 }

F
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Program-12.4: Cascading member functions

Program purpose:

* Program-12.4 demonstrates how member functions are implemented to enable cascading.

Lines 4-17:

e These lines show the Time class definition.

* Lines 9-12 declare the four member functions that enable cascading: setTime (), setHours (),
setMinutes (), and setSeconds ().

* We know that cascading is enabled because each of these member functions returns a Time
object on which other operations can be performed.

Lines 27-51:

* These lines contain the implementation of the four setter member functions that enable
cascading.

* Lines 32, 38, 44, and 50 show that, to enable cascading, we must return a value on which
other operations can be performed. By returning the dereferenced this object, these lines
allow another member function to be called on the exact same object.

* It’s crucial that the this object is returned as a Time reference, and not an object. If another
member function is called, it must be on the same Time object, and not simply a copy of it.

Lines 57-66:

* These lines show the implementation of the main () function.

* Line 61 demonstrates multiple member function calls on the same object, stored in the
wakeup variable.

* Because the dot operator has left-to-right associativity, the first member function to execute
online 61 is setHours (). It sets the hours of the wakeup object to 5 and returns the updated
object. It cannot return a copy, otherwise the changes would occur on different Time objects.

* The next member function to execute on line 61 is setMinutes (). It takes the wakeup object
with the hours previously set to 5, it sets the same object’s minutes to 45, and then it returns
the newly updated object.
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Next on line 61 is the call to setSeconds () on the same object with the updated hours and
minutes.

If cascading was not enabled and these member functions returned nothing (void), line 61
would have to be split into multiple statements.

Line 63 demonstrates how cascading is used to call the setTime () and print () member
functions in the same statement.

12.4. Operators as functions

We discuss the implementation of overloaded operators as global or member functions.

12.4.1. Concepts

12.4.1.1. Types of functions for overloading operators:

Overloaded operators can be implemented as either member functions or global functions.
They cannot be implemented as both because the compiler considers them equivalent.

If a class developer provides both a member function and a global function for the same
class and operator, the compiler will be unable to resolve the ambiguity when the operator
is invoked, and compilation will fail.

12.4.1.2. Overloading an operator as a member function:

As we saw in Program-12.3 with operators implemented as member functions, the LHS
operand is used as the this object inside the member function implementation.

For binary operators, the member function takes the RHS operand as a parameter.
For unary operators, the member function takes no parameters.

It is good software engineering to implement overloaded operators as member functions,
wherever possible. However, as we discuss shortly, there are operators that cannot be im-
plemented as member functions.

12.4.1.3. Overloading an operator as a global function:

Global functions have no this object, so all operands are passed in as parameters.
For binary operators, the global function takes both operands as parameters.
For unary operators, the global function takes the single operand as parameter.

In some cases, the global function must be made a friend function of a class in order to
access the class members.

For good software engineering, the use of friendship in C++ should be strictly limited to
cases where operators cannot be overloaded as member functions.

12.4.1.4. Operators that must be implemented as member functions:

C++ dictates that some operators can only be overloaded as member functions.
These include the typecast ( () ), subscript ([1), and arrow (->) operators.

All overloaded operator member function implementations must enable cascading, in order
for our code to meet the minimum expectations of our class users.
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12.4.1.5. Operators that must be implemented as global functions:

C++ dictates that some operators can only be overloaded as global functions.
There are two cases where we cannot implement an operator as a member function:
- when the LHS operand is a primitive data type, and

- when the LHS operand is an instance of a library class

The first case, where the LHS operand is a primitive data type, can occur when we need to
enable commutativity, as we see shortly in Program-12.5. Since primitive data types are not
classes, they cannot have member functions.

The second case, where the LHS is an instance of a library class, includes the stream insertion
(<<) and stream extraction (>>) operators, as we discuss later in this chapter. Since we do
not have access to the C++ standard library source code, we cannot modify its classes to
add new member functions.

All overloaded operator global function implementations must enable cascading.

12.4.2. Coding example: Operators as functions

1 /% % % % o % & ok * Kk * K Kk K Kk * *
2 * Filename: Time.h *
3 X A ok A ok kA ok A Ak A A kA A A A/

4 class Time

51

6 public:

7 Time (int=0, int=0, int=0);
8 volid setTime (int, int, int);
9 void print () const;

10 bool operator==(int) const;
11 private:

12 int hours;

13 int minutes;

14 int seconds;

15 int convertToSecs () const;
16 };

17 bool operator==(int, Time&);

19 /% * % * K K Ak ok ok ok Kk ok ok Kk Kk * *
20 * Filename: Time.cc *
A S A O 74

22 Time: :Time (int h, int m, int s)

23 {

24 setTime (h, m, s);

25 }

27 bool Time::operator==(int s) const
28 {

29 return ( convertToSecs () == ) 8
30 }

32 bool operator==(int s, Time& t)
33 {

34 return ( t == s );

35 }

36 /+* The basic Time member functions are not shown #*/
37
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38 /% A A A A A A A A A A Kk A Ak A ok ok
39 # Filename: main.cc *
AD  * % * ok A Ak A ok A Ak K A Ak A k& */

41 int main ()

42 {
43 Time wakeup (5,45);
44 int lunch = 43200; // noon

45 int breakfast = 20700; // 5:45

47 cout<<"wakeup vs. lunch: equal? "

48 << ( (wakeup == lunch) ? "yes" : "no" ) <<endl;
49 cout<<"wakeup vs. breakfast: equal? "
50 << ( (wakeup == breakfast) ? "yes" : "no" ) <<endl;
52 cout<<"lunch vs. wakeup: equal? "
53 << ( (lunch == wakeup) ? "yes" : "no" ) <<endl;
54 cout<<"breakfast vs. wakeup: equal? "
55 << ( (breakfast == wakeup) ? "yes" : "no" ) <<endl;
56 return O;
57 }
& 0 Terminal — -csh — 80x24
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Program-12.5: Operators as functions

Program purpose:

* Program-12.5 demonstrates some operators overloaded as member functions, and others as
global functions.

* In this program, we implement two versions of the overloaded equality (==) operator that
compares a Time object with an integer corresponding to a total number of seconds. The
goal is to determine whether or not the Time object, when converted to the equivalent total
number of seconds, is equal to the integer operand.

* The first version of the equality operator takes the Time object as the LHS operand and the
integer as the RHS. Because the LHS operand is an object, we implement this functionality
as a member function.

* The second version of the equality operator takes the integer as the LHS operand and the
Time Object as the RHS. Because the LHS operand is a primitive data type, this functionality
cannot be implemented as a member function, so we use a global function instead.

* We implement both versions of the operator in order to provide commutativity. If t is a Time
object and s is an integer denoting a total number of seconds, a programmer using our Time
class should be able to compare either (t == s) or (s == t) and obtain the same result.

* Some basic member function implementations of the Time class are not shown, but they are
identical to Program-12.3.
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Lines 4-17:

Lines 4-16 show the Time class definition.

On line 10, we declare the function prototype for the version of the equality operator that
takes a Time object as the LHS operand and an integer as the RHS.

Line 17 declares the global function prototype for the version of the equality operator that
takes an integer as the LHS operand and a Time object as the RHS. This line is necessary as a
forward reference to inform the compiler of a global function that may be called in the code
before the compiler can process its implementation.

Strictly speaking, line 17 is not required to be positioned inside the Time class header file.
But since this global function is closely related to the Time class, it is convention to place it
in the same file as the class definition.

Lines 27-30:

These lines show the implementation of the first version of the overloaded equality operator.

Line 27 indicates that this is a member function by using the scope resolution operator to
bind the function name to the Time class.

Line 29 converts the this object, as the LHS operand, to a total number of seconds. It then
uses the built-in integer equality operator to compare that number of seconds to the RHS
operand found in the given parameter.

Lines 32-35:

These lines show the implementation of the second overloaded equality operator.

Line 32 indicates that this is a global function by not using the scope resolution operator to
bind the function name to any class.

We see that both the integer and the Time object operands are passed in as parameters.

Line 34 uses correct design principles by calling the version of the equality operator that we
already implemented. By simply switching the order of the operands, line 34 calls the first
version of the equality operator that’s implemented on lines 27-30.

In principle, this global function implementation is not required to be positioned in the Time
class source file. But since the function is closely related to the Time class, it is convention
to place it in the same file as the class’s member function implementations.

Lines 41-57:

These lines show the implementation of the main () function.
Line 43 declares a Time object called wakeup, which is set to 5:45 am.

Lines 44-45 declare two integers that represent a total number of seconds. The 1unch vari-
able is set to the seconds equivalent of 12:00 pm (noon), and breakfast is initialized to the
total seconds corresponding to 5:45 am.

Line 48 uses the equality operator to compare the Time object on the LHS with the lunch
integer on the RHS. The compiler converts this to a call to the member function implemented
on lines 27-30.

Line 50 also compares the Time object on the LHS with an integer on the RHS, so this is
converted to a call to the same member function.

Line 53 uses the equality operator to compare the 1unch integer on the LHS with the Time
object on the RHS. The compiler converts this to a call to the global function implemented
on lines 32-35.

Line 55 also compares an integer on the LHS with the Time object on the RHS, so this is
converted to a call to the same global function.
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12.5. Overloaded stream operators

We discuss the implementation of the stream insertion and extraction operators in C++.

12.5.1. Concepts

12.5.1.1. What are the stream operators:

The stream insertion operator (<<) adds a sequence of bytes to an output stream. The output
stream can be one of the standard streams or an output file.

The stream extraction operator (>>) reads a sequence of bytes from an input stream. The
input stream can be the standard input stream or an input file.

Both are binary operators, and they are already overloaded for primitive data types and most
library classes, including the string class.

To use the stream insertion and extraction operators with instances of our own classes, we
must overload and implement them as global functions.

When the stream operators are implemented, the LHS operand is always an output stream
for insertion and an input stream for extraction. We cannot implement them as member
functions, because we are not permitted to modify the ostream and istream library classes.

Both stream operator implementations must enable cascading. Our class users must be able
to print out or read in any combination of values and objects within the same expression,
exactly the way they can with primitive data types.

12.5.1.2. Implementation of the stream insertion operator:

When we use the stream insertion operator, the LHS operand is the ostream object where
we wish to send our output, for example the cout object for standard output.

The LHS operand is passed into the global function implementation of the operator as the
first parameter, as an ostream object reference.

The RHS operand is the object to print out, and it’s passed into the operator implementation
as the second parameter, as an object reference.

It may be necessary to make the operator implementation a friend function in the class of
the object to be output, if the function needs access to the object’s private and/or protected
members. In this case, it's better to use friendship than to violate the principle of least
privilege by providing multiple getters.

12.5.1.3. Implementation of the stream extraction operator:

When we use the stream extraction operator, the LHS operand is the istream object from
which we wish to read our input, for example the cin object for standard input.

The LHS operand is passed into the global function implementation of the operator as the
first parameter, as an istream object reference.

The RHS operand is the object into which the input is stored, and it’s passed into the operator
implementation as the second parameter, as an object reference.

It may be necessary to make the operator implementation a friend function in the class of
the object to be input.
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12.5.2. Coding example: Overloaded stream operators

1 /% % % % * % & % * ok % K Kk K Kk & *

2 # Filename: Time.h *

I S R e I I A A A A A a4

4 class Time

5 {

6 friend ostream& operator<<(ostream&, Timeé&) ;
7 friend istreamé& operator>> (istream&, Time&);
8

9

public:
Time (int=0, int=0, int=0);

10 volid setTime (int, int, int);
11 private:
12 int hours;
13 int minutes;
14 int seconds;
15 int convertToSecs () const;
16 };

18 /% #* * o o K ok ok ok ok Kk ok Kk Kk Kk * *
19 * Filename: Time.cc *
20 X ok Ak Ak Ak A A A A A A A A A A A A/

21 /* The basic Time member functions are not shown x/

23 ostreamé& operator<<(ostream& output, Timeé& t)

24 |

25 output<<setfill (0" )<<setw(2)<<t.hours<<":"

26 <<setfill ('0")<<setw(2)<<t.minutes<<":"
0

27 <<setfill (’0")<<setw(2)<<t.seconds;
28 return output;
29 }

31 istream& operator>>(istreamé& input, Times& t)
32 {
33 int h, m, s;

34 input>>setw (2)>>h;

35 input.ignore () ;

36 input>>setw (2)>>m;
();

37 input.ignore
38 input>>setw (2)>>s;
39 t.setTime (h,m, s);
40 return input;

41 }

4

A3 /% o, % A Kk & ok K A Kk A Kk K Kk K A ok
44 % Filename: main.cc *
45 X A ok A ok Kk A ok A ok A A ok A A * A/

46 int main ()

47 |

48 Time theTime (16, 20, 34);

49 cout << "Time 1is: " << theTime << endl << endl;
51 cout << "Enter a time: ";

52 cin >> theTime;

53 cout << "New time is: "<< theTime << endl;

54 return 0;

55 }
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Time is: 16:28:34
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New time is: 13:54:12
Don't Panic ==> [}

Program-12.6: Overloaded stream operators

Program purpose:

* Program-12.6 demonstrates how the overloaded stream insertion and extraction operators

are implemented for the Time class.

Some basic member function implementations of the Time class are not shown, but they are
identical to Program-12.3.

Lines 4-16:

These lines contain the Time class definition.

Lines 6-7 show that the Time class grants friendship to the two stream operator global func-
tions. This is necessary for these functions to access a Time object’s data members.

Lines 6-7 also serve as forward references to inform the compiler of these global functions
and their prototypes.

The print () member function that was present in previous implementations of the Time
class has been removed. Moving forward, all future coding examples with the Time class use
the stream insertion operator to print out a Time object.

Lines 23-29:

These lines show the implementation of the stream insertion operator global function.

Line 23 declares the LHS operand as an ostream object reference passed in as a parameter
called output, and the RHS operand as a Time object reference called t. We also see that
the return type enables cascading.

Lines 25-27 are nearly identical to the previous implementation of the print () member
function. But in this case, the hours, minutes, and seconds printed belong to the t parameter.

Line 25 also shows that we do not print out the object directly to the cout object. Our
implementation must be generalized for use with any output stream, including output files.
The exact output stream is provided in the first parameter.

Line 28 shows how cascading is enabled. Returning the same output stream object (as an
ostream reference) allows a subsequent call for stream insertion within the same expression.

Lines 31-41:

These lines show the implementation of the stream extraction operator global function.

Line 31 declares the LHS operand as an istream object reference passed in as a parameter
called input, and the RHS operand as a Time object reference called t. We also see that the
return type enables cascading.

Line 33 declares three temporary variables where we store the user input before the Time
object t is initialized with these values.

Lines 34-38 show that we do not read the object directly from the cin object. Our implemen-
tation must be generalized for use with any input stream, including input files. The exact
input stream is provided in the first parameter.
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* Lines 34-38 use the C++ iomanip library to assist in parsing the user input.

* Line 34 reads two digits for the hours and stores the entered value in variable h. Then line
35 skips over the colon (:) that the user enters to separate the hours and minutes.

* Line 36 reads the next two digits for the minutes and stores the entered value in variable m.
Then line 37 skips over the colon entered to separate the minutes and seconds.

* Line 38 reads the next two digits for the seconds and stores the entered value in variable s.

e Line 39 calls the Time class’'s setTime () member function to set the data members of the
parameter object t to the user-entered values.

* Line 40 shows how cascading is enabled. Returning the same input stream object allows a
subsequent call for stream extraction within the same expression.

Lines 48-49:
* These lines show how the stream insertion operator is called from the main () function.
* Line 48 declares and initializes a Time object called theTime.
* Line 49 prints out the theTime variable using the stream insertion operator.

* We see that line 49 actually uses the stream insertion operator four times. Only the second
call uses the implementation on lines 23-29.

* The first use of the stream insertion operator on line 49 is to print to cout the literal string
"Time is:". This calls the overloaded operator that’'s implemented for strings, which returns
the same cout object to facilitate cascading.

* The second use of stream insertion on that line is to print the theTime object to the cout
object returned from the first use of stream insertion. This second use of stream insertion
calls the operator we implemented on lines 23-29.

* Because our operator implementation correctly enables cascading, the third use of stream
insertion on line 49 allows a new line to be printed out after the Time object.

Line 52-53:

* Line 52 shows how the stream extraction operator is called from the main () function.

* This line reads user input into the theTime variable by calling the stream extraction operator
that’s implemented on lines 31-41.

* Lines 34-38 read the hours, minutes, and seconds into local variables.
* Then line 39 sets the data members of main () 's theTime object to these user-entered values.

* Line 53 again uses the stream insertion operator that we implemented on lines 23-29 to print
out the correct value of the theTime object, as we see from the program output.

12.6. Overloaded arithmetic operators

We discuss some issues that arise from the implementation of overloaded arithmetic operators.

12.6.1. Concepts

12.6.1.1. Characteristics of arithmetic operators:

* |In previous coding examples, we overloaded the relational operators, which are fairly straight-
forward to implement.

» Arithmetic operators, however, require more complex thinking in terms of implementation.

* For example, how do we implement the addition operator (+) for the Time class? What about
addition-assignment (+=)? It makes sense that the two implementations have some com-
monalities. Can they share code, or can one call the other?
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12.6.1.2. The addition-assignment operator:

The addition-assignment operator (+=) is, perhaps surprisingly, a simpler implementation
than addition (+).

Let’s consider how addition-assignment works first for integers, and then for Time objects.

12.6.1.3. The addition-assignment operator for integers:

Assume that x and y are both declared as integer variables and initialized to valid values.
The expression (x += y) has variable x as the LHS operand and y as the RHS.

To write the code for this operator, the following logic applies:
- use integer addition to add together the current values of x and y, and

- store the resulting sum into variable x

This implementation requires no intermediate values or temporary variables.

12.6.1.4. The addition-assignment operator for Time objects:

Let’'s consider how we can apply the integer addition-assignment logic to Time objects.
Assume that x and y are both declared as Time objects and initialized to valid values.
The expression (x += y) has Time object x as the LHS operand and y as the RHS.

If we implement this overloaded addition-assignment operator as a member function of the
Time class, x becomes the this object, and y is passed in as a parameter.

The logic inside the member function works as follows:
convert x to a corresponding total number of seconds, and do the same for vy

use integer addition to add together the total number of seconds for both x and vy

convert the resulting sum into an equivalent number of hours, minutes, and seconds

replace the current values in Time object x with the values computed in the previous step

Again, this implementation requires no intermediate values or temporary objects.

12.6.1.5. The addition operator:

The addition operator (+) is more complicated than it first seems.

Let’'s consider how addition works first for integers, and then for Time objects.

12.6.1.6. The addition operator for integers:

Assume that x, y, and z are all declared as integer variables and initialized to valid values.
The expression (z = x + y) actually contains two operators: assignment and addition.

It's crucial to note that both operators are implemented separately, and their implementa-
tions are independent from each other.

Based on operator precedence, the addition operator (x + y) is evaluated first.
The expression (x + y) has variable x as the LHS operand and y as the RHS.

To write the code for this operator, the following logic applies:
- use integer addition to add together the current values of x and y, and

- return the resulting sum as the addition operator’s return value

It's important to note that neither variable x nor v is modified by the addition operation.
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Also, the addition operator is not concerned with how the resulting sum is used. That value
is simply returned from the operation, so that it can be used as operand to another operator.

In the expression (z = x + vy), the assignment operator (=) is called with variable z as the
LHS operand and the resulting sum of x and y as the RHS.

12.6.1.7. The addition operator for Time objects:

Assume that %, y, and z are all declared as Time objects and initialized to valid values.

Given the expression (z = x + y), the addition operator (x + y) is evaluated first. It has
Time Object x as the LHS operand and y as the RHS.

If we implement this overloaded addition operator as a member function of the Time class,
x becomes the this object, and y is passed in as a parameter.

The logic inside the member function works as follows:

- convert x to a corresponding total number of seconds, and do the same for y

- use integer addition to add together the total number of seconds for both x and y

- convert the resulting sum into an equivalent number of hours, minutes, and seconds
- store these values into a temporary locally declared Time object

- return this temporary Time object by value as the addition operator’s return value

It's important to note that neither Time object x nor y is modified by the addition operation.
The implementation requires a new Time object because an addition operation does not
modify its operands. It simply returns something new that didn’t exist before.

The new Time object must be returned by value. We can never return a pointer into a stack
frame that has been popped off the function call stack, because the corresponding memory
is no longer allocated.

We also note that the first three steps of the above logic are identical to the addition-
assignment operation. Therefore, a correct implementation of the addition operator must
call the addition-assignment operator to do a portion of the work.

In the expression (z = x + y), the assignment operator (=) is called with Time object z as
the LHS operand and the new Time object returned from the addition of x and y as the RHS.

12.6.2. Coding example: Overloaded arithmetic operators

1 /% & % & K K Kk Kk Kk Kk Kk ok Kk Kk Kk * *

2 # Filename: Time.h *
3*****************/
4 class Time

5 {

6 friend ostream& operator<<(ostream&, Timeé&);
7 public:

8 Time (int=0, int=0, int=0);

9 vold setTime (int, int, int);

10 Time& operator=(const Timeé&);

11 Time& operator+=(const int);

12 Time operator+ (const int);

13 private:

14 int hours;

15 int minutes;

16 int seconds;

17 int convertToSecs () const;

18 volid setTime (int);

19 };
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20
21
22
23

25
26
27
28
29
30

32
33
34
35
36
37
38

40
41
42
43
44

46
47
48
49
50
51
52

54
55
56
57
58
59
60
61
62
63
64

66
67
68
69

71
72
73
74
75

/*****************

* Filename: Time.cc

*

*****************/

/+ The basic Time member functions are not shown */

voilid Time: :setTime (int s)

{
hours
minut

S
seconds = (s

Time& T
{
hours
minut

= s / 3600;
es = (s % 3600)

ime: :operator=(c

= t.hours;
es = t.minutes;

seconds = t.seconds;
return *this;

onst Time& t)

Time& Time::operator+=(const int s)

{

setTime (convertToSecs () + s);
return *this;

Time Time::operator+ (const int s)

{
Time
t =
t +=

t;
this;
Sy

return t;

/* E I S S S . SR S ST ST S S SR SR, SR S 4

* Filename: maln.cc

L A S S S S S S (S A SR ST SR . SR 4 */

int mai

{
Time
cout

n()
lunch (12) ;
<< "Lunch before

lunch += 80;

cout
cout
cout

Time
Time
cout
cout

youGo
cout
cout

<< "Lunch after:
<< "Later lunch:
<< "Later lunch:

iGoHome (14, 45) ;

youGoHome;

<< endl << "I go
<< "You
Home = iGoHome +
<< endl << "I go
<< "You

return 0;

}
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: " << lunch << endl;

" << lunch << endl;
" << (lunch += 20) << endl;
" << lunch << endl;

home before: "<
go home before: "<
3700;

home after: "<
go home after: W gL
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iGoHome
youGoHome

iGoHome
youGoHome

endl;
endl;

endl;
endl;
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Lunch before: 12:08:080
Lunch after: 12:81:28
Later lunch: 12:81:48
Later lunch: 12:81:48

I go home before: 14:45:00
You go home before: P0:90:00

I go home after: 14:45:88
You go home after: 15:46:48
Don't Panic ==> [}

Program-12.7: Overloaded arithmetic operators

Program purpose:

Program-12.7 demonstrates how the overloaded assignment, addition-assignment, and ad-
dition operators are implemented as member functions of the Time class.

The assignment (=) operator copies into the LHS operand every member of the Time object
provided as the RHS operand.

The addition-assignment (+=) operator adds to the LHS operand the total number of seconds
in the RHS operand, and it updates the LHS operand with the resulting sum.

The addition (+) operator adds to the LHS operand the total number of seconds in the RHS
operand, and it returns a new Time object initialized with the resulting sum.

Some basic member function implementations of the Time class are not shown, but they are
identical to Program-12.3. The stream insertion operator is implemented in Program-12.6.

Lines 4-19:

These lines contain the Time class definition.

Lines 10, 11, and 12 declare the member function prototypes for the assignment, addition-
assignment and addition operators, respectively.

Lines 10-11 show that the assignment and addition-assignment operators enable cascading
by returning the same LHS operand object.

Line 12 indicates that a new Time object is returned by value as the addition result.

Line 18 declares a second version of the setTime () member function that takes one integer
as parameter. The function sets the data members of the this object to the hours, minutes,
and seconds corresponding to the parameter value.

Lines 25-30:

These lines implement the second version of the setTime () member function.

The function separates the total number of seconds in the parameter into the corresponding
hours, minutes, and seconds, and it sets the this object to these values.

Lines 32-38:

These lines show the implementation of the overloaded assignment operator.

The parameter represents the RHS operand, which is the source of the copy, and the this
object is the LHS operand and the destination of the copy.

Line 37 enables cascading.
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Lines 40-44:

These lines show the implementation of the overloaded addition-assignment operator.

Line 42 converts the this object to its corresponding total number of seconds, and it adds
to this number the total number of seconds in the given parameter. Then it sets the this
object to the equivalent of the resulting sum by calling the setTime () member function
implemented on lines 25-30.

Line 43 enables cascading.

Lines 46-52:

These lines show the implementation of the overloaded addition operator.
Line 48 declares a local Time object t to store the addition result.

Line 49 calls the assignment operator implemented on lines 32-38 to copy the values from
the this object into the local t object.

Lines 48-49 could be combined as Time t = *this; which is an initialization and calls the
copy constructor. Here, we chose a separate declaration and assignment operation instead.

Line 50 calls the addition-assignment operator implemented on lines 40-44 to add to the t
object the number of seconds in the parameter, and store the resulting sum into t.

Line 51 returns the updated t object and enables cascading.

Lines 57-75:

These lines contain the implementation of the main () function.
Line 59 declares a local Time object called 1unch and sets it to 12:00 pm (noon).

Line 61 adds 80 seconds (equivalent to 1 minute and 20 seconds) to the 1unch object by
calling the addition-assignment operator implemented on lines 40-44.

Line 63 verifies the cascading of the addition-assignment operator by using its return value
as an operand for stream insertion.

Lines 66-67 declare two other Time objects, called iGoHome and youGoHome.

Line 71 sets the youGoHome object to the resulting sum of the current values in the iGoHome
object and 3700 seconds (equivalent to 1 hour, 1 minute and 40 seconds).

Line 71 first calls the addition operator implemented on lines 46-52 to add the current values
in the iGoHome object and 3700 seconds, without modifying the iGoHome object. A new Time
object containing the resulting sum is returned from the addition operator.

Then line 71 calls the assignment operator implemented on lines 32-38 to copy the values
from the temporary Time object returned by the addition operator into the youGoHome object.

The program output demonstrates the correct functioning of the new overloaded operators.

12.7. Collection class operators

We continue discussing the uses of overloaded operators in our programs. Here, we demonstrate
some useful operators that can be implemented in collection classes.

12.7.1. Concepts

12.7.1.1. What are collection class operators:

» Collection class operators are operators used with instances of collection classes.

* For example, the subscript operator ([ 1) can be used to access an element at a specific index

in the collection; the addition and subtraction (+= and -=) operators can add or remove
an element from the collection; relational operators can compare two collections; stream
insertion, extraction, and many other operators can also be implemented, as needed.
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12.7.2. Coding example: Collection class operators

1 /% + % % * * % % * * * & * *k K * %

2 « Filename: Book.h *

I S R e I I A A A A A a4

4 class Book

5 {

6 friend ostream& operator<<(ostream&, Booké&);
7 public:

8 Book (string="unknown title", string="unknown author");
9 Book& operator=(const Booké&) ;

10 bool operator!=(Book&) const;

11 private:

12 string title;

13 string author;

14 };

16 /% #* % * % % ok * K ok A ok K Kk K K ok

17 % Filename: Book.cc *

18*****************/

19 Book::Book (string t, string a) : title(t), author(a) { }

21 ostream& operator<<(ostream& output, Booké& b)

22 {

23 output << "-— " << setw (35) << left << b.title
24 << " -by- " << right << b.author;

25 return output;

26 }

28 Book& Book::operator=(const Booké& Db)
29 {

30 title = b.title;

31 author = b.author;

32 return *xthis;

33 }

35 bool Book::operator!=(Booké& b) const

36 {

37 return ( (title != b.title) || (author != b.author) );
38 }

A0 /* + o+ K ok ok ok ok ok ok ok Kk Kk * Kk * *

41 + Filename: BookArray.h *

A2 % A ok Ak ok ok ok ok ok ok ok A A K K A */

43 class BookArray

44 |

45 friend ostream& operator<<(ostream&, BookArravyé&);
46 public:

47 BookArray (int=10) ;

48 ~BookArray () ;

49 Booké& operator([] (int);

50 BookArrayé& operator=(BookArrayé&) ;
51 bool operator==(BookArrayé&) const;
52 private:

53 int capacity;

54 Book* elements;

55 };
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56 /% % % % K K K K K K A K & & A & #
57 % Filename: BookArray.cc *
58 ok ok A Ak kA Ak kA Ak A A */

59 BookArray: :BookArray (int c)

60 {

61 if (¢ < 0) {

62 cerr<<"Invalid capacity"<<endl;
63 exit (1);

64 }

66 capacity = c;
67 elements new Book[capacity];
68 }

70 BookArray: :~BookArray ()
71 {

72 delete [] elements;
73 }

75 BookArray& BookArray::operator=(BookArrayé& arr)

76 {

77 if (&arr == this) {

78 return xthis;

79 }

81 if (capacity != arr.capacity) {
82 delete [] elements;

83 capacity = arr.capacity;

84 elements = new Book[capacity];
85 }

87 for (int i=0; i<capacity; ++1i) {
88 elements[i] = arr[i];
89 }

91 return *this;
92 }

94 bool BookArray::operator==(BookArray& arr) const

95 {

96 if (capacity !'= arr.capacity) {
97 return false;

98 }

100 for (int i=0; i<capacity; ++1i) {

101 if (elements[i] != arr.elements[i]) {
102 return false;

103 }

104 }

106 return true;
107 }
108
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109 Book& BookArray::operator[] (int s)

110 {
111
112
113
114

116
117 }

119
120 {
121
122
123
124
125 }

127
128
129
130
131 {
132

133

135
136
137
138
139

141
142
143
144
145

147
148

150
151

153
154

156
157 }
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if (s<0 || s >= capacity) {
cerr<<"Overflow"<<endl;

exit (1) ;

return elements[s];

ostreamé& operator<< (ostream& output,

BookArrayé& arr)

for (int i=0; i<arr.capacity; ++i) {
output << arr.elements[i] << endl;

}

return output;

* Filename: main.cc

VA S S

*

*****************/

int main ()

BookArray arrl (5);
BookArray arr2;

<<

<<
<<

"Orson Scott Card");

"Douglas Adams") ;
"Douglas Adams") ;

arrl << endl;

arr2) ? "yes" "no") << endl;
arr2) ? "yes" "no") << endl;
arrl;
arr2;

Book bl ("Ender’s Game",

Book b2 ("Dune", "Frank Herbert");

Book b3 ("Foundation", "Isaac Asimov");

Book b4 ("Hitch Hiker’s Guide to the Galaxy",
Book b5 ("So Long and Thanks for All the Fish",
arrl[0] = bl;

arrl[l] = b2;

arrl[2] = b3;

arrl[3] = b4;

cout << endl << "Array 1:" << endl

arr2 = arrl;

cout << "Arrays equal? "<< ((arrl

arr2[2] = b5;

cout << "Arrays equal? "<< ((arrl

cout << endl << "Array 1:" << endl

cout << endl << "Array 2:" << endl

return 0;
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Array 1:
Ender's Game -by- Orson Scott Card
Dune -by- Frank Herbert
Foundation -by- Isaac Asimov
Hitch Hiker's Guide to the Galaxy -by- Douglas Adams
unknown title -by- unknown author

Arrays equal? yes
Arrays equal? no

Array 1:
Ender's Game Orson Scott Card
Dune Frank Herbert
Foundation Isaac Asimov
Hitch Hiker's Guide to the Galaxy Douglas Adams
unknown title unknown author

Array 2:
Ender's Game Orson Scott Card
Dune Frank Herbert
So Long and Thanks for All the Fish -by- Douglas Adams
Hitch Hiker's Guide to the Galaxy -by- Douglas Adams
unknown title -by- unknown author
Don't Panic ==> [}

Program-12.8: Collection class operators

Program purpose:

demonstrates the implementation of overloaded collection class operators.

* The program defines a BookArray collection class that contains Book objects as elements.
* The underlying collection inside the collection class is a dynamically allocated array of ob-

jects, as discussed in section and

Lines 4-14:

These lines contain the Book class definition.
Lines 12-13 declare two private data members for the title and author of a book.

Line 6 defines a stream insertion operator, line 8 a default constructor, line 9 an overloaded
assignment operator (=), and line 10 an inequality operator (!=).

Lines 19-38:

These lines show the Book class member function implementations.
Line 19 implements a simple default constructor.
Lines 21-26 show an overloaded stream insertion operator that prints out both data members.

Lines 28-33 implement an overloaded assignment operator that copies the contents of a
provided book into the this object.

Lines 35-38 show an overloaded inequality operator, where two books are considered unequal
if either their titles or their authors differ.
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Lines 43-55:

* These lines contain the BookArray class definition.

* Lines 53-54 declare two private data members: the maximum capacity of the array, and the
dynamically allocated array that stores the Book elements. The dynamic allocation of the
elements array must occur inside the constructor.

* Lines 47-48 define a default constructor and a destructor, respectively. The constructor pa-
rameter specifies a maximum capacity.

* Line 49 declares an overloaded subscript operator that takes an integer index as parameter,
line 50 defines an assignment operator, and line 51 an equality operator.

Lines 59-73:

* These lines show the BookArray class constructor and destructor implementations.

* Lines 59-68 show the default constructor, where lines 61-64 validate the capacity parameter,
line 66 sets the capacity data member from the parameter, and line 67 dynamically allocates
the elements array with the specified capacity.

* Lines 70-73 implement the destructor that deallocates the elements array.

Lines 75-92:

* These lines implement the BookArray overloaded assignment operator.

* Lines 77-79 perform an initial sanity check that the two operands are not the exact same
object. If the two BookArray objects are the same one, the function simply returns.

* Lines 81-85 check whether the LHS operand’s existing elements array has the correct ca-
pacity to accommodate the elements from the RHS operand. If the two operand capacities
don’t match, the existing LHS array is deallocated on line 82 and reallocated on line 84 to
the same capacity as the RHS array.

* Lines 87-89 copy every Book element from the RHS array to the LHS one. Line 88 calls the
Book class’s overloaded assignment operator implemented on lines 28-33.

* Line 91 enables cascading.

Lines 94-107:

* These lines show the BookArray overloaded equality operator.

* Lines 96-98 check if the LHS and RHS operands have different capacities. If they do, they
cannot be equal, and the function returns.

* Lines 100-104 loop over the elements of the two BookArray objects and compare the books
at the same index, using the Book class’s inequality operator implemented on lines 35-38.

* The first mismatched book indicates that the two BookArray objects are not equal. If we
reach the end of the elements arrays without finding a mismatch, then they must be equal.

Lines 109-117:

* These lines implement the BookArray overloaded subscript operator.

* Lines 111-114 check that the index specified in the parameter is valid. Because the operator
function returns a Book reference, there is no value to be returned if the index is invalid. We
must terminate the program instead, as we see on line 113.

* Line 116 returns a reference to the Book element found at the given index.

Lines 119-125:

* These lines show the BookArray overloaded stream insertion operator.

* Lines 121-123 loop over the elements array, and line 122 prints each book element by calling
the Book class’s overloaded stream insertion operator implemented on lines 21-26.
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Lines 132-139:

* These lines declare the Book and BookArray objects in the main () function.
* Line 132 declares a BookArray object called arr1 with a capacity of five books.

* Line 133 declares a second BookArray object called arr2 that is initialized with a default
capacity of 10 books, as specified by the default argument to the BookArray constructor.

* Lines 135-139 declare five Book objects.

Lines 141-145:

* Each of the statements on lines 141-144 does the following:

- first, it calls the BookArray subscript operator implemented on lines 109-117 to retrieve
the Book reference at the given index of in the arr1 object

- then, it calls the Book class’s assignment operator, implemented on lines 28-33, to copy
the RHS operand Book object into the Book reference returned in the previous step

* Line 145 prints out the arr1 object by calling the BookaArray stream insertion operator im-
plemented on lines 119-125.

Lines 147-151:

* Line 147 assigns the contents of the arr1 object into arr2 by calling the BookArray assign-
ment operator implemented on lines 75-92. The arr2 elements array is reallocated to a
capacity of five elements to match arri1, and each Book element in arr1 is copied into arr2.

* Line 148 checks that both BookArray objects are the same by calling the BookArray equality
operator implemented on lines 94-107. At this point, both have the same elements.

* Line 150 replaces the Book element at index 2 of arr2 with a different book.

* When equality is tested again on line 151, we see from the program output that the two
BookArray Objects are no longer equal.

Lines 153-154:

* These lines print out both BookArray objects.

* The program output shows that both BookArray objects contain the same books, except for
the third element that was changed on line 150.

12.8. Increment and decrement operators

The increment and decrement operators raise a new issue with overloaded operator implementa-
tions. As we saw in Program-2.1, the two operators have a prefix and a postfix version, with very
different behaviours. We need to take those behaviours into account in our own implementations.

12.8.1. Basics

12.8.1.1. What is special about increment/decrement operators:

* Like most operators, the increment (++) and decrement (--) operators can be overloaded as
either member functions or global functions.

* The added complication is that both operators have a prefix version and a postfix version,
and both exhibit different behaviours.

* When the increment or decrement operation is executed as its own separate statement in
the code, there is no observable difference between the prefix and postfix versions, although
there are efficiency considerations that are discussed shortly.

* The difference in behaviour between prefix and postfix is with the operator’s return value,
and it’s observed only when the operation is part of an expression with other operators.
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12.8.1.2. Prefix operator return value:

* The prefix version of increment/decrement (for example, ++i or ——i) increments or decre-
ments the operand and returns the operand’s new value, i.e. the operand value after the
operation.

* |f prefix increment/decrement is the only operator in a statement, its return value is ignored.
So the behaviour is the same, whether the prefix or postfix version is used. For example:

given the statements: int 1 = 10; ++i;

in this case, the value of variable i is updated from 10 to 11, and nothing more happens

the same applies when the operation is in the loop advancing statement (the third part) of
a for-loop header: for (int i=0; i<MAX; ++i)

in the above case, the increment operation is again the only operator in a statement

* |If prefix increment/decrement is one of multiple operators in the same expression, its return
value is the new operand value. As a result, the new value is used as an operand to the
next operator executing in the same expression. For example:

- given the statements: int i = 10; cout << ++i;

- in this case, the increment is part of an expression with two operators, and the increment
operator’s return value is the RHS operand for stream insertion

- since the value returned by the prefix operator is the new operand value, the stream in-
sertion operation prints 11 to the screen

* The prefix decrement operator has the same return value behaviour as prefix increment.

12.8.1.3. Postfix operator return value:

* The postfix version of increment/decrement (for example, i++ or i—-) increments or decre-
ments the operand and returns the operand’s original value, i.e. the operand value before
the operation.

 If postfix increment/decrement is the only operator in a statement, its return value is also
ignored. So the behaviour is the same, whether the prefix or postfix version is used.

* If postfix increment/decrement is one of multiple operators in the same expression, it does
update the operand, but its return value is the original operand value. As a result, the
original value is used as an operand to the next operator executing in the same expression.
For example:

- given the statements: int i = 10; cout << i++;

- in this case, the increment is part of an expression with two operators, and the increment
operator’s return value is the RHS operand for stream insertion

- the increment operator still increments the operand i from 10 to 11

- since the value returned by the postfix operator is the original operand value, the stream
insertion operation prints 10 to the screen

* The postfix decrement operator has the same return value behaviour as postfix increment.

12.8.1.4. Increment/decrement operator function prototypes:

* Because an operator only has one function name (for example, operator++ for increment),
there is a complication in differentiating between the prefix and postfix implementations.

* Every function in C++ must have a unique signature. Since the function names are identical,
the designers of C++ introduced an integer dummy parameter for postfix operator functions.

* A dummy parameter has no actual use. It’'s simply a placeholder that provides the postfix
version of an operator function with a different signature from the prefix version.
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* The value of the dummy parameter is meaningless and should always be ignored.

For example:
there are four possible function prototypes for the Time class’s increment operator

- Time& Time::operator++ () IS the member function prototype for the prefix version

- Time Time::operator++ (int) is the member function prototype for the postfix version
- Time& operator++ (Times) is the global function prototype for the prefix version

- Time operator++ (Times&, int) is the global function prototype for the postfix version

We already know that the prefix operator returns a reference to the updated operand object.
We'll see shortly why the postfix operator must return an actual object by value.

12.8.1.5. Prefix operator implementation:

The prefix increment/decrement operators for our classes have a simple implementation:
- update the operand object by incrementing or decrementing it

- return a reference to that same updated operand object

If we implement the prefix operator as a member function, the operand becomes the this
object inside the function, and the function takes no parameters.

If we implement the prefix operator as a global function, the operand is passed in to the
function as an object reference.

12.8.1.6. Postfix operator implementation:

X

The postfix increment/decrement operators for our classes have a slightly more complicated
implementation, since we need to make a copy of the original operand value:

- make a local copy of the operand object with its original value; we may need to implement
a copy constructor to do this

- update the operand object by incrementing or decrementing it
- return by value the local copy object as the operand’s original value

If we implement the postfix operator as a member function, the operand becomes the this
object inside the function, and the function takes a dummy integer parameter.

If we implement the postfix operator as a global function, the function takes two parameters:
the operand as an object reference and a dummy integer parameter.

NOTE: Once again, we note that we can never use a pointer into a called function’s stack
frame as a return value. Once that stack frame is popped off the function call stack, its
memory is no longer allocated. Attempting to access that memory through a pointer will
result in a segmentation fault and program crash.

PRO TIP: We can see why the postfix implementation of an operator is slower than the prefix
one. Having to make a copy of an object is a drain on computational resources, especially if
the object is a large one or the operator is called repeatedly, for example as the advancing
statement of a for-loop. While the use of prefix or postfix operators for primitive data type
variables are fairly equivalent, it's a good programming habit to favour prefix operators
wherever possible.
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12.8.2. Coding example: Increment and decrement operators

1 /% + % % * * % % * * * & * *k K * %

O 0O N O U1 A WN

NN R H R B B 2 B BB B2 2
R O O 00 N O Ul A WN B O

23
24
25
26

28
29
30
31
32

34
35
36
37
38

40
41
42
43
44
45

47
48
49
50
51
52

54
55

* Filename: Time.h

*

E o T . SR S SR SR S R S S ST N S S o */

class Time

{

I

/ *

friend ostream& operator<<(ostream&, const Time&) ;

public:

Time (int=0, int=0, int=0);
Time (const Time&) ;
volid setTime (int, int,

Timeé&
Time&
Time
Time
private:

int
int
int
int
void

operator++ () ;
operator——();
operator++ (int) ;
operator—--(int) ;

hours;

minutes;
seconds;
convertToSecs ()
setTime (int) ;

int) ;

const;

E I S ST S S SR S SRS S SR S SR SR, SR S 4

* Filename: Time.cc

*

F T T . SR S SR SR S R S S ST ST S S o */

Time: :Time (const Timeé& t)

Time& Time: :operator++ ()

{

setTime (convertToSecs ()
return *this;

Time& Time::operator—- ()

{

setTime (convertToSecs ()
return *this;

Time Time: :operator++ (int)

{

Time tmp

= xthis;

++ (xthis) ;
return tmp;

Time Time: :operator—--(int)

{

Time tmp

= xthis;

——(xthis);
return tmp;

{ setTime (t.hours, t.minutes,

+ 1);

- 1);

/+ The basic Time member functions are not shown x/
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JAk Ak A A A A A A A A Ak

* Filename: main.cc

EE S S S S S S S A S S o

int main ()

{

cout <<endl<<"Original time:

cout << endl << "Time

cout << "Time
cout << endl << "Time
cout << "Time

cout << endl << "Time

cout << "Time
cout << endl << "Time
cout << "Time

return 0;

Don't Panic ==> p8

Original time:

Time
Time

Time
Time

Time
Time

Time
Time

with prefix inc:
after prefix inc:

with prefix dec:
after prefix dec:

with postfix inc:
after postfix inc:

with postfix dec:
after postfix dec:

Don't Panic

E O S S S 4
*

* ok ok ok k)

"<< now
with prefix inc: "<
after prefix inc: "<
with prefix dec: "<
after prefix dec: "<
with postfix inc: "<
after postfix inc: " <<
with postfix dec: "<
after postfix dec: " <<

<<endl;

++now <<
now <<
——now <<
now <<
now++ <<
now <<
now—— <<
now <<

Terminal — -csh — 80x286

8l:85:688

8l1:85:81
81:85:81

8l:85:088
8l:85:88

81:85:080
81:85:081

8l:85:81
8l:85:88

Program-12.9: Increment and decrement operators

Program purpose:

operators are implemented as member functions of the Time class.

endl;
endl;
endl;
endl;

endl;
endl;
endl;
endl<<endl;

demonstrates how overloaded prefix and postfix, increment and decrement

* Some basic member function implementations of the Time class are not shown, but they are
identical to

Lines 4-21:

e These lines contain the Time class definition.
* Line 9 declares a copy constructor.

* Lines 11-14 show the member function prototypes for the overloaded operators. Line 11
declares the prefix increment operator, line 12 the prefix decrement, line 13 the postfix
increment, and line 14 the postfix decrement.
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Line 26:

This line shows the implementation of the new copy constructor required in this program.

Lines 28-32:

These lines show the implementation of the prefix increment operator.
From the absence of parameters, we know that this is the prefix version of the operator.

Line 30 demonstrates the logic of the operation. The operand found in the this object is
converted to a total number of seconds. That total is incremented by one second, and the
operand’s data members are reset to the hours, minutes, and seconds equivalent to the
incremented total number of seconds.

Line 31 returns the updated operand and enables cascading.

Lines 34-38:

These lines show the implementation of the prefix decrement operator.
From the absence of parameters, we know that this is the prefix version of the operator.

Line 36 demonstrates the logic of the operation. The operand found in the this objectis con-
verted to a total number of seconds and decremented by one second, and the operand’s data
members are reset to the values equivalent to the decremented total number of seconds.

Line 37 returns the updated operand and enables cascading.

Lines 40-45:

These lines show the implementation of the postfix increment operator.
From the single integer parameter, we know that this is the postfix version of the operator.

Line 42 declares a local Time object, which is initialized as a copy of the operand found in the
this object by calling the copy constructor implemented on line 26. This copy is necessary
because a postfix operator is required to return the original value of the operand object.

Line 43 demonstrates good code reuse by calling the prefix increment operator, implemented
onlines 28-32, which performs the increment operation on the same operand object. Because
this is a pointer, it must be dereferenced in order to access its pointee object.

Line 44 returns the local copy of the original operand, by value, and it enables cascading.

Lines 47-52:

These lines show the implementation of the postfix decrement operator.
From the single integer parameter, we know that this is the postfix version of the operator.

Line 49 declares a local Time object, which is initialized as a copy of the operand found in the
this object by calling the copy constructor implemented on line 26.

Line 50 calls the prefix decrement operator, implemented on lines 34-38, which performs the
decrement operation on the same operand object.

Line 51 returns the local copy of the original operand, by value, and it enables cascading.

Lines 59-74:

These lines show the implementation of the main () function.
Line 63 calls the prefix increment operator implemented on lines 28-32.
Line 65 calls the prefix decrement operator implemented on lines 34-38.

Line 68 calls the postfix increment operator implemented on lines 40-45. The program output
shows the original value printed on line 68 and the updated value on line 69.

Line 70 calls the postfix decrement operator implemented on lines 47-52. The program output
shows the original value printed on line 70 and the updated value on line 71.
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Chapter 13

Templates

Templates are an important tool in promoting code reuse in our programs. Sometimes called
generics in other programming languages, templates in C++ allow programmers to treat data
types as a kind of variable inside our functions and classes.

In this chapter, we discuss the use of templates in general and the implementation of function
templates and class templates in C++.

13.1. Principles
We discuss the role of code reuse in OO design and the mechanisms for code reuse in C++.

13.1.1. Code reuse in OO design

13.1.1.1. Main principles of OO design:

* As discussed in previous chapters, designing programs for data abstraction focuses on the
separation of the abstract properties of classes from their concrete implementations.

* There are two important techniques for designing our programs for code reuse:
- make use of existing code, for example by reusing our own or library-provided classes

- design our classes so that they are reusable, either in our own programs or others

13.1.1.2. Designing for code reuse:

* This section focuses on designing our classes so that they are reusable within the same
program or other ones.

* Generic programming techniques. including templates in C++, help make our classes reusable.
The goal is to code once and reuse the same code multiple times.

13.1.2. Mechanisms for code reuse

13.1.2.1. Code reuse with functions:

* Designing a modular function makes it reusable.

We design and implement the function, then we call it with different parameter values.

* By varying the parameter values, the code effectively reuses the function by calling it in
different ways.

With functions, parameter values can vary, but the parameter data types are fixed.
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13.1.2.2. Code reuse with templates:
* Using a template also makes our code reusable, because it works with all kinds of data types.

* Atemplate can be either a function or a class, and it uses a data type as a kind of parameter
to the template.

* The template code is written once, and then it can be used with any data type as parameter.

13.2. Function templates
We discuss how functions are implemented in C++ independently of data types.

13.2.1. Concepts

13.2.1.1. What is a function template:
* A function template is a global or member function that works with any data type.

* The function template definition specifies the function implementation, but with one or more
data types as a kind of "variable" or parameter to the template. We call this the template
parameter.

* It’s common to use a single uppercase letter, like T or v, to denote the template parameter.

* The template parameter can be reused anywhere inside the function template, for example
as a data type for parameters, return type, local variables, and so on.

* For example, a max () function that compares three values passed in as parameters and
returns the maximum has identical logic whether we are comparing three integers, three
floating point numbers, or three Time objects. If we make max () a function template with
template parameter T, then all three parameters and the return value can be declared as
data type T, and the same function implementation can be reused for any data type.

* Both global and member functions can be templates. However, a member function template
must be contained within a class template.

13.2.1.2. How function templates work:

* The work required for the implementation of function templates is distributed between the
programmer and the compiler.

* The programmer writes the function implementation using a template parameter in place of
a data type. Then they call the function in the program, using a specific data type.

* At compile time, the compiler detects when a function template is called. If a function tem-
plate is never called, then it is never compiled.

* Afunction template must be called using a specific data type. The compiler then generates a
new specialization of the template with that data type hard-coded into the implementation.
The generated specialization is then compiled with the rest of the code.

* For every call to a function template with a different data type, the compiler generates a
new specialization that’'s hard-coded for that data type. Specializations are only generated
for the data types with which the function is called inside the program.

A function template may be overloaded with a non-template version of the same function.
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13.2.2. Coding example: Function templates

int main ()

{

template <typename T>

cout << "max int:
cout << "max char:

cout << "max float:

cout << endl;

Time tl1(11,22);
Time t2(13,17);
Time t3(9,55);

cout << "max times:

return 0;

T max(T vl, T v2, T v3)

{

T maxValue = vl;

if (v2 > maxValue)
maxValue = v2;

if (v3 > maxValue)
maxValue = v3;

return maxValue;

Don't Panic ==> pl
max int: [

max char: z

max float: 9.99

max times: 13:17:88

Don't Panic ==> I

Program purpose:

{

{

<<
<<
<<

<<

max (33, 22, 44) << endl;
max("z", "z", 'c’) << endl;
max (3.14f, 9.99f, 3.45f) << endl;

max (tl,t2,t3) << endl << endl;

Terminal — -csh — 80x24

Program-13.1: Function templates

demonstrates the implementation of a global function template.

e The Time class is identical to
(>) operator.

* The program declares a global function template called max () that takes three values as
parameters, compares them, and returns the maximum value.

©Christine Laurendeau
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Lines 16-30:

Lin

13.

These lines contain the max () global function template that compares three values passed
in as parameters and returns the maximum as the return value.

Line 16 announces that a template definition follows. It also declares that, within the template
definition, the name of the template parameter is T.

Line 17 shows the function prototype, which declares all three parameters and the return
type with the template parameter data type T.

We see from lines 19-27 that three member functions are required of any class that’s used
as the template parameter data type. Line 19 generates a call to a copy constructor; lines
21 and 25 call the overloaded greater-than operator; and lines 22 and 26 call the overloaded
assignment operator.

Line 19 declares a local variable of the template parameter data type to store the current
maximum value. If T is a class, this line calls its copy constructor.

Lines 21-27 show the logic that determines the maximum value.
Line 29 returns the maximum of the three parameter values.

es 1-14:

These lines contain the implementation of the main () function.

At compile time, line 3 generates a specialization of the max () function for the integer data
type; line 4 generates a second specialization for characters; line 5 creates a third special-
ization for floats; and line 11 generates a fourth version of max () for Time objects.

The program output shows that the maximum is computed correctly for all four data types.

2.3. Coding example: Overloaded function templates

1 int main ()

2

3 cout << "max int: " << max (33, 22, 44) << endl;

4 cout << "max char: " << max("z’", "z’', '"c’") << endl;

5 cout << "max float: " << max(2.22f, 5.55f, 3.88f) << endl<<endl;
7 cout << "max two ints: " << max (33, 22) << endl;

8 cout << "max double: " << max(2.22, 5.55, 3.88) << endl;

9 return 0;

10 }

12 template <typename T>

13 T max(T vl, T v2, T v3)

14 {

15 cout << "-- in function template -- ";
16 T maxValue = vl;

18 i1f (v2 > maxValue) {
19 maxValue = v2;
20 }

22 if (v3 > maxValue) {
23 maxValue = v3;
24 }

26 return maxValue;
27 }
28
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29 int max (int v1, int v2)

30 {

31 cout << "-- in two-parameter function -- ";
32 if (vl > v2) {

33 return vl;

34 }

35 else {

36 return v2;

37 }

38 }

40 double max (double dl, double d2, double d3)

41 {
42 cout << "-- in three-parameter function -- ";
43 return 42.22;
44 )
& 2 Terminal — -csh — 80x24

Don't Panic ==> p2

max int: == in function template -- 44
max char: -- in function template —-- z
max float: -- in function template -- 5.55

max two ints: in two-parameter function -- 33
max double: —— in three-parameter function —- 42.22
Don't Panic ==>

Program-13.2: Overloaded function templates

Program purpose:

* Program-13.2 demonstrates a function template overloaded with a non-template version.

* The program declares a global function template called max () that takes three values as
parameters, compares them, and returns the maximum.

* It also implements an overloaded non-template version of max () that takes two integer pa-
rameters, as well as an overloaded non-template version that takes three doubles. We see
that, if the compiler has a choice between a function template and a non-template version,
the non-template function is called.

Lines 12-27:

* These lines contain the implementation of the max () global function template. The code is
identical to Program-13.1, with the addition of a printed debugging statement.

Lines 29-44:

* Lines 29-38 contain the implementation of a non-template version of max () that takes two
integer parameters and returns the maximum.

* Lines 40-44 show the implementation of a non-template version of max () that takes three
doubles and returns a constant.

Lines 1-10:

* These lines contain the implementation of the main () function.

* Lines 3, 4, and 5 generate specializations of the function template for the integer, character,
and floating point number data types, respectively.

* Line 7 does not generate a template specialization because it only takes two parameters.
Instead, it calls the two-parameter max () function shown on lines 29-38.
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* Line 8 also does not generate a template specialization. It takes three parameters and could
potentially generate a new template specialization for the double data type. However, be-
cause a non-template version of max () that takes three doubles is provided on lines 40-44,
the non-template function is called instead.

13.3. Class templates

We discuss how classes are implemented in C++ independently of data types.

13.3.1. Concepts

13.3.1.1. What is a class template:

* A class template is a class that works with any data type. It is sometimes also called a
parameterized type.

* The class template definition specifies all the class members, including data members and
member functions, but with one or more data types as a kind of "variable" or parameter to
the template.

* The template parameter can be reused inside the class template for any class member, for
example as a data type for data members, and member function parameters or return types
or local variables.

* For example, an Array class that stores same-type elements has identical behaviour whether
the elements are all integers, floating point numbers, or Time objects. If we make Array a
class template with template parameter T, then the elements can be declared as data type
T, and the same member function implementations can be reused for any data type.

13.3.1.2. Characteristics of a class template:

* Making a class into a class template changes the nature of the class name itself. Since our
code is packaged so that member function implementations are outside the class definition,
the member functions become function templates in order to be defined as belonging to a
class template.

* For example, outside the Array class definition, the class name is no longer simply Array.
With T as the template parameter, the class name becomes Array<T> everywhere. Member
function implementations that are packaged into a source file must indicate that they belong
to the Array<T> class, and not Array.

* Class templates are commonly used to implement collection classes.

13.3.1.3. How class templates work:

* The work required for the implementation of class templates is distributed between the pro-
grammer and the compiler.

* The programmer writes the class definition and its member function implementations using
a template parameter in place of a data type. Then they create an instance of the class in
the program, using a specific data type.

* At compile time, the compiler detects when a class template is instantiated, i.e. when an
instance of the class is created.

* A class template must be instantiated using a specific data type. The compiler then creates
a specialization of the template with that data type hard-coded into the class definition and
its member function implementations. The generated specialization is then compiled with
the rest of the code.

©Christine Laurendeau Chapter 13. Templates 289



* For every instance of a class template that’s instantiated with a different data type, the
compiler generates a new specialization that’s hard-coded for that data type. Specializations
are only generated for the data types with which the class is instantiated inside the program.

13.3.1.4. Class template variations:

* A class template may be defined with multiple template parameters.

* A default data type can be specified for a template parameter, in the same way that we

declare default arguments for functions, as we discussed in section 3.3.

* If a class defines a static member, each specialization gets its own copy of that member.

13.3.2. Coding example: Class templates

1 /% * % % * * & % * * K & * ok K * %

2
3

* Filename: Array.h *

*****************/

4 template <class T>
5 class Array

6 {

7 template <class V>

8 friend ostream& operator<<(ostream&, const Array<V>&);
9 public:

10 Array (int=10) ;

11 ~Array () ;

12 T& operator[] (int);
13 private:

14 int capacity;

15 T x elements;

16 };

18 template <class T>
19 Array<T>::Array (int c)

20 {
21
22
23
24
25
26
27 }

if (c < 0) {
cerr<<"Invalid capacity"<<endl;

exit (1) ;
}
capacity = c;
elements = new T[capacity];

29 template <class T>
30 Array<T>::~Array ()

31 {
32
33 }

delete [] elements;

35 template <class T>
36 T& Array<T>::operator[] (int s)

37 {
38
39
40
41
42
43 }

if (s<0 || s >= capacity) {
cerr<<"Overflow"<<endl;
exit (1) ;

}

return elements|[s];
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44 template <class T>

45 ostreamé& operator<< (ostream& output,
46 {

47 for (int i1=0; i<arr.capacity; ++i)

const Array<T>& arr)

{

48 output << arr.elements[i] << endl;
49 }

50 return output;

51 }

53 /% 4 K *k * Kk K K K K A A A A A & #
54 % Filename: main.cc *
55*****************/
56 int main ()

57 {

58 Array<int> arrInts(5);

59 Array<char> arrChars;

60 Array<Book> arrBooks (4) ;

62 Book bl
63 Book b2
64 Book b3
65 Book b4

"Dune", "Frank Herbert");

—_— o~~~

67 for (int i=0; i<5; ++i) {

68 arrInts([i] = i*2;

69 }

70 cout<<"Array of ints:"<<endl;
71 cout<< arrInts << endl;

73 for (int i=0; i<10; ++i) {

74 arrChars[i] = 1+65;

75 }

76 cout<<"Array of chars:"<<endl;
77 cout<< arrChars << endl;

79 arrBooks[0] = bl;
80 arrBooks[1l] = b2;
81 arrBooks[2] = Db3;

82 arrBooks[3] = b4;
83 cout<<"Array of Books:"<<endl;
84 cout << arrBooks << endl;

86 Array<Bookx> arrPtrs (4);
87 arrPtrs[0] = &bl;

88 arrPtrs[l] = &b2;
89 arrPtrs([2] = &b3;
90 arrPtrs([3] = &b4;

"Ender’s Game", "Orson Scott Card");

"Foundation", "Isaac Asimov");
"Hitch Hiker’s Guide to the Galaxy",

91 cout<<"Array of Book pointers:"<<endl;

92 cout << arrPtrs;

94 return 0;
95 }
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Don't Panic ==> p3
Array of ints:
(5]

2
&
4]
8

=
]
a]
(]
L
=]
b ]
7]
=
w
H
7]

A
B
c
D
E
F
G
H
I
J

Array of Books:
Ender's Game Orson Scott Card
Dune Frank Herbert
Foundation Isaac Asimov
Hitch Hiker's Guide to the Galaxy Douglas Adams

Array of Book pointers:
Bx146dcbf5d8
Bx146dcbf578
Bx1l6dcbf518
Bxl6dcbf4bs

Don't Panic ==> [}

Program-13.3: Class templates

Program purpose:

. demonstrates the implementation of a class template.

* The program defines a collection class template called array that uses a dynamically allo-
cated array to store elements of the template parameter data type.

* The Array class is a template version of the BookArray class in , with many of
the same member functions and overloaded operators.

* The Book class used in this program is identical to

Lines 4-16:

* These lines contain the Array class template definition, with line 4 defining it as a template.

* Lines 7-8 grant friendship to the overloaded stream insertion operator global function, which
must be a function template to manipulate an instance of the aArray<T> class template.
Within the scope of the friendship declaration, we must use a different template parame-
ter (v instead of T), in order to not "hide" the overall class template parameter T.

* Lines 10 and 11 declare the default constructor and destructor, respectively.
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Line 12 defines the overloaded subscript operator, which returns a reference to the array
element of type T at the given index.

Lines 14 and 15 declare the maximum array capacity and the underlying container in which
the class stores its elements, respectively, as data members. The elements are stored in a
dynamically allocated primitive array, with elements of the template parameter data type T.

Lines 18-27:

These lines show the implementation of the array<T> constructor.
Line 18 declares the member function as a function template.

Line 19 shows that the constructor belongs to the Array<T> class (remember that outside
the class definition, the Array class does not exist).

Line 26 dynamically allocates the memory for the underlying container, as a primitive array
of elements of type T.

The overall logic of the constructor is identical to Program-12.8.

Lines 29-51:

These lines show the implementation of the remainder of the Array<T> member functions.
Lines 29-33 implement the destructor, which is identical to Program-12.8.

Lines 35-43 and lines 44-51 do the same for the overloaded subscript and stream insertion
operators, respectively.

Lines 56-95:

These lines contain the implementation of the main () function.

Line 58 creates an instance of the Array<T> class, called arrints, with template parameter
T set to the integer data type. In the constructor on line 26, the primitive array of integers is
dynamically allocated with a capacity of 5 elements.

Line 59 declares another instance of the Array<T> class, called arrchars, with template
parameter T set to the character data type, with a default capacity of 10 elements as declared
on line 10.

Line 60 creates a third instance of the Array<T> class, arrBooks, with template parameter
T set to the Book class data type. In the constructor on line 26, the primitive array of Book
objects is dynamically allocated with a capacity of 4 elements.

Lines 62-65 allocate and initialize four Book objects.

Lines 67-69 populate the arrints object with five even numbers (and zero) by using the
Array<T> class’s overloaded subscript operator implemented on lines 35-43.

Line 71 prints out the contents of the integer array by calling the Array<T> class’s overloaded
stream insertion operator shown on lines 44-51. As we see from the program output, the five
integers are printed out to the screen.

Lines 73-75 populate the arrchars object with ten uppercase characters using the Array<T>
class’s overloaded subscript operator.

Line 77 prints out the contents of the character array with the Array<T> class’s overloaded
stream insertion operator. The program output shows the ten characters printed out.

Lines 79-82 populate the arrBooks object with the four existing Book objects by using the
Array<T> subscript operator.

Line 84 prints out the books array with the Array<T> stream insertion operator. As we see
from the program output, the four Book objects are printed out.

Line 86 declares an instance of the array<T> class, called arrPtrs, with template parameter
T set to the Book pointer data type. In the constructor on line 26, the primitive array of Book
pointers is dynamically allocated with a capacity of 4 elements.
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* Lines 87-90 populate the arrpPtrs object with the addresses of the four existing Book objects

by using the Array<T> subscript operator.

* Line 92 prints out the contents of the book pointers array by calling the Array<T> stream

insertion operator. The program output shows the addresses of the four Book objects.

13.3.3. Coding example: Class template variations

1 /% * % % * % * % % * * * * * *k & *

2 « Filename: MapPair.h *

3 * A ok A Ak A A kA A A A A A A A A/

4 template <class T=int, class V=string>

5 class MapPair
6 {
7 template <class A, class B>

8 friend ostreamé& operator<< (ostreamég,

9 public:

10 void set (T, V);
11 private:

12 T key;

13 V value;

14 };

16 template <class T, class V>
17 void MapPair<T,V>::set (T k, V v)
18 {

19 key = k;
20 value = v;
21 }

23 template <class T, class V>

MapPair<A,B>¢&) ;

24 ostream& operator<<(ostreamé& output, MapPair<T,V>& p)

25 {

26 output << "Key: " << p.key << ", Value:

27 return output;
28 }

30 /4 k Kk Kk K Kk Kk K K K K K A A A A F

31 * Filename: main.cc *

32 X ok ok Ak Ak A A A A A A A A A A A A/

33 #define MAX_SIZE 4

35 int main ()
36 {

37 MapPair<string, float> grades[MAX_SIZE];

38 grades[0] .set ("Timmy", 11.9);
39 grades([1l].set ("Harold", 6.3);
40 grades[2] .set ("Matilda", 10.5);
41 grades[3] .set ("Stanley", 9.9);

43 for (int i=0; i<MAX_SIZE; ++i) {

44 cout<<grades[i];
45 }

46 cout<<endl;

47

" << p.value << endl;
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48 MapPair<> playerNums [MAX_SIZE];
49 playerNums [0] .set (10, "Bobby");
50 playerNums[1l].set (22, "Mike");
51 playerNums[2] .set (99, "Wayne");
52 playerNums [3].set (65, "Joe");

54 for (int i=0; i<MAX_SIZE; ++i) {
55 cout << playerNums[i];
56 }

58 return 0;

@ Terminal — -esh — 80x24

Don't Panic ==> p&

Key: Timmy, Value: 11.9
Key: Harold, Value: 6.3
Key: Matilda, Value: 18.5
Key: Stanley, Value: 9.9

Key: 18, Value: Bobby
Key: 22, Value: Mike
Key: 99, Value: Wayne
Key: 65, Value: Joe
Don't Panic ==> [}

Program-13.4: Class template variations

Program purpose:

demonstrates two variations of class templates: multiple template parameters
and default template parameter types.

The program defines a class template called MappPair that stores a key-value pair, similar to
the elements of a map data structure. We see how a class template can have two template
parameters, and how these parameters may have default values.

Lines 4-14:

These lines contain the MapPair class template definition.

Line 4 reveals a lot of information about this class template, including the definition of the
class as a template. It also shows that MapPair has two template parameters: T and v.

In addition, line 4 defines default types for each template parameter. By default, T has a data
type of integer, and v is a string. The syntax is nearly identical to that used in the declaration
of default arguments to functions, as we saw in section

Lines 7-8 grant friendship to the overloaded steam insertion operator global function.
Line 10 defines a setter function for the key and value data members.

Lines 12-13 show the declaration of the key-value pair as data members. We see that the key
data member is declared with the data type indicated by template parameter T, and value
has the data type specified by template parameter v.

Lines 16-28:

Lines 16-21 show the implementation of the key-value setter member function.
Lines 23-28 implement the stream insertion operator that prints out the key-value pair.
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Lines 35-59:

* These lines contain the implementation of the main () function.

* Line 37 declares a primitive array of four MappPair objects, called grades. Each Mapprair
object in the array contains a key with a string data type and a value with a float data type.

* Lines 38-41 populate the grades array with key-value pairs by calling the Mappair class’s
setter member function implemented on lines 16-21.

* Lines 43-45 loop over the grades array and print out each pair by calling the MappPair class’s
overloaded stream insertion operator implemented on lines 23-28.

* Line 48 declares another array of four MapPair objects, called playerNums. In this array,
each MapPair object uses the default template parameter data types for the key-value pair,
as defined on line 4. So the key uses an integer data type and the value a string data type.

* Lines 49-52 populate the playerNums array with key-value pairs by calling the Mappair class’s
setter member function.

* Lines 54-56 loop over the playerNums array and print out each pair by calling the Maprair
class’s stream insertion operator.

13.3.4. Coding example: STL vector class template

1 /% % % * * & % * * * & * ok K & * *

2 + Filename: Student.h *

3 %k ok ok Ak Ak kA Ak k kA A Ak A/

4 class Student

5

6 friend ostream& operator<<(ostream&, Studenté&);
7 public:

8 Student (string="000000000", string="No name", string="No major", float=0.0f);
9 Student (const Studenté&) ;

10 ~Student () ;

11 private:

12 const string number;

13 string name;

14 string majorPgm;

15 float gpa;

16 };

18 /* #* * o o ok Kk Kk ok Kk Kk ok ok * Kk * *
19 =+ Filename: Student.cc *
20 X ok kA A A A A A A A A A A A A A

21 Student::Student (string sl, string s2, string s3, float g)

22 : number (sl), name(s2), majorPgm(s3), gpa(qg)
23 {

24 cout<<"-- Student ctor: "<< name <<endl;

25 }

27 Student::Student (const Studenté& stu)

28 : number (stu.number), name (stu.name), majorPgm(stu.majorPgm), gpa(stu.gpa)
29 {

30 cout<<"-- Student copy ctor: "<< name <<endl;

31 }

33 Student: :~Student ()

34 {

35 cout<<"-- Student dtor: "<< name <<endl;
36 }
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37 ostream& operator<<(ostream& output, Studenté& stu)

38 {

39 output<<"Student: " << stu.number << " " << left << setw(10)

40 << stu.name << " " << setw(1l5) << stu.majorPgm << " GPA: "

41 << fixed << setprecision(2) << setw(5) << right << stu.gpa << endl;
42 return output;

43 }

A5 /% H % & % K Kk K ok K A ok K Kk K K *

46 + Filename: main.cc *

A7 % o, % A ok A ok A Ak A A kA Ak A A k)

48 int main ()

49 {

50 Student matilda("100567899", "Matilda", "CS", 9.0f);
51 Student joe("100234555", "Joe", "Physics", 8.3f);

52 Student timmy ("100234888", "Timmy", "CS", 11.5f);

54 vector<Studentx> comp2404;

55 comp2404 .push_back (&matilda) ;
56 comp2404 .push_back (&joe) ;

57 comp2404 .push_back (&timmy) ;

59 cout<<endl<<"COMP 2404 students:"<<endl;
60 for (int 1=0; i<comp2404.size(); ++1i) {
61 cout << x (comp2404[il]);

62 }

64 cout<<endl<<"Student at 1: ";
65 cout<< * (comp2404.at(l)) << endl;

67 vector<Student*> comp2406 (comp2404) ;

68 cout<<"vectors equal? " << (comp2404==comp2406?"true":"false") << endl;

69 comp2406.pop_back () ;

70 cout<<"vectors still equal? "<<(comp2404==comp2406?"true":"false")<<endl<<endl;

72 vector<Student> vect2;

73 cout<< "- pushing matilda:" << endl;
74 vect2.push_back (matilda) ;
75 cout<< "- pushing timmy:" << endl;

76 vect2.push_back (timmy) ;
78 cout<< endl << "End of program" << endl;

79 return O;
80 }
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Don't Panic ==> pb

-- Student ctor: Matilda
-- Student ctor: Joe

-- Student ctor: Timmy

COMP 2484 students:

Student: 188567899 Matilda Cs GPA: 9.0880
Student: 188234555 Joe Physics GPA: 8.38
Student: 188234888 Timmy Cs GPA: 11.58

Student at 1: Student: 1808234555 Joe Physics

vectors equal? true
vectors still equal? false

- pushing matilda:

-- Student copy ctor: Matilda
- pushing timmy:

—— Student copy ctor: Timmy
—— Student copy ctor: Matilda
== Student dtor: Matilda

End of program
Student dtor: Timmy
Student dtor: Matilda
Student dtor: Timmy
Student dtor: Joe
Student dtor: Matilda
Don't Panic ==> I

Program-13.5: STL vector class template

Program purpose:

. demonstrates the use of the standard template library (STL) vector class,
which is a collection class that is also a class template.

* The program defines some vector objects and showcases some of the overloaded operators
and member functions provided with the class.

Lines 4-43:
* These lines contain the student class definition and member function implementations.
* The class is very similar to the one we saw in , with the addition of a copy con-

structor and a destructor, as well as the replacement of the print member function with an
overloaded stream insertion operator.

* For clarity purposes, the default constructor, the copy constructor, and the destructor print
out the name of the student. This assists in highlighting one of the major problems with the
STL vector class.
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Lines 50-62:

These lines show the first part of the main () function implementation.

Lines 50-52 allocate and initialize three student objects. We see from the program output
that the default constructor is called for each one.

Line 54 declares an STL vector object, called comp2404, to contain student object pointers.
Collections are always empty when they are declared, and the STL vector is no exception.

Lines 55-57 add the addresses of the three existing student objects to the end of the vector.
We see from the program output that inserting pointers into a vector does not cause any
Student objects to be created or copied.

Lines 60-62 print out the contents of the vector. Because the vector elements are pointers,
each element must be dereferenced in order to print out the student information.

Line 61 calls the student stream insertion operator implemented on lines 37-43.

Lines 64-70:

These lines demonstrate some member functions implemented in the STL vector class.

Line 65 shows the use of the at () member function. It works similarly to the subscript
operator, and it returns the element at the given index. However, it’'s much safer to use.
While the subscript operator is limited in its bounds checking, the at () member function
throws an exception if an out-of-bounds index is provided. Exception handling is discussed
chapter 14.

Line 67 uses the STL vector’s copy constructor to make a copy of comp2404 into a new vector
called comp2406. Because the vector elements are pointers, a shallow copy is performed. As
a result, no objects are copied, but the elements of both vectors point to the same student
objects declared on lines 50-52.

Line 68 compares the two vectors using the overloaded equality operator, and the program
output shows that the two are equal.

Line 69 removes the last element in the comp2406 vector.

When line 70 compares the two vectors again, the program output shows that they are no
longer equal.

Lines 72-76:

These lines demonstrate one of the major problems with the STL vector class.

Line 72 declares an STL vector object, called vect2, to contain student objects, and not
object pointers.

When matilda is added to the new vector on line 74, we see from the program output that
a copy of the matilda object is created.

When timmy is added to the vector on line 76, the program output shows that both matilda
and timmy are copied. So now there are three instances of matilda in the program and two
instances of timmy. Immediately afterwards, one instance of matilda is destroyed.

So what’s going on here? Initially, a vector is created with a capacity of one element. When
we add matilda on line 74, the object is copied into the vector, which is then full.

When timmy is added on line 76, there is no room for it. So a new vector is created, with
double the capacity (so two elements), and the existing elements and the new one are copied
into this new vector. When the old vector is deallocated, its copy of matilda is no longer
required, and it is destroyed.

Storing objects in an STL vector is a cumbersome affair. Elements are copied when they are
added to the vector, and again every time the vector capacity is increased. If the objects
are somewhat large, computational efficiency will be negatively impacted.

The moral of the story: STL containers are great to use, as long as we store primitive data
types or pointers, and not objects.
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Chapter 14

Exception Handling

Exception handling is a mechanism in C++ that provides an alternate control flow when a serious
error is encountered by the program at runtime.

In this chapter, we introduce the principles of exception handling and its mechanism in C++. We
also illustrate some side effects of bypassing the regular program control structures.

14.1. Principles
We discuss the principles of software robustness and error handling in our programs.

14.1.1. Software robustness

14.1.1.1. What is software robustness:

» Software robustness is the degree to which a program can keep running despite the presence
of faults.

* Afault in a piece of software is a defect, also known as a bug. It's something, either internal
or external to the program, that causes it to crash.

* No program is perfect! We should never assume that ours have no bugs.

14.1.1.2. Types of faults:
* There are different kinds of faults that could result in a program crash.
* The end-user may enter bad input:
- they may enter the wrong data type, for example a string instead of a numeric value

- they could enter input in an unexpected format, for example too many or too few values,
or input that the program doesn’t expect

- they could abruptly terminate the program, for example with Ctrl+C
* The programmer may inadvertently introduce software bugs:
array bounds may not be checked, leading to a segmentation fault and program crash
null or garbage pointers may be dereferenced, also leading to segmentation faults
memory leaks may accumulate and heap space may run out

there could be many other software defects that are not caught during testing
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14.1.1.3. Fault prevention:

Fault prevention is the process of writing software in a way that minimizes the number of
faults that are introduced.

Good ways to prevent faults including following the rules of good software engineering and
OO0 design.

Code reviews, where a team of programmers go over a critical piece of software line-by-line,
is also a good way to ensure quality and detect design errors that may result in faults.

14.1.1.4. Fault detection:

Fault detection is the process of discovering faults before the end-user does.
Software faults are most often detected by debugging and testing.

Debugging is an informal activity, where the programmer verifies the correct functioning of
a portion of the program. Debugging is neither organized nor planned.

Testing is a crucial stage of the software development life-cycle. Testers put together a test
plan that addresses all the client requirements. A test plan consists of a suite of test cases
that verify the correct functioning of a specific unit of software, under a variety of scenarios.

The testing activity must include verifying the success paths and the failure paths through
the software execution.

It must also ensure that the different software components communicate correctly with each
other, and that the system works together as a whole.

The goal of testing is to uncover faults before the software reaches the client and end-user.

14.1.1.5. Fault tolerance:

Fault tolerance is a program'’s ability to keep running in the presence of faults, by detecting
and handling them at runtime.

We ensure fault tolerance in our programs with thorough error handling, including inline error
handling and exception handling.

14.1.2. Error handling

14.1.2.1. What is error handling:

Error handling is the process of making sure that, once an error is detected, it does not
interrupt the program’s execution.

It ensures that the error is either fixed or dealt with, so that its consequences have minimal
impact on the rest of the program and do not interrupt its normal operation.

The opposite of error handling is allowing the program to terminate unexpectedly and crash.

Possible ways to handle errors include correcting the error and allowing the program to con-
tinue execution, or notifying the end-user of the problem, or terminating the program in a
controlled manner.

For example, the end-user may enter a numeric value outside the expected range. Checking
the entered value and finding it out-of-range is an example of error detection. The corrective
measures that are taken are an example of error handling. In this case, it could include
prompting the user again until they enter a correct value, or replacing the incorrect value
with a default correct one, before continuing with the normal operation of the program.
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14.1.2.2. Dealing with errors:

* There are two approaches for dealing with errors detected during a program’s execution:
inline error handling and exception handling.

» With inline error handling, the error handling logic is intermixed with the program logic.

* With exception handling, errors are detected in one part of the program, but they are handled
in a different part.

14.1.2.3. What is inline error handling:

* Inline error handling is a technique for basic error handling. It consists of alternating the
program’s reqgular instructions with verifying after each step whether an error occurred. If it
does, the error handling logic ensures that the program’s execution can continue normally.

* A typical example of inline error handling is replacing an out-of-range numeric input with a
valid value within the i f-statement that checks the entered value for correctness.

* Inline error handling is good for addressing minor errors. However, it can make the program
more difficult to read, maintain, and debug.

* More crucially, there are many situations where inline error handling is simply inadequate. For
example, the part of the program that detects the error may not have sufficient information
to fully handle the error. In those situations, exception handling is the better choice.

14.1.2.4. What is an exception:
* An exception is an error that occurs infrequently during a program’s execution.

* Exceptions are not the same as regular errors. They are an exceptional situation that occurs
only occasionally in a program but can have a major impact on its execution.

14.1.2.5. What is exception handling:

» Exception handling (EH) is a more sophisticated technique for error handling. It is normally
used to address exceptions, and not common errors.

* One of the main features of EH is that it creates a separation between error detection (where
the error is found) and error handling (where the error is dealt with).

* The ability to delegate error handling to a different part of the program from error detection
is often essential for maintaining correct design encapsulation.

* The separation of error handling from error detection requires a mechanism for error report-
ing. Error detection finds the error, error reporting flags it to the EH mechanism as an error,
and error handling does the work to deal with it.

* When an exception is reported, the EH mechanism triggers an alternative control flow struc-
ture. As a result, the regular function-call-and-return process discussed in section 4.1.2 is
bypassed.

* This alternative control flow structure can have unexpected consequences if our code is not
designed with this possibility in mind. The related topic of stack unwinding is discussed later
in this chapter.
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14.2. EH mechanism

We discuss the overall exception handling mechanism and its components in C++.

14.2.1. Basic components

14.2.1.1. Components of EH mechanism:

Three components work together to support the reporting and handling of an exception using
the EH mechanism: the try block, the throw statement, and the catch block.

The try block performs the error detection part of the work, before an exception is generated.
The throw statement does the error reporting and generates an exception.

The catch block performs the error handling, after an exception is generated.

14.2.1.2. The try block:

The try block contains code that may potentially detect an error and generate an exception.

If we think that a portion of our code, or a function called within it, may need to report an
exception at some point, we must enclose that code within a try block.

Each try block must be immediately followed by a set of one or more catch blocks.

14.2.1.3. The catch block:

The catch block contains code that handles an exception that is reported inside a try block.

Every try block must be followed by one or more catch blocks, each one handling a different
type of exception that can be generated by the try block.

Each catch block takes a single parameter. Every exception is generated with a parameter,
which we call the exception parameter. The first catch block that takes a parameter of the
matching data type is the block that handles the exception.

Only one catch block handles a generated exception, and once the catch block has finished
executing, the exception is considered resolved. The program control flow continues at the
first statement immediately following the set of catch blocks.

14.2.1.4. The throw statement:

The throw statement is used to generate an exception to report an error.

It must be enclosed within a try block. The try block may be situated directly in the same
function as the throw statement, or indirectly in a calling function.

A throw statement takes one exception parameter with a data type that's used to select a
matching catch block.

A throw statement immediately terminates the try block in which it’s located. There are no
function returns, and any statements following the throw are ignored. The EH mechanism
performs a jump operation from the throw statement directly to one of the catch blocks that
follow the terminated try block.

If a throw statement generates an exception but is not located inside a try block, or if
the throw parameter does not match any of the catch block parameter data types, then
the exception cannot be caught or handled. An uncaught exception causes the program to
terminate immediately.
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14.

14.

2.1.5. Exception specifications:

The exception specification of a function defines the set of parameter data types thata throw
statement inside that function may use, when it generates an exception.

When we provide a function implementation, we can choose to declare which exception
parameter data types the function is allowed to throw.

The purpose of an exception specification is to communicate to our class users which kinds
of exceptions their code should be prepared to handle.

An exception specification is declared between the function prototype and the function body.

For example:

- if we define a DivByZeroError class, a function foo () that may generate an exception
with a parameter that’s either an integer or a DivByZeroError object would appear as:
int foo(int x) throw(int, DivByZeroError) { /*function bodyx/ }

- a function that may not generate any exceptions at all would appear as:
int foo(int x) throw() { /*function bodyx/ }

- a function that may generate exceptions of any data type would appear as:
int foo(int x) { /*function bodyx/ }

If an exception is generated with a parameter data type that’s disallowed in the exception
specification, the terminate () library function is called, and the program terminates.

2.1.6. The C++ standard library exception class:

The C++ standard library provides an exception class that can be used as a base class for
our own user-defined exception classes.

The exception class constructor takes a string parameter that’s used to describe the error.

The what () member function is used on an exception object to retrieve the string.

14.2.2. Coding example: Exception in the same function

1 int main ()

2 {

3 string someName = "abracadabra";

4 someName = enterName () ;

5 cout << "Name: " << someName << endl;
6 return O;

7}

9 string enterName ()
10 {
11 string s;

12 cout<<"Enter a name: ";

13 cin >> s;

14 try {

15 if (s == "Timmy") {

16 throw "Help, Timmy’s been kidnapped by a giant squid!";
17 }

18 cout << "—- close call, we’re fine" << endl;
19 }

20 catch (const char* error) {

21 cout << error << endl;

22 }

23 return s;

24 '}
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Don't Panic ==> namel
Enter a name: Harold

== close call, we're fine
Mame: Harold

Don't Panic ==> namel

Enter a name: Timmy

Help, Timmy's been kidnapped by a giant squid!
Name: Timmy

Don't Panic ==> [}

Program-14.1: Exception in the same function

Program purpose:

Program-14.1 shows the first of three variations of the same program. In this version, an
exception is generated in the same function where the try block is located.

The program uses the enterName () function to prompt the user to enter a name. If the name
is "Timmy", it throws an exception. Otherwise, the program continues normally.

Lines 1-7:

These lines show the implementation of the main () function.
Line 3 declares a string variable called someName and sets it to an initial value.

Line 4 calls the enterName () function to read a name from the end-user, and it stores the
returned value into the someName variable.

Line 5 prints out the someName variable.

Lines 9-24:

These lines show the implementation of the enterName () function.

Lines 12-13 prompt the user to enter a name, which is stored in local variable s.

Lines 14-19 contain the try block where we suspect an exception might be generated.
Line 15 checks if the entered name is "Timmy".

If so, line 16 throws an exception using a literal string as parameter. Literal strings in C and
C++ are considered to be a constant character pointer data type (const charx), so that's
the parameter data type with which the exception is generated.

Lines 20-22 show the catch block that's associated with the try block on lines 14-19. It takes
a constant character pointer data type as parameter, so it can catch the exception generated
on line 16.

If an exception is generated on line 16, it immediately terminates the try block. The control
flow jumps directly from line 16 to the catch block on line 20, then line 21 prints out the
value of the parameter.

In this case, line 18 is never executed because the remainder of the try block after line 16
is completely ignored.

Line 23 returns the user-entered name to the calling function.

Program execution:

* The program output shows two executions of the program.

In the first execution:

- the user enters the name "Harold" on line 13; since the condition on line 15 is false, no
exception is generated; the control flow continues on to execute line 18 and then line 23
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- the name entered by the end-user on line 13 is returned to the main () function on line 23,
and the returned name is printed out on line 5

e |[n the second execution:

- the user enters the name "Timmy" on line 13; since the condition on line 15 is true, an
exception is generated on line 16; the control flow jumps to the catch block on line 20,
since it's defined with a parameter data type that matches the throw statement parameter

- the catch block is executed, and the parameter value is printed on line 21; then the control
flow continues on line 23 after the catch block

- the name entered by the end-user on line 13 is returned to the main () function on line 23,
and the returned name is printed out on line 5

14.2.3. Coding example: Exception in a directly called function

1 int main ()

2 {

3 string someName = "abracadabra";

5 try {

6 someName = enterName () ;

7 cout <<"—-- close call, we’re fine"<<endl;
8 }

9 catch (const char* error) {

10 cout << error <<endl;

11 }

13 cout << "Name: " << someName << endl;

15 return 0;
16 }

18 string enterName ()

19 {
20 string s;
21 cout<<"Enter a name: ";

22 cin >> s;

24 if (s == "Timmy") {
25 throw "Help, Timmy’s been kidnapped by a giant squid!";
26 }

28 return s;
29 }

Don't Panic ==> name2
Enter a name: Harold

--= close call, we're fine
Name: Harold

Don't Panic ==> name2

Enter a name: Timmy

Help, Timmy's been kidnapped by a giant squid!
Name: abracadabra

Don't Panic ==> []

Program-14.2: Exception in a directly called function
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Program purpose:

Program-14.2 shows the second of three variations of the same program. In this version, an
exception is generated in a function that’s directly called from inside the try block.

The program uses the enterName () function to prompt the user to enter a name. If the name
is "Timmy", it throws an exception. Otherwise, the program continues normally.

Lines 1-16:

These lines show the implementation of the main () function.
Line 3 declares a string variable called someName and sets it to an initial value.
Lines 5-8 contain the try block where we suspect an exception might be generated.

Line 6 inside the try block calls the enterName () function to read a name from the end-user,
and it stores the returned value into the someName variable.

Lines 9-11 show the catch block that's associated with the try block on lines 5-8. It takes a
constant character pointer data type as parameter, so it can catch the exception generated
elsewhere in the program.

Line 13 prints out the someName variable.

Lines 18-29:

These lines show the implementation of the enterName () function.

Lines 21-22 prompt the user to enter a name, which is stored in local variable s.
Line 24 checks if the entered name is "Timmy".

If so, line 25 throws an exception using a literal string as parameter.

If an exception is generated, it immediately terminates the try block. The control flow jumps
directly from line 25 to the catch block on line 9, then line 10 prints out the value of the
parameter.

In this case, lines 28 and 7 are never executed, because the remainder of both the enterName ()
function and the try block after the function call on line 6 are completely ignored.

If no exception is generated, line 28 returns the user-entered name to the calling function.

Program execution:

* The program output shows two executions of the program.

In the first execution:

- the user enters the name "Harold" on line 22; since the condition on line 24 is false, no
exception is generated; the control flow continues on to execute line 28

- the name entered by the end-user on line 22 is returned to the main () function on line 28,
and the returned name is printed out on line 13

In the second execution:

- the user enters the name "Timmy" on line 22; since the condition on line 24 is true, an
exception is generated on line 25; the control flow jumps to the catch block on line 9, since
it’s defined with a parameter data type that matches the throw statement parameter

- the catch block is executed, and the parameter value is printed on line 10; then the control
flow continues on line 13 after the catch block

- because line 28 is never executed, the name entered by the end-user on line 22 is not
returned to the main () function; instead, line 13 prints out the someName variable value
that was initialized on line 3
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14.2.4. Coding example: Exception in an indirectly called function

int main ()

{

string someName = "abracadabra";
try {
someName = enterName () ;
cout << "—- close call, we’re fine" << endl;

}

catch (const char* error) {
cout << error <<endl;

cout << "Name: " << someName << endl;

return 0;

string enterName ()

{
string s;
cout<<"Enter a name: ";
cin >> s;

checkName (s) ;
cout << "-- even closer call, we’re fine too" << endl;

return s;

void checkName (string name)
{
if (name == "Timmy") {
throw "Help, Timmy’s been kidnapped by a giant squid!";

& ) Terminal — -csh — 80x29

Don't Panic ==> name3

Enter a name: Harold

-— even closer call, we're fine too
—— close call, we're fine

Mame: Harold

Don't Panic ==> name3

Enter a name: Timmy

Help, Timmy's been kidnapped by a giant squid!
Name: abracadabra

Don't Panic ==> [

Program-14.3: Exception in an indirectly called function
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Program purpose:
* Program-14.3 shows the third of three variations of the same program. In this version, an
exception is generated in a function that’s indirectly called from inside the try block.

e The program uses the enterName () function to prompt the user to enter a name. The
enterName () function calls checkName () to verify the entered name. If the name is "Timmy",
it throws an exception. Otherwise, the program continues normally.

Lines 1-16:

* These lines show the implementation of the main () function. It is identical to Program-14.2,
and the same explanations apply.

Lines 18-28:

* These lines show the implementation of the enterName () function.
* Lines 21-22 prompt the user to enter a name, which is stored in local variable s.

* Line 24 calls the checkName () function with the user-entered name as a parameter to check
if we have found Timmy.

* Line 27 returns the user-entered name to the calling function.

Lines 30-35:

* These lines show the implementation of the checkName () function.
* Line 32 checks if the user-entered name is "Timmy".
* If so, line 33 throws an exception using a literal string as parameter.

* If an exception is generated on line 33, it immediately terminates the try block. The control
flow jumps directly from line 33 to the catch block on line 9, then line 10 prints out the value
of the parameter.

* In this case, lines 25, 27, and 7 are ever executed, because the remainder of both the
enterName () function after the function call on line 24 and the rest of the try block after
line 6 are completely ignored.

Program execution:

* The program output shows two executions of the program.
* In the first execution:

- the user enters the name "Harold" on line 22; since the condition on line 32 is false, no
exception is generated; the control flow continues on to execute lines 25 and 27

- the name entered by the end-user on line 22 is returned to the main () function on line 27,
and the returned name is printed out on line 13

e |[n the second execution:

- the user enters the name "Timmy" on line 22; since the condition on line 32 is true, an
exception is generated on line 33; the control flow jumps to the catch block on line 9, since
it’s defined with a parameter data type that matches the throw statement parameter

- the catch block is executed, and the parameter value is printed on line 10; then the control
flow continues on line 13 after the catch block

- because line 27 is never executed, the name entered by the end-user on line 22 is not
returned to the main () function; instead, line 13 prints out the someName variable value
that was initialized on line 3
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14.2.5. Structuring the EH code

14.2.5.1. Positioning the try block:

* Deciding on what parts of a program to include inside a try block may have significant
consequences for the program’s behaviour.

* It's crucial to remember that all the code following a throw statement, or a call to a function
that contains a throw statement, whether directly or indirectly, may never execute.

* There is no one-size-fits-all solution to selecting what code to include in a try block. But it’s
an important decision in structuring our code to get the correct behaviour.

14.2.5.2. Example: placing a loop inside a try block:
* Let’'s assume that we have a for-loop that processes a collection of objects.

* If we putthe entire loop inside a try block, then any exception that’s generated will terminate
the entire loop. This means that all further iterations of the loop will not execute, and any
remaining elements in the collection will not be processed.

* In some programs, that’s exactly the behaviour that we want. But we have to make sure we
understand why this happens.

14.2.5.3. Example: placing a statement inside a try block:
* Let’'s assume again that we have a for-loop that processes a collection of objects.

* |If we put a try block inside the loop, then any exception that’s generated will terminate only
the current iteration, and not the entire loop. This means that, after the exception is handled
by a catch block, all the remaining elements in the collection will be processed.

* Again, in some programs, that's the desired behaviour. We have to make smart choices
about where to position the try block so that we get the program behaviour we want.

14.2.6. Coding example: Exception that terminates a loop

1 class Animal

2 {

3 public:

4 Animal (string n="Fluffy") : name(n) { }
5 virtual ~Animal () { }

6 virtual void sing () = 0;

7 protected: string name;

8 };

10 class Bird : public Animal

11 {

12 public:

13 Bird(string n="") : Animal(n) { }

14 virtual ~Bird() { }

15 virtual void sing() {cout<< "—— bird "<<name<<" says tweet-tweet!"<<endl; }
16 };

18 class Chicken : public Bird

19 {

20 public:

21 Chicken(string n="") : Bird(n) { }

22 virtual ~Chicken () { }

23 virtual void sing() {cout<< "-- chicken "<<name<<" says cluck-cluck!"<<endl;}
24 };
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class Cat : public Animal

{

public:
Cat (string n="") : Animal(n) { }
virtual ~Cat () { }
virtual void sing() {cout<< "-- cat "<<name<<" says meow!"<<endl; }
bi
class Pig : public Animal
{
public:
Pig(string n="") : Animal (n) { }
virtual ~Pig() { }
virtual void sing() {throw "Pigs don’t sing !!!";}

ti

int main ()

{

Chicken* redHen = new Chicken("Little Red Hen");
Pigx wilbur = new Pig("Wilbur");
Cat« lady = new Cat ("Lady");

vector<Animalx> barnyard;
barnyard.push_back (redHen) ;
barnyard.push_back (wilbur) ;
barnyard.push_back (lady) ;

cout << "Barnyard harmony:" << endl;
try {
for (int i=0; i<barnyard.size(); ++i) {
barnyard[i]->sing() ;

}
catch (const char* error) {
cout << " ——> someone complained about the noise again... " << endl;

for (int 1=0; i<barnyard.size(); ++1i) {
delete barnyard[i];

& %] Terminal — -csh — 80x29

Don't Panic ==> barnl
Barnyard harmony:
—- chicken Little Red Hen says cluck-cluck!

—--> someone complained about the noise again...
Don't Panic ==> I

Program-14.4: Exception that terminates a loop
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Program purpose:

Program-14.4 shows the first of two variations of the same program. Both versions loop over
an animals collection and call the sing () member function for each element. The member
function for the second element generates an exception.

In this version, the entire for-loop is included inside the try block.

Lines 1-39:

These lines show the class definitions for Animal, Bird, Chicken, Cat, and Pig.

The animal base class is abstract, and the others are concrete and derived from Animal.
Each concrete class provides an implementation for the sing () member function.

Line 38 shows that the pig class’s sing () member function throws an exception.

Lines 41-67:

These lines show the implementation of the main () function.

Lines 43-45 create three concrete animal objects. Line 47 declares an STL vector of Animal
pointers, and lines 48-50 add the objects to the vector.

Lines 53-57 contain the try block where we suspect an exception might be generated.

Inside the try block, on lines 54-56, we see the loop over the animals collection that calls
the sing () member function for each element on line 55.

The first element in the vector is a Chicken object, and we see from the program output
that its sing () member function is called and executes correctly.

The second element in the vector is a Pig object. Its sing () member function is called and
generates an exception on line 38.

When the exception is generated, it immediately terminates the try block. The control flow
jumps directly from line 38 to the catch block on line 58, then line 59 prints out a message.

Once the catch block finishes executing on line 60, the control flow continues to line 62.

Because of the exception generated while processing the pig object, the loop on lines 54-
56 never continues to the next iteration that processes the cat object, as we see from the
program output.

14.2.7. Coding example: Exception that terminates one iteration

10

12
13
14
15
16
17
18
19

Chicken* redHen = new Chicken("Little Red Hen");
Pigx wilbur = new Pig("Wilbur");
Cat = lady = new Cat ("Lady");

vector<Animalx> barnyard;
barnyard.push_back (redHen) ;
barnyard.push_back (wilbur) ;
barnyard.push_back (lady) ;

cout << "Barnyard harmony:" << endl;
for (int i=0; i<barnyard.size(); ++i) {
try { barnyard[i]->sing(); }
catch (const charx error) {
cout << " ——> someone complained about the noise again... " << endl;
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20
21

for (int i=0; i<barnyard.size(); ++i)

delete barnyard[i];

return 0;

o Terminal — -esh — 80x29

Don't Panic ==> barn2
Barnyard harmony:
== chicken Little Red Hen says cluck-cluck!

-—> someone complained about the noise again...

== cat Lady says meow!
Don't Panic ==>

Program-14.5: Exception that terminates one iteration

Program purpose:

Program-14.5 shows the second of two variations of the same program. Both versions loop
over an animals collection and call the sing () member function for each element. The mem-
ber function for the second element generates an exception.

In this version, the try block is positioned inside the for-loop, and its only statement is the
call to the sing () member function.

The class definitions are identical to Program-14.4.

Lines 3-10:

These lines are identical to Program-14.4. They create three concrete animal objects, declare
an STL vector of Animal pointers, and add the animal objects to the vector.

Lines 13-18:

These lines contain the for-loop that calls the sing () member function for each element.

Line 14 shows the try block where we suspect an exception might be generated. It contains
a single statement: the call to the sing () member function for the current vector element.

The first element in the vector is a Chicken object, and we see from the program output
that its sing () member function is called and executes correctly.

The second element in the vector is a Pig object. Its sing () member function is called and
generates an exception, as we see from line 38 of Program-14.4.

The exception immediately terminates the try block. The control flow jumps directly from
the throw statement to the catch block on line 15, then line 16 prints out a message.

Once the catch block finishes executing on line 17, the control flow continues to the next
iteration of the for-loop.

Despite the exception generated while processing the pig object, the loop on lines 13-18 is
not terminated. It continues to the next iteration that processes the next vector element.

The third element in the vector is a cat object, and we see from the program output that its
sing () member function is called and executes correctly.
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14.3. EH features

We discuss some features of the EH mechanism, including the use of multiple catch blocks and
re-throwing an exception.

14.3.1. Multiple catch blocks

14.3.1.1. The throw statement parameter:
* A new exception is generated using a throw statement with one exception parameter.

* This parameteris necessary in order to select the correct catch block to handle the exception.

14.3.1.2. Selecting a catch block:

* A try block must be followed by one or more catch blocks, each one taking an exception
parameter of a different data type.

* When an exception is generated, the data type of the exception parameter is compared with
the catch block parameter types. The catch blocks are checked linearly, starting at the first
one following the try block.

* The first catch block that takes a parameter matching the exception parameter data type is
the one selected to handle the exception.

* If no catch block matches the exception parameter data type, the exception cannot be han-
dled, and the program terminates.

14.3.1.3. Executing a catch block:
* Asingle catch block is selected to handle an exception.

* Once the catch block has finished executing, the exception is considered resolved, and all
the other catch blocks are ignored.

* The program control flow resumes at the first instruction following the last catch block.

14.3.1.4. The catch-all block:
* A catch-all block can handle an exception parameter of any data type.
* |t is declared using an ellipsis (three consecutive dots) as a parameter: catch(...){ }

* Because the parameter of a catch-all block cannot be given a name, it cannot be used in the
body of the catch block.

14.3.1.5. Order of catch blocks:
* The order of the catch blocks is important.

* For example, if a catch-all block is positioned first, it will always be selected because all ex-
ception parameter data types will match it. So a catch-all block should always be positioned
last.

* In programs with an inheritance hierarchy of exception classes, the order also matters:

- if a catch block with a base class parameter is placed first, it will be selected for any
exception parameter that matches either the base class or any of its derived classes

- that’'s because the derived class objects are considered to be a kind of base class object

- a catch block with a derived class parameter should always be positioned before a catch
block with a base class parameter
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14.3.2. Coding example: Multiple catch blocks

1 int main ()

2 {

3 Bird birtrude;
4 Chicken redHen;

5 Cat lady;

6 Pig wilbur;

7 int choice;

9 while (1) {

10 cout << "Select your activity: ";
11 cin >> choice;

13 try |

14 if (choice == 0) {

15 break;

16 }

17 else if (choice == 1) {

18 throw birtrude;

19 }

20 else if (choice == 2) {

21 throw redHen;

22 }

23 else if (choice == 3) {

24 throw lady;

25 }

26 else if (choice == 4) {

27 throw wilbur;

28 }

29 else {

30 throw "wrong choice";

31 }

32 }

33 catch (Chicken& c) {

34 cout<<"Chicken alert!"<<endl;
35 }

36 catch (Birdé& b) {

37 cout<<"Bird alert!"<<endl;
38 }

39 catch (Caté& c) {

40 cout<<"Cat alert!"<<endl;
41 }

42 catch (Pig& p) {

43 cout<<"Pig alert!"<<endl;
44 }

45 catch(...) {

46 cout<<"caught something, we don’t know what"<<endl;
47 }

48 }

50 return 0;
51 }
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& & Terminal — -csh — 80x29

Don't Panic ==> pb
Select your activity:
Bird alert!

Select your activity:
Chicken alert!

Select your activity:
Cat alert!

Select your activity: &

Pig alert!

Select your activity: 5

caught something, we don't know what
Select your activity: @

Don't Panic ==>

Program-14.6: Multiple catch blocks

Program purpose:

* Program-14.6 demonstrates the use of multiple catch blocks for the same try block.
* The program prompts the end-user to select an option that generates different exceptions.
* The class definitions are identical to Program-14.4.

Lines 9-48:

* These lines show an infinite loop that repeatedly prompts the end-user for a selection, and
each selection results in a different exception being generated.

Lines 13-32:

* These lines contain the try block where we suspect an exception might be generated.

* Depending on the user’s numeric selection at each iteration of the loop, an exception with
different exception parameter data types is generated within the try block.

Lines 33-47:

* These lines show the five catch blocks that are associated with the try block on lines 13-32.
Each catch block takes a different type of exception parameter.

* The catch block that takes a Bird parameter on lines 36-38 is placed after the catch block
that takes an object of its derived class chicken as parameter on lines 33-35. If the Bird pa-
rameter catch block was positioned first, all exceptions generated with a Chicken parameter
would be handled by the Bird parameter catch block.

* Lines 45-47 show the catch-all block that handles an exception with a parameter data type
that does not match any of the other catch blocks.

Program execution:

* We see from the program output that each type of exception is generated and handled.

* Each exception is caught by the first catch block with a data type matching the exception
parameter. The catch block executes and handles the exception.

* Once the selected catch block terminates execution, the exception is considered resolved.
No other catch blocks are tested for a match, and none of them execute.

» After an exception is handled, the control flow continues, in this case from the while-loop
closing brace on line 48 back to the loop header on line 9 for the next iteration.
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14.3.3. Re-throwing an exception

14.3.3.1. Handling an exception multiple times:

* Once a generated exception has been handled, it is considered resolved, and the program
continues executing. But what if multiple parts of the program need to handle the exception?
* For example:

- assume that we have a try block in function a () ; within that try block, function a () calls
function b (), which calls function c (), and c () generates an exception

- the exception generated in function c () terminates the try block in function a () and jumps
to a matching catch block in a () ; in the process, the stack frames for both b () and c () are
popped off the function call stack, and any remaining code in both functions is bypassed

- if there was cleanup required in functions b () and c (), for example memory to be deal-
located or files to be closed, before jumping back to a (), it would never occur, and some
important resources may become unreachable

* In the scenario described above, we need a mechanism to handle the exception multiple
times, so that cleanup can be performed in different parts of the program.

* We call this mechanism an exception re-throw.

* The concept of function cleanup is similar to the object cleanup that a class destructor per-
forms. When a program allocates resources, for example dynamically allocating memory or
opening files, the resources must be released when they are no longer needed. This is called
the cleanup, whether it’'s done explicitly by a function, or implicitly by a destructor.

14.3.3.2. How a re-throw works:

* If we need to handle an exception in multiple called functions, we need try and catch blocks
in each of the functions.

* For example:

- assume that function a () has a try block that contains a call to function b (); and b () has
a try block that calls function c (); and c () has a try block that generates an exception

- in this case, the throw statement in c () only terminates the try block in that function, and
the control flow jumps to a matching catch block in c (), which handles the exception

- if function b () also needs to handle the error, then the catch block in ¢ () must re-throw
the exception

- this re-throw is considered a different exception and is treated accordingly; it terminates
the try block in function b (), and the control flow jumps to a matching catch block in b ()

- similarly, if we want function a () to also handle the exception, then the catch block in b ()
must again re-throw the exception, which terminates the try block in function a (), and
the control flow jumps to a matching catch block in a ()

* By giving every called function the opportunity to clean up after itself, each one is able to
deallocate the resources that they have reserved, and correct encapsulation is preserved.

14.3.3.3. Approaches for re-throwing an exception:
* An exception re-throw always occurs by using a hew throw statement inside a catch block.

* There are two options for re-throwing an exception: we can re-throw the same exception, or
throw a brand new one.

* When a catch block re-throws the same exception, its throw statement automatically reuses
the same exception parameter.

* When a catch block throw a new exception, a new exception parameter must be specified.
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14.3.4. Coding example: Re-throwing the same exception

int main ()

{

string someName = "abracadabra";
try {
someName = enterName () ;

}
catch (const char*x error) {
cout << "main function says: " << error << endl;

cout << "Name: " << someName << endl;

return O;

string enterName ()

{
string s;
cout << "Enter a name: ";
cin >> s;

try {
checkName (s) ;

}

catch (const char*x err) {
cout << "middle function says: " << err << endl;
throw;

return s;

void checkName (string name)
{
if (name == "Timmy") {
throw "Help, Timmy’s been kidnapped by a giant squid!";

& ) Terminal — -csh — 80x24

Don't Panic ==> retl
Enter a name: Harold
Mame: Harold

Don't Panic ==> retl
Enter a name: Timmy

middle function says: Help, Timmy's been kidnapped by a giant sguid!
main function says: Help, Timmy's been kidnapped by a giant squid!
Name: abracadabra
Don't Panic ==> [

Program-14.7: Re-throwing the same exception
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Program purpose:

* Program-14.7 shows the first of two variations of the previous examples Program-14.1 through
Program-14.3. In this version, the same exception is re-thrown.

* The program generates an exception in the checkName () function. The exception is caught
and handled in a catch block in the calling function enterName (), which then re-throws the
same exception, which is caught and handled in main ().

Lines 1-15:

* These lines show the implementation of the main () function.
* Line 3 declares a string variable called someName and sets it to an initial value.
* Lines 5-7 contain the try block where we suspect an exception might be generated.

* Line 6 inside the try block calls the enterName () function to read a name from the end-user,
and it stores the returned value into the someName variable.

e Lines 8-10 show the catch block that's associated with the try block on lines 5-7. It catches
an exception that’s generated from the try block or its called function.

* If an exception is generated in enterName () with a constant character pointer data type as
parameter, it is caught and handled in the catch block on lines 8-10, and line 9 prints out
the value of the exception parameter.

* Line 12 prints out the someName variable.

Lines 17-32:

* These lines show the implementation of the enterName () function.
* Lines 20-21 prompt the user to enter a name, which is stored in local variable s.

* From within a try block on lines 23-25, line 24 calls the checkName () function with the user-
entered name as a parameter to check if we have found Timmy.

* The corresponding catch block on lines 26-29 catches an exception that’s generated from
the try block or its called function.

* If an exception is generated in checkName () with a constant character pointer data type as
parameter, it is caught and handled in the catch block on lines 26-29. Line 27 prints out the
value of the exception parameter, and line 28 re-throws the same exception, with the same
exception parameter.

* The re-throw on line 28 terminates the try block in the calling function main (), and the
control flow jumps directly from line 28 to the catch block on line 8. As a result, line 31 is
never executed, because the remainder of the enterName () function after the re-throw on
line 28 is completely ignored.

* If no exception is generated, line 31 returns the user-entered name to the calling function.

Lines 34-39:

* These lines show the implementation of the checkName () function.
* Line 36 checks if the user-entered name is "Timmy".
* If so, line 37 throws an exception using a literal string as parameter.

* If an exception is generated on line 37, it immediately terminates the try block in the calling
function enterName (). The control flow jumps from line 37 to the catch block on line 26.

Program execution:

* The program output shows two executions of the program.
* In the first execution:

- the user enters the name "Harold" on line 21; since the condition on line 36 is false, no
exception is generated; the control flow continues on to execute line 31
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- the name entered by the end-user on line 21 is returned to the main () function on line 31,
and the returned name is printed out on line 12

e |[n the second execution:

the user enters the name "Timmy" on line 21; since the condition on line 36 is true, an
exception is generated on line 37; the control flow jumps to the catch block on line 26

the catch block is executed, and the exception parameter value is printed on line 27; then
the same exception is re-thrown on line 28, and the control flow jumps to the catch block
on line 8

the catch block is executed, and the exception parameter value is printed on line 9; then
the control flow continues on line 12 after the catch block

because line 31 is never executed, the name entered by the end-user on line 21 is not
returned to the main () function; instead, line 12 prints out the someName variable value
that was initialized on line 3

14.3.5. Coding example: Re-throwing a new exception

1 int main ()

2 {

3 string someName = "abracadabra";

5 try {

6 someName = enterName () ;

7 }

8 catch (const char* error) {

9 cout << "main function says: " << error << endl;
10 }

12 cout << "Name: " << someName << endl;

14 return 0;
15 }

17 string enterName ()

18 {
19 string s;
20 cout << "Enter a name: ";

21 cin >> s;

23 try {

24 checkName (s) ;

25 }

26 catch (const char* err) {

27 cout << "middle function says: " << err << endl;

28 throw "... and the middle function joins the fun!";
29 }

31 return s;
32 }

34 void checkName (string name)

35 {

36 if (name == "Timmy") {

37 throw "Help, Timmy’s been kidnapped by a giant squid!";
38 }

39 }
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] O Terminal — -csh — 80x24

Don't Panic ==> ret2
Enter a name: Harold
Name: Harold

Don't Panic ==> ret2
Enter a name: Timmy

middle function says: Help, Timmy's been kidnapped by a giant squid!
main function says: ... and the middle function joins the fun!
Name: abracadabra

Don't Panic ==> [

Program-14.8: Re-throwing a new exception

Program purpose:

* Program-14.8 shows the second of two variations of the previous examples Program-14.1
through Program-14.3. In this version, a new exception is re-thrown.

* The program generates an exception in the checkName () function. The exception is caught
and handled in a catch block in the calling function enterName (), which then re-throws a
different exception, which is caught and handled in main ().

* Both the main () and checkName () function implementations are identical to Program-14.7.

Lines 17-32:

* These lines show the implementation of the enterName () function, and it's nearly identical
to Program-14.7.

* From within a try block on lines 23-25, line 24 calls the checkName () function with the user-
entered name as a parameter to check if we have found Timmy.

* The corresponding catch block on lines 26-29 catches an exception that’'s generated from
the try block or its called function.

* If an exception is generated in checkName (), it is caught and handled in the catch block on
lines 26-29. Line 27 prints out the value of the exception parameter, and line 28 re-throws a
new exception.

* The re-throw on line 28 terminates the try block in the calling function main (), and the
control flow jumps directly from line 28 to the catch block on line 8.

* If no exception is generated, line 31 returns the user-entered name to the calling function.

Program execution:

* The program output shows two executions of the program.

* The first execution is identical to Program-14.7. The user enters the name "Harold", and no
exception is generated.

* In the second execution, the user enters the name "Timmy", and an exception is generated
on line 37. The control flow jumps to the catch block on line 26, and the exception parameter
is printed on line 27. Then a new exception with a new exception parameter is re-thrown on
line 28, and the control flow jumps to the catch block on line 8. The new exception parameter
is printed on line 9, then the control flow continues on line 12 after the catch block.

* |If we compare the program output from both Program-14.7 and Program-14.8, we see that
they are different. When the exception parameter is printed on line 9 in the main () function
of both programs, it’s the exception generated from the enterName () function on line 28. In
Program-14.7, the same exception parameter value is printed in both catch blocks on lines
27 and 9. In Program-14.8, a different exception parameter value is printed on line 9.
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14.4. Stack unwinding

We discuss approaches for dealing with the function cleanup issues that arise when EH is used.

14.4.1. Concepts

14.4.1.1. What is stack unwinding:

» Stack unwinding is the process of dealing with the bypassed cleanup of called functions, from

the function where an exception is generated through to the one where it's handled, when
an exception transfers the program control flow from one part of the program to another.

* There are different approaches to ensure that the stack unwinding is done correctly, without

loss of data or locking of resources. We discuss these approaches in this section.

14.4.1.2. Characteristics of stack unwinding:

» Stack unwinding is initiated when an exception is generated using a throw statement, which

immediately terminates the try block in which it's contained.

* The try block may be in the same function where the exception is generated, or it may be

in the calling function, or that function’s calling function, up to any number of functions in
the chain of function calls between the exception generation and the terminated try block.

As soon as the exception is generated, every function in that chain is terminated. Their
stack frames are popped off the function call stack, and the local variables inside them are
destroyed. This can result in the loss of important data, or the locking of some essential
resources because cleanup is not performed.

14.4.2. Approaches to resource cleanup

14.4.2.1. Issues during stack unwinding:

The use of EH, which transfers control directly from a throw statement to a catch block,
bypasses the regular function-call-and-return control structure of a program.

As a result, functions do not get the chance to clean up after themselves. Local variables are
lost, dynamically allocated memory may remain allocated, and the program can end up in
an inconsistent state.

There are strategies that can help with function cleanup, and we look at three of them next.

14.4.2.2. Using an error object as the exception parameter:

With this approach, we create an error class that holds all the information requiring cleanup.

The error class contains as many data members as there are individual resources that must
be deallocated or released.

When an exception is generated, a new instance of the error class is created and initialized
with pointers to the specific resources to be cleaned up. The new error object is then used
as the exception parameter.

The catch block performs the cleanup required by each data member of the error object.

This approach exemplifies bad encapsulation. It requires the catch block to have knowledge
of data across multiple functions and objects, thus violating the principle of least privilege.

14.4.2.3. Designing self-cleaning functions:

With this approach, every function is responsible for its own cleanup, so each one is imple-
mented with its own try-catch block pair.
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 If the function that generates an exception requires cleanup, then its catch block handles
the exception by performing the required cleanup, and then re-throwing the exception.

* If each function in the call chain does the same, it can clean up its own resources and re-throw
the exception, so that its calling function has the same opportunity.

* This is an example of good encapsulation, since each function only requires knowledge about
its own resources.

14.4.2.4. Designing self-cleaning objects:

* With this approach, every object is responsible for its own cleanup, so each class provides a
destructor that performs the required work.

* Destructors are always called on scope exit, including when return () orexit () or throw ()
are invoked. So object cleanup is performed automatically, as long as the destructors are
correctly implemented.

* This is an example of good encapsulation, since each object only requires knowledge about
its own resources.

14.4.3. Coding example: Cleanup using error objects

1 class Error

2 {

3 public:

4 Error (intx a) : arr(a) { }

5 void cleanup () { delete [] arr; }
6 private: intx arr;

7}

9 int main ()

10 {

11 try { initArray(); }
12 catch (Error* err) {

13 cout << "-- Input error! " << endl;
14 err—>cleanup () ;

15 delete err;

16 }

17 return 0;

18 }

20 void initArray ()

21 {
22 int size;
23 cout << "Enter the number of elements: ";

24 cin >> size;

26 int* myArray = new int[size];

27 cout<<"Enter the elements: " <<endl;

28 for (int i=0; i<size; ++1i) {

29 cin >> myArrayl[i];

30 }

32 if (!cin.good()) {

33 Errorx tmpError = new Error (myArray);
34 throw tmpError;

35 }

36
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37 cout<<endl<<"Array:"<<endl;
38 for (int i=0; i<size; ++i) {
39 cout << myArray[i] << " ";
40 }

41 cout<<endl;

43 delete [] myArray;
44 '}

Program-14.9: Cleanup using error objects

Program purpose:

Program-14.9 shows the first of three variations of a program that populates and prints an
integer array with values entered by the end-user.

In this version, the initarray () function dynamically allocates an integer array and pop-
ulates it with user-entered values. If the user enters a non-numeric value, an exception is
generated using an error object. The main () function handles the error by cleaning up the
dynamically allocated array, which is contained in the error object.

Because all three versions of this program have identical behaviour, from the user’s point of
view, we only show the program output for the third variation.

Lines 1-7:

These lines show the Error class definition.
Line 6 declares a data member that stores a dynamically allocated array requiring cleanup.
Line 4 shows a constructor that initializes the data member from a parameter.

Line 5 implements the cleanup () member function that deallocates the array stored in the
data member.

Lines 9-18:

These lines show the implementation of the main () function.
Line 11 contains a try block that calls the initArray () function.

Lines 12-16 show the catch block that handles an exception by printing an error message
and calling the Error object parameter’s cleanup () member function.

Lines 20-44:

These lines show the implementation of the initArray () function.

Line 24 reads the number of values to be entered by the end-user. Line 26 dynamically
allocates an integer array, and lines 28-30 populate it with user-entered values.

Line 32 tests the standard input stream object cin to see if an error occurred. If the user
enters a non-numeric value, line 33 creates a new Error object and initializes it with the
dynamically allocated array that requires cleanup. Line 34 generates an exception, using
the new Error object as parameter.

If an exception is generated on line 34, the control flow jumps to line 12, and the exception
parameter is used to deallocate the array by calling its cleanup () member function.

If no exception is generated on line 34, the array values are printed out on lines 38-40, and
the array is deallocated on line 43.
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14.4.4. Coding example: Cleanup with self-cleaning functions

{

0o NOoO UL A WN B

—

int main ()

try { initArray(); }
catch(...) {
cout << "-- Input error! " << endl;

}

return 0;

10 void initArray ()

11 {
12
13
14

16
17
18
19
20
21
22
23
24
25
26

28
29
30
31
32

34
35 }

int size;
cout << "Enter the number of elements: ";
cin >> size;

int* myArray = new int[size];
cout<<"Enter the elements: " <<endl;
try {

for (int i=0; i<size; ++1i) {

myArray[i] = enterInt ();

}
}
catch(...) {

delete [] myArray;

throw;

cout<<endl<<"Array:"<<endl;
for (int 1i=0; i<size; ++i) {

cout << myArray[i] << " ";
}

cout<<endl;

delete [] myArray;

37 int enterInt ()

38 {
39
40

42
43
44

46
47 '}

int element;
cin >> element;

if (!cin.good()) {
throw ("Invalid input");

return element;

Program-14.10: Cleanup with self-cleaning functions

Program purpose:

* Program-14.10 shows the second of three variations of a program that populates and prints
an integer array with values entered by the end-user.

©Christine Laurendeau Chapter 14. Exception Handling

326



In this version, the initArray () function dynamically allocates an array and repeatedly calls
the enterInt () function to read each array value from the end-user. If the user enters a
non-numeric value, enterInt () generates an exception. Because initArray () performs
the dynamic allocation of the array, the same function handles the exception by cleaning it
up. It then re-throws the same exception for main () to handle as well.

Lines 1-8:

These lines show the implementation of the main () function.
Line 3 contains a try block that calls the initArray () function.
Lines 4-6 show the catch block that handles an exception by printing out an error message.

Lines 10-35:

These lines show the implementation of the initArray () function.

Line 14 reads the number of values to be entered by the end-user, and line 16 dynamically
allocates an integer array.

Lines 18-22 contain a try block with a for-loop that calls the enterInt () function on line 20
to read a value from the end-user.

Lines 23-26 show the catch block that handles an exception generated in the enterInt ()
function. Line 24 deallocates the array, and line 25 re-throws the same exception, which
causes the control flow to jump to the catch block on line 4.

If no exception is generated in enterInt (), the array values are printed out on lines 29-31,
and the array is deallocated on line 34.

Lines 37-47:

14.

These lines show the implementation of the enterInt () function.
Line 40 reads in a value from the end-user.

Line 42 tests the standard input stream object cin to see if an error occurred. If the user
enters a non-numeric value, line 43 generates an exception, and the control flow jumps to
the catch block on line 23.

If no exception is generated on line 43, line 46 returns the user-entered valueto initArray ().

4.5. Coding example: Cleanup with self-cleaning objects

1 class IntArray

2 {

3 public:

4 IntArray (int s=10) : size(s) { arr = new int[size]; }
5 ~IntArray () { delete [] arr; }
6 int& operator[] (int s) { return arr([s]; }
7 private:

8 int size;

9 int+ arr;

10 };

12 int main ()

13 {

14 try { initArray(); }

15 catch(...) {

16 cout << "—- Input error! " << endl;
17 }

18 return 0;

19 }
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void initArray ()

{

int size;

cout << "Enter the number of elements:

cin >> size;

IntArray myArray(size);

cout<<"Enter the elements: " <<endl;

for (int i=0; i<size; ++i) {
myArray[i] = enterInt();

cout<<endl<<"Array:"<<endl;
for (int 1i=0; i<size; ++i) {

cout << myArray[i] << " ";
}

cout<<endl;

int enterInt ()

{
int element;
cin >> element;

if (!cin.good()) {
throw ("Invalid input");

return element;

m @ Terminal — ssh access.scs.carleton.ca — 80x24

<theta®l> Don't Panic ==> valgrind arr3

==4894492== Memcheck, a memory error detector
==4894492== Copyright (C) 2802-2617, and GNU GPL'd, by Julian Seward et al.
==4094492== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info

==4P094492== Command: arr3
==4894492==

Enter the number of elements: 3
Enter the elements:

11 22 33

Array:

11 22 33
==4894492==
==4094492== HEAP SUMMARY:

==4094492== in use at exit: @ bytes in @ blocks
==4B894492== total heap usage: 4 allocs, & frees, 74,764 bytes allocated

==4B894492==

==4894492== All heap blocks were freed —- no leaks are possible

==4894492==

==4P094492== For lists of detected and suppressed errors,
==4894492== ERROR SUMMARY: 8 errors from ® contexts (suppressed: & from @)

<theta®l> Don't Panic ==>
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[y o Terminal — ssh access.scs.carleton.ca — 80x24

<theta®l> Don't Panic ==> valgrind arr3

==4094589== Memcheck, a memory error detector

==4094589== Copyright (C) 2882-2017, and GNU GPL'd, by Julian Seward et al.
4094589== Using Valgrind-3.18.1 and LibVEX; rerun with -h for copyright info

==48945689==
Enter the number of elements: 3
Enter the elements:
11 abc 33
== Input error!

4094589==

HEAP SUMMARY :
in use at exit: @ bytes in ©® blocks
== total heap usage: 5 allocs, 5 frees, 74,980 bytes allocated

4994589==

4994589== All heap blocks were freed —— no leaks are possible

4994589==
==4@94589== For lists of detected and suppressed errors, rerun with: -s
==4§94589== ERROR SUMMARY: ® errors from @ contexts (suppressed: & from 8)
<theta®l> Don't Panic ==> I

Program-14.11: Cleanup with self-cleaning objects

Program purpose:

. shows the third of three variations of a program that populates and prints an
integer array with values entered by the end-user.

* In this version, the initArray () function declares an IntArray object to store the user-
entered values and repeatedly calls the enteriInt () function to read each array value from
the end-user. If the user enters a non-numeric value, enteriInt () generates an exception.
Because the 1ntArray object’s constructor performs the dynamic allocation of the underlying
array, the same object’s destructor cleans it up.

Lines 1-10:

* These lines show the IntArray class definition.

* Line 9 declares the data member that stores a dynamically allocated array of integers.

* Line 4 implements a constructor that dynamically allocates the underlying array.

* Line 5 contains the destructor that deallocates the array.

* Line 6 shows the overloaded subscript operator used to initialize and print array elements.

Lines 12-19:

* These lines implement the main () function, which is identical to
* Line 14 contains a try block that calls the initArray () function.
* Lines 15-17 show the catch block that handles an exception by printing out an error message.

Lines 20-37:

* These lines show the implementation of the initArray () function.

* Line 26 declares an IntArray object that’s used to store the user-entered values. The object’s
constructor, shown on line 4, dynamically allocates the underlying array.

* Lines 28-30 show the for-loop that calls the enterInt () function on line 29 to read a value
from the end-user. The array values are then printed out on lines 33-35.

* As we see, this function performs no error handling and no explicit cleanup at all.
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Lines 39-49:

* These lines implement the enterint () function, which is identical to Program-14.10.

* If the user enters a non-numeric value, line 45 generates an exception, and the control flow
jumps to the catch block on line 15.

* |f an exception is generated, the stack frame for the initArray () function is popped off the
function call stack, but its IntArray object destructor is still called. So the throw statement
on line 45 jumps the control flow to line 15, but it also generates an automatic call to the
destructor of the IntArray object declared on line 26. The object’s destructor, shown on line
5, deallocates the underlying array.

* If no exception is generated on line 45, line 48 returns the user-entered valueto initArray ().

Program output:

* The program output shows two executions of the program, each running with the valgrind
utility so that we can see there are no memory leaks.

e |n the first execution, a valid numeric value is entered in each of the three callsto enterInt ()
on line 29. The array values are printed on lines 33-35.

* In the second execution, the user enters the value "abc" as the second element. Since the
condition on line 44 is true, an exception is generated on line 45, and the control flow jumps to
the catch block on line 15. The initArray () function terminates, but its object destructor is
still called automatically. The destructor for the IntArray object declared on line 26 executes
as shown on line 5, and it deallocates the underlying array.

* We see from the program output that the two executions result in no memory leaks, which
indicates that the cleanup is performed correctly, both in the execution with valid values and
in the execution that generates an exception.
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Chapter 15

The Standard Template Library (STL)

The standard template library (STL) provides several useful tools to assist with programming in
C++. These include class templates that store collections and manipulate their elements, and
global functions that operate on these class templates. [10]

In this chapter, we introduce the main principles and components of the STL.

15.1. Principles
We discuss the three main components of the STL and how they interact.
15.1.1. Basics

15.1.1.1. What is the standard template library (STL):

* The standard template library (STL) is a set of class templates and the global functions, called
algorithms, that operate on these classes.

* It provides several collection classes, called container classes, that implement many member
functions and overloaded operators.
15.1.1.2. Characteristics of the STL:

* The STL containers and algorithms can be helpful tools, if used correctly. However, there are
some caveats to their usage.

* The STL can be somewhat non-intuitive. Many of its containers and algorithms require the
use of iterators, which are discussed later in this chapter. Iterators add a layer of complexity
that can seem intimidating at first.

* The STL can also significantly degrade a program’s computational performance if we are not
mindful of how the container classes work behind the scenes, as we saw in Program-13.5.

15.1.2. Main components

15.1.2.1. Main components of the STL:
* The STL is comprised of three components: containers, iterators, and algorithms.

* Containers are the STL collection classes used to store elements of the same data type.
There are three kinds of STL containers: sequence containers, associative containers, and
container adapters. They are discussed later in this chapter.

* [terators are used for traversing STL containers and accessing their elements. They are also
necessary for most STL algorithms to operate on the containers.
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* Algorithms are global functions that perform operations on STL containers, typically through
the use of iterators.

containers

Figure-15.1: STL component interactions

15.1.2.2. Interactions between STL components:

* Figure-15.1 illustrates how STL containers, iterators and algorithms interact with each other.

* We see that STL algorithms do not access containers and their elements directly. Instead,
they use iterators to do so.

* This was a deliberate decision made by the designers of the STL. The separation between
algorithms and containers ensures their independence and allows each one to change and
evolve without impacting the other.

* The functioning of an STL algorithm remains independent from the type of container on which
it operates.

15.1.3. Coding example: Traversing STL containers

1 #include <vector>
2 #include <list>

4
5
6
-
8
9

11
12
13
14
15
16

18
19
20
21
22

24
25
26
27
28
29
30
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int main ()

{

Student matilda ("100567899", "Matilda", "CS", 9.0f);
Student Jjoe ( "100789111", "Joe", "Physics", 8.3f);
Student stanley("100456123", "Stanley", "Geography", 5.6f);

Student amy ( "100123444", "Amy", "Math",

vector<Student> stuVect;

10.8f) ;

cout << "Pushing students on student vector:" << endl;

stuVect .push_back (matilda) ;
stuVect .push_back (joe) ;
stuVect .push_back (stanley) ;
stuVect .push_back (amy) ;

cout<<endl<<"Vector students:"<<endl;
for (int i=0; i<stuVect.size(); ++1i) {
cout<< stuVect[i];

}

cout<<endl;

list<Student> stulList;

cout << "Pushing students on student list:"
stulist.push_back (matilda) ;
stuList.push_back (amy) ;

stulist.push_back (stanley) ;
stuList.push_back (joe) ;

<< endl;
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31 /*

32 cout<<endl<<"List students:'"<<endl;

33 for (int 1i=0; i<stulList.size(),; ++1) {
34 cout<< stuList[i];

35 }

36 #+/

37 cout<< endl << "End of program" << endl;
38 return O;

39 }

Program-15.1: Traversing STL containers

Program purpose:

Lin

Lin

Program-15.1 demonstrates the basic use of the STL vector and 1ist classes, as a variation
of Program-13.5.

The program defines a vector and a list of student objects. We see that STL vector
elements can be accessed directly with the subscript operator, and 1ist elements cannot.

The student class used in this program is identical to Program-13.5.

es 6-22:

These lines demonstrate the basic use of the STL vector container.
Lines 6-9 allocate and initialize four student objects.

Line 11 declares an STL vector of student object elements. The use of the STL vector class
requires the inclusion of the corresponding library header file, as shown on line 1.

Lines 13-16 add the four student objects to the back of the vector.

Lines 19-21 print the contents of the vector by traversing it and calling the student class’s
overloaded stream insertion operator on each of its elements.

We see on line 20 that each element is accessed using the vector class’s subscript operator.

es 24-35:

These lines demonstrate the basic use of the STL 1ist container.

Line 24 declares an STL 1ist of student object elements. The use of the STL 1ist class
requires the inclusion of the corresponding library header file, as shown on line 2.

Lines 26-29 add the four student objects to the back of the 1ist.

Lines 32-35 are commented out because they do not compile. They attempt to print the
contents of the 1ist by traversing it and printing each of its elements.

Line 34 does not compile because it accesses each 11ist element using the subscript operator.
However, the STL 1ist container does not provide a subscript operator. Instead, we must
use iterators.

15.2. STL Iterators

We

15

15.

discuss STL iterators as an essential component in using both STL containers and algorithms.

.2.1. Concepts

2.1.1. What is an STL iterator:

* An STL iterator is a class template with instances that allow our program to access STL

containers and use STL algorithms on them.

* An iterator is conceptually similar to a pointer. But it is not a pointer.
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* The iterator classes provide overloaded operators that match many of the same operators
commonly used on pointers.

15.2.1.2. Characteristics of iterators:

* An iterator object can be used to traverse an STL container that does not support the over-
loaded subscript operator, for example the STL 1ist.

* Of the three types of STL containers, only sequence containers and associative containers
support the use of iterators. Container adapters do not. The different types of STL containers
are discussed in section 15.3.

* |terators are also used as parameters to many STL algorithms, as discussed in section 15.4.

15.2.1.3. Types of iterators:

e Different classes of iterators can be used to traverse an STL container in a forward direction
(from the first element to the last), or in the backward direction (from the last element to the
first). These iterators are called forward iterators and reverse iterators, respectively.

e Forward iterators include the iterator class, as well as the const_iterator class that does
not allow modifications to the container elements.

e Reverse iteratorsinclude the reverse _iterator and const_reverse iterator classes. The
latter does not allow modifications to the container elements.

15.2.2. Coding example: Iterators

1 int main ()

2 {

3 Student matilda ("100567899", "Matilda", "CS", 9.0f);

4 Student Jjoe ( "100789111", "Joe", "Physics", 8.3f);

5 Student stanley ("100456123", "Stanley", "Geography", 5.6f);
6 Student amy ( "100123444", "Amy", "Math", 10.8f);

o

list<Student> stulList;
9 stuList.push_back (matilda) ;
10 stulList.push_back (joe);
11 stuList.push_back (stanley) ;
12 stulList.push_back (amy) ;

14 /+ Forward iterator */
15 list<Student>::iterator itr;
16 cout << "List of students:" << endl;

17 for ( itr = stulist.begin();

18 itr != stulist.end();

19 ++itr ) |

20 if (itr—->getName () == "Stanley") {
21 itr->setName ("Stan") ;

22 }

23 cout<< xitr;

24 }

25
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/%

Constant forward iterator

*/

list<Student>::const_iterator cltr;
cout<<endl<<"List of constant students:"<<endl;

for ( cItr = stulist.begin(); cItr != stulist.end(); ++cItr ) {
J *
if (cItr—->getName () == "Stanley") {
cItr—>setName ("Stan") ;
}
*/
cout<< xcltr;
}
/* Reverse literator =/
list<Student>::reverse_iterator revItr;
cout<<endl<<"Reversed list of students:"<<endl;
for (revItr=stulist.rbegin(); revItr!=stulist.rend(); ++revItr) {

cout<< *revltr;

return 0;

Don't Panic ==> p2
List of students:

Student: 188567899
Student: 188789111
Student: 188456123
Student: 180123444

Matilda
Joe
Stan
Amy

List of constant students:
Student: 188567899 Matilda
Student: 180789111 Joe
Student: 188456123 Stan
Student: 188123444 Amy

Reversed list of students:
Student: 108123444 Amy
Student: 188456123 Stan
Student: 188789111 Joe
Student: 108567899 Matilda
Don't Panic ==> I

Program purpose:

demonstrates the
* The program definesan STL 1ist

Terminal — -csh — B0x24

Cs
Physics
Geography
Math

Cs

Physics
Geography
Math

Math
Geography
Physics
Cs

Program-15.2: Iterators

use of STL iterator class templates.
of student objects. We use three different types of iterators

to traverse the 1ist and print its elements.

* The student class used in this p

Lines 3-12:

rogram is identical to

* Lines 3-6 allocate and initialize four student objects.

* Line 8 declares an STL 1ist of student object elements.

e Lines 9-12 add the four Student

©Christine Laurendeau Chapter 15

objects to the back of the 1ist.
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Lines 15-24:

Line 15 declares a forward iterator, called itr, as an STL iterator object that operates on
an STL 1ist of student objects.

The itr iterator is used as the looping variable in a for-loop on lines 17-24 that traverses
the 1ist and prints out each of its elements.

Line 17 shows the first part of the loop header. Itinitializes the itr looping variable by calling
the STL 1ist’s begin () member function, which returns an iterator that points to the first
element in the 1ist. The returned iterator is assigned to the itr looping variable using the
iterator class’s overloaded assignment operator.

Line 18 shows the second part of the for-loop header. It checks the loop’s breaking condition
by calling the STL 1ist’s end () member function, which returns an iterator that points just
past the last element in the 1ist. This returned iterator is compared to the current value
of the itr looping variable using the iterator class’s overloaded inequality operator. If the
two iterators are equal, the for-loop terminates.

Line 19 shows the third part of the for-loop header. It advances the itr looping variable by
calling the iterator class’s overloaded prefix increment operator. This operator moves the
looping variable to the next element in the 1ist.

Lines 20-22 change the name of a student. This demonstrates that a forward iterator does
allow changes to the container elements. The iterator class’s overloaded arrow operator
is used to call the student public member functions on the current element.

Line 23 calls the iterator class’s overloaded dereferencing operator to access the current
elementin the 1ist. Using similar syntax to pointers, dereferencing the itr looping variable
returns the corresponding student object. Once the current 1ist element is accessed, it's
printed to the screen using the student class’s overloaded stream insertion operator.

We see from the program output that the list of students is printed in the forward direction,
in same order in which the elements are stored in the list.

Lines 27-36:

Line 27 declares a constant forward iterator, called cItr, as an STL const_iterator object
that operates on an STL 1ist of Student objects.

The cItr iterator is used as the looping variable in a for-loop on lines 29-36 that traverses
the 1ist and prints out each of its elements.

Lines 31-33 are commented out because they do not compile. These lines attempt to change
the name of a student, but because line 32 uses a constant iterator, changes to the container
elements are not allowed.

Line 35 calls the const_iterator class’s overloaded dereferencing operator to access the
current element in the 1ist. Once the current 1ist element is accessed, it's printed to the
screen using the student class’s overloaded stream insertion operator.

Lines 39-43:

Line 39 declares a reverse iterator, called revitr, as an STL reverse_iterator object that
operates on an STL 1ist of student objects.

The revItr iteratoris used as the looping variable in a for-loop on lines 41-43 that traverses
the 1ist and prints out its elements in reverse order.

In the for-loop header on line 41, the STL 1ist’s rbegin () member function returns an
iterator that points to the last element in the 1ist, and rend () returns an iterator that points
just before the first element. The reverse_iterator class’s overloaded prefix increment
operator moves the iterator to the previous element in the 1ist.

Line 42 calls the iterator’s dereferencing operator to print the current element in the 1ist.

We see from the program output that the list of students is printed in the backward direction,
in the reverse order that the elements are stored in the list.
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15.2.3. Categories of iterators

15.2.3.1. What are the categories of iterators:

* There are four categories of iterators, each with its own capabilities. In order of weakest
to strongest, they are: input/output iterators, forward iterators, bidirectional iterators, and
random access iterators.

* Each category possesses the properties and capabilities of all the weaker categories. For
example, bidirectional iterators have all the capabilities of input/output and forward iterators,
but none of those of random access iterators.

* The iterator category supported by an STL container determines which STL algorithms can
be used on that container.

15.2.3.2. Capabilities of the different categories:

* Input/output iterators only work on I/O streams. This allows the use STL algorithms on 1/O
streams as if they are containers.

* Forward iterators only work on containers in the forward direction. If an STL container can
only be accessed in the forward direction, the STL algorithms that require forward iterators
can be used on it. The STL algorithms that require bidirectional or random access iterators
cannot be used.

e Bidirectional iterators work on containers in both the forward and reverse direction. For
example, the STL 1ist supports bidirectional iterators, as we saw in Program-15.2.

* Random access iterators allow direct access to any element in a container, usually through
the subscript operator. This is the strongest category of iterators, and all STL algorithms can
be used on containers that support these iterators. For example, the STL vector supports
random access iterators, but the STL 1ist does not.

15.2.4. Operations on iterators

15.2.4.1. All iterators support the following:
* The dereferencing (x) operator;
* The increment (++) operator;
* The assignment (=) operator; and

* The equality and inequality (== and ! =) operators.

15.2.4.2. Forward, bidirectional, and random access iterators support:

* The begin () member function, which returns an iterator that points to the first element in
the container; and

* The end () member function, which returns an iterator that points just past the last element
in the container. Because this member function does not return an iterator to a valid element,
we should never dereference its returned value. If we do, the program will likely crash.

15.2.4.3. Bidirectional and random access iterators support:

* The rbegin () member function, which returns an iterator that points to the last element in
the container;

* The rend () member function, which returns an iterator that points just before the first
element in the container; and

* The decrement (--) operator.
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15.2.4.4. Random access iterators support:

* The subscript ([ 1) operator;

The relational (<, >, <=, >=) operators;

The addition (+) and addition-assignment (+=) operators; and

The subtraction (-) and subtraction-assignment (-=) operators.

Addition and subtraction operations behave in the same way as C/C++ pointer arithmetic.

15.2.4.5. For optimal performance with iterators:

* The prefix increment and decrement operators should be used instead of postfix. As dis-
cussed in chapter 12, the postfix increment/decrement operators are slower because they
must create temporary copies of objects.

* The loop ending value should be stored before the loop. For example, if the iterator returned
by the end () member function is saved into a variable, the loop header won’t have to call
this member function with every iteration.

15.3. STL Containers

We discuss the different types of STL containers and their properties.

15.3.1. Concepts

15.3.1.1. What is an STL container:

* An STL container is a collection class template that’s provided in the STL. It’s a data structure
that contains a collection of same-type elements.

* All the elements in an STL container are of the same data type as each other. Because the
container is a class template, the elements’ data type can be any defined type.

* Many member functions and overloaded operators are implemented for each type of STL
container.

* There are three types of STL containers: sequence containers, associative containers, and
container adapters.

15.3.1.2. Characteristics of STL containers:

» All STL containers provide:

basic member functions, including a default constructor, a copy constructor, a destructor,
and an implementation of the assignment operator

insertion and deletion member functions, for example insert (), delete (), clear ()

size-related member functions, for example size (), empty (), max—size ()

some overloaded relational operators

* |n addition to the above, sequence and associative containers also provide:
- member functions for iteration using STL iterators, for example begin (), end ()

» To store objects in an STL container, the class developers must provide:
- a copy constructor and an overloaded assignment operator

- for some STL algorithms, the overloaded equality (==) and less-than (<) operators
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15.3.2. Streams as containers

15.3.2.1. What is a stream:

» A stream is a linear sequence of bytes, for example console /O, files, devices, and others.

» Streams are discussed in the chapter 16.

15.3.2.2. Using streams as containers:

* Some STL algorithms, for example the copy () algorithm, can be used with a stream by
treating it as a container.

» Streams only work with input/output iterators.

15.3.3. Coding example: Streams as containers

1 #include <iterator>

3
4
5
6

(0]

11
12
13

15
16
17

19
20

int main ()

{
ostream_iterator<string> outItr (cout);
xoutItr = "Enter two words: ";

istream_iterator<string> inItr(cin);
string wl, w2;

}

wl = *inltr;
++inlItr;
w2 = *inlItr;
xoutItr = "Your phrase is: ";
xoutItr = wl + " " + w2;
xoutItr = "\n";
return 0;
o0 e Terminal — -csh — 80x24

Don't Panic ==> p3
Enter two words: Hello world

Your phrase is: Hello world
Don't Panic ==> '

Program-15.3: Streams as containers

Program purpose:

* Program-15.3 demonstrates the use of STL input/output iterators on the standard 1/O streams.

* The program uses I/O iterators to read some values from the end-user and print them out.

Lines 5-6:

* These lines declare an output iterator and use it to prompt the end-user.

* Line 5 declares an output stream iterator, called outItr, as an STL ostream_iterator ob-
ject that operates on strings. The iterator is initialized with the cout object by using it as
parameter to the ostream iterator constructor.
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Line 6 usesthe ostream_iterator class’s overloaded dereferencing operator to print a literal
string to the standard output.

Lines 8-13:

These lines declare an input iterator and use it to read two strings from the end-user.

Line 8 declares an input stream iterator, called inItr, as an STL istream_iterator object
that operates on strings. The iterator is initialized with the cin object by using it as parameter
to the istream_iterator constructor.

Line 11 uses the istream_iterator class’s overloaded dereferencing operator to read a
string from the end-user. The entered string is stored into the w1 variable.

Line 12 callsthe istream_iterator class’s overloaded prefix increment operator to advance
the iterator past the string that was just read.

Line 13 again uses the istream_iterator dereferencing operator to read another string,
which is stored into the w2 variable.

Lines 15-17:

These lines use the output iterator to print out the strings entered by the user on lines 11-13.

Line 15 uses the ostream_iterator class’s overloaded dereferencing operator to print a
literal string to the screen.

Line 16 calls the same operator to print out the contents of the two string variables, followed
by a newline character on line 17.

15.3.4. Coding example: Copying containers to a stream

1 #include <vector>
2 #include <iterator>
3 #include <algorithm>

5 int main ()

6 {

7 vector<string> words;

8 string str;

10 cout<<"Enter words <ending with \"end\">: ";
11 cin>>str;

12 while (str != "end") {

13 words .push_back (str);

14 cin >> str;

15 }

17 cout << "Printing with a loop:" << endl;
18 for (int i=0; i<words.size(); ++i) {

19 cout << words[i];

20 }

21 cout << endl << endl;

23 cout << "Printing with iterator 1:" << endl;
24 ostream_iterator<string> outItr (cout);
25 cout<<"Your words are: W

26 copy (words.begin (), words.end(), outItr);
27 cout << endl << endl;
28
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29 cout << "Printing with iterator 2:" << endl;
30 ostream_iterator<string> outItr2(cout, "x");
31 cout<<"Your words are: ",

32 copy (words.begin (), words.end(), outlItr2);
33 cout << endl;

35 return 0;

36 }

r ] Terminal — -csh — 80x24

Don't Panic ==> p4

Enter words <ending with "end">: The Lannisters send their regards end

Printing with a loop:
TheLannisterssendtheirregards

Printing with iterator 1:

Your words are: ThelLannisterssendtheirregards

Printing with iterator 2:
Your words are: ThexlLannisters*send*theirxregardss
Don't Panic ==> [J

Program-15.4: Copying containers to a stream

Program purpose:

e Program-15.4 demonstrates the use of the STL copy () algorithm with I/O iterators to print
out the entire contents of an STL container to the screen.

Lines 10-15:

* These lines prompt the user to enter a sequence of space-separated words, up to a sentinel
value of "end".

* Each user-entered string is stored in an STL vector, called words, as shown on line 13.

Lines 17-21:

* These lines take the usual approach to print out the contents of a collection, by iterating over
the words vector and printing each element.

* The program output shows that each word is printed, but without any delimiters in between.

Lines 23-27:

* These lines show the first usage of the STL copy () algorithm and an output stream iterator
to print out the entire contents of a vector in a single statement.

* Line 24 declares an output stream iterator, called outitr, as an STL ostream_iterator
object that operates on strings. The iterator is initialized with the cout object by using it as
parameter to the ostream_iterator constructor.

* Line 26 uses the STL copy () algorithm, with the output stream iterator out1tr, to print out
the entire contents of the words vector to the screen, from the first element to the last.

* The copy () algorithm takes three iterators as parameters. The first two parameters specify
the source of the copy, as a pair of iterators that indicate the range of container elements to
be copied. The third parameter is an iterator to the destination of the copy, in this case an
output stream iterator.

* Line 26 requires that the vector elements implement a stream insertion operator. Because
the string class does overload this operator, the copy () algorithm can be used to print out
an STL container of st rings. The program output shows the printed words without delimiters.
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Lines 29-33:

These lines show the second usage of the STL copy () algorithm and an output stream iterator
to print out the entire contents of a vector in a single statement.

Line 30 declares a second output stream iterator, called outItr2, as an ostream_iterator
object that operates on strings, and it’s initialized with the cout object. In this example, we
indicate a second parameter to the constructor: the delimiter string to be output between
the individual vector elements, in this case an asterisk (x).

Line 32 uses the STL copy () algorithm, with the second output stream iterator out1tr2, to
print out the words vector to the screen. The program output shows that each word is printed,
with an asterisk as delimiter between the words.

15.3.5. Sequence containers

15.3.5.1. What is a sequence container:

A sequence container is an STL container that retains the order of its elements.

If a class user stores the elements inside a container in a specific order, the container must
maintain them in the required order.

The STL provides several sequence containers, including: vector, 1ist, and deque.

Each sequence container implements a number of useful member functions, including front,
back, push_back, pop_back, and many others.

The back of a sequence container is its end, after the last element. The front of a container
is its beginning, before its first element.

15.3.5.2. Characteristics of an STL vector:

Storage:
- elements are stored contiguously, which means all together sequentially in memory
- the vector grows as needed, as more elements are added

- it allows direct access to any element, with the overloaded subscript operator ([]) or the
at () member function

Insertion and deletion:
- insertion and deletion of elements at the back of the vector is very efficient

- insertion and deletion anywhere else causes the elements to be copied, which is inefficient

Iterators: vectors support random access iterators

15.3.5.3. Characteristics of an STL 1list:

Storage:
an STL 1ist is implemented as a doubly linked list

elements are not stored contiguously in memory

the 1ist grows as needed, as more elements are added

it does not allow direct access to its elements

Insertion and deletion:
- insertion and deletion of elements anywhere in the 1ist is efficient

Iterators:
- lists support bidirectional iterators

- they do not support random access iterators

©Christine Laurendeau Chapter 15. The Standard Template Library (STL) 342



15.3.5.4. Characteristics of an STL deque:

* A deque is a double-ended queue. It's a data structure meant to be added to and removed
from at the front and at the back of the container.

» Storage:
- elements are not stored contiguously in memory
- the deque grows as needed, as more elements are added

- it allows direct access to any element, with the overloaded subscript operator or the at ()
member function
* Insertion and deletion:
- insertion and deletion of elements at the back or the front of the deque is very efficient

- insertion and deletion anywhere else is more efficient than an STL vector, but less efficient
than an STL 1ist

* |terators: deques support random access iterators

15.3.6. Coding example: STL vectors

1 int main ()

2 {

3 vector<string> wordsl;
4 string str;

6 cout<<"Enter words <ending with \"end\">: ";
7 cin>>str;

8 while (str != "end") {

9 wordsl.push_back (str);

10 cin>>str;

11 }

12 cout<<endl;

14 ostream_iterator<string> outItr (cout, " * ");

16 cout<<"Your words are: Wg

17 copy (wordsl.begin (), wordsl.end(), outItr); cout<<endl;
18 cout<<"size: "<<wordsl.size ()<<endl;

19 cout<<"capacity: "<<wordsl.capacity () <<endl<<endl;

21 cout<<"era sdrow ruoY: ";
22 copy (wordsl.rbegin(), wordsl.rend(), outItr); cout<<endl<<endl;

24 vector<string> words2 = wordsl;

25 cout<<"Words after copy ctor: ";
26 copy (words2.begin (), words2.end(), outltr); cout<<endl;
27 cout<<"size: "<<words2.size () <<endl;

28 cout<<"capacity: "<<words2.capacity () <<endl<<endl;

30 words2.insert (words2.begin () +2, "PANIC");

31 cout<<"Words after insert: Ly

32 copy (words2.begin (), words2.end(), outltr); cout<<endl;
33 cout<<"size: "<<words2.size ()<<endl;

34 cout<<"capacity: "<<words2.capacity () <<endl<<endl;

35
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36 words2.erase (words2.begin (), words2.end());

37 cout<<"Words after erase: Wg

38 copy (words2.begin (), words2.end(), outltr); cout<<endl;
39 cout<<"size: "<<words2.size ()<<endl;

40 cout<<"capacity: "<<words2.capacity ()<<endl;

42 return 0;
43 }
Terminal — -csh — B0x28

Don't Panic ==> pb
Enter words <ending with "end">: The Lannisters send their regards end

Your words are: The * Lannisters * send % their * regards =*
size: 5
capacity: 8

era sdrow ruoY: regards * their * send * Lannisters * The *
Words after copy ctor: The * Lannisters % send % their * regards =*

M d-H 5
capacity: 5§

Words after insert: The * Lannisters * PANIC * send * their * regards =*
size: 6
capacity: 18

Words after erase:
size: a
capacity: 18
Don't Panic ==> [

Program-15.5: STL vectors

Program purpose:

. demonstrates some commonly used member functions of the STL vector.

Lines 6-11:

* These lines prompt the user to enter a sequence of space-separated words, up to a
of "end".

* Each word is stored in an STL vector of strings, called words1, as shown on line 9.

Lines 14-22:

* These lines print out the words1 vector, both in the forward and reverse directions.

* Line 14 declares an output stream iterator, called out1tr, as an STL ostream_iterator ob-
ject that operates on strings, and it’'s initialized with the cout object. We use the second
constructor parameter to define the delimiter string (" = ") to be output between the indi-
vidual elements.

* Line 17 uses the STL copy () algorithm, with the output stream iterator out1tr, to print out
the entire contents of words1 to the screen. The iterator parameters specify that the entire
vector, from the first element to the last, is copied to the output stream.

* Lines 18-19 show the difference between the size and the capacity of an STL container. Its
size specifies the current number of elements that are stored in the container, and its capacity
is the number of elements that it can accommodate before being full.
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The program output from lines 18-19 shows that the size of words1 is 5 elements, and its
maximum capacity is 8. Remember from Program-13.5 that a vector’s capacity begins at 1
and doubles every time an element is added to a full container.

Line 22 uses the STL copy () algorithm, with the output stream iterator outItr, to print out
the entire contents of words1 to the screen, in reverse order.

Lines 24-28:

These lines copy words1 into a new vector and print it out.

Line 24 uses the vector copy constructor to initialize a new vector called words2 from the
contents of words1.

Line 26 uses the STL copy () algorithm to print out the entire contents of words2 to the screen.

The program output from lines 27-28 shows that words2 is initialized on line 24 with the
current capacity of words1, which is 5 elements.

Lines 30-34:

These lines insert a new word in the middle of a vector and print it out.

Line 30 uses the vector class’s insert () member function to insert a new word in the third
position of words2. The member function takes an iterator as its first parameter, to indicate
the insertion point in the vector, and the new element as its second parameter.

Because a vector supports random access iterators, we can use an addition operation on
line 30 to specify the insertion point at 2 elements after the first one.

Line 32 uses the STL copy () algorithm to print out the entire contents of words2 to the screen.

The program output from lines 33-34 shows that, in order to add a sixth element to words2,
the vector’s capacity was doubled from 5 to 10.

Lines 36-40:

These lines remove the entire contents of a vector.

Line 36 uses the vector class’s erase () member function to delete all the elements in
words2. The member function takes two iterators as parameters, indicating where the dele-
tion should begin and end.

Line 38 uses the STL copy () algorithm to print out the empty words2 vector to the screen.

The program output from lines 39-40 shows that words2 now contains no elements, but its
capacity remains unchanged.

15.3.7. Coding example: STL 1ists

1 int main ()

2 {

3 Student matilda ("100567899", "Matilda", "CS", 9.0f);

4 Student joe ( "100789111", "Joe", "Physics", 8.3f);

5 Student stanley ("100456123", "Stanley", "Geography", 5.6f);
6 Student amy ( "100123444", "Amy", "Math", 10.8f);

7 Student bob ( "100987555", "Bob", "Chemistry", 11.9f);

9 list<Student> comp2404;

10 ostream_iterator<Student> outlItr (cout);
11 comp2404.push_back (matilda) ;

12 comp2404.push_back (amy) ;

13 comp2404.push_back (stanley) ;

14 comp2404.push_back (joe) ;

15
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cout<<"List of students in COMP 2404:"<<endl;
copy (comp2404 .begin (), comp2404.end(), outltr);

comp2404.sort () ;
cout<<endl<<"Sorted list of students in COMP 2404:"<<endl;
copy (comp2404 .begin (), comp2404.end(), outlItr);

comp2404.erase (——comp2404.end());
cout<<endl<<"List of students in COMP 2404 after cull:"<<endl;
copy (comp2404 .begin (), comp2404.end(), outltr);

comp2404.push_back (bob) ;
comp2404.sort () ;
cout<<endl<<"List of students in COMP 2404 before merge:"<<endl;

copy (comp2404 .begin (), comp2404.end (), outltr);

return O;

Terminal — -csh — B0x28

Don't Panic ==> pé

List of students in COMP 2484:

198567899 Matilda C5
180123444 Amy Math
108456123 Stanley Geography
108789111 Joe Physics

Student:
Student:
Student:
Student:

Sorted list of students in COMP 2484:

Student:
Student:
Student:
Student:

188123444 Amy Math
108789111 Joe Physics
108567899 Matilda Cs
180456123 Stanley Geography

List of students in COMP 2484 after deletion:

Student:
Student:
Student:

188123444 Amy Math
108789111 Joe Physics
108567899 Matilda Cs

List of students in COMP 2484 before new element:

Student:
Student:
Student:
Student:

108123444 Amy Math
188987555 Bob Chemistry
108789111 Joe Physics
180567899 Matilda Cs

Don't Panic ==>

Program-15.6: STL 1ists

Program purpose:

* The student class used in this program is identical to

demonstrates some commonly used member functions for the STL 1ist.

, with the addition of the

overloaded equality and less-than operators. Both operators compare the student names.

Lines 3-14:

* These lines declare and initialize some student objects, as well as an STL 1ist to store them,
and an output stream iterator to print them.

* Lines 3-7 allocate and initialize five student objects.

* Line 9 declares an STL 1ist of student objects, called comp2404.
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* Line 10 declares an output stream iterator, called outitr, as an STL ostream_iterator
object that operates on student objects, and it’s initialized with the cout object.

* Lines 11-14 add four of the student objects to the comp2404 list.

Lines 16-21:

* These lines sort the 1ist and print it out.

e Line 17 uses the STL copy () algorithm to print out the entire contents of comp2404 to the
screen. This requires the elements inside the 1ist to implement the overloaded stream
insertion operator, which the student class does.

* The program output from line 17 shows that the student objects are in the order in which
they were added to the 1ist on lines 11-14.

* Line 19 calls the STL 1ist class’s sort () member function to reorder the elements inside
comp2404. This member function requires the elements inside the 1ist to implement the
overloaded less-than and equality operators, which the student class does.

* Line 21 uses the STL copy () algorithm again to print out the contents of comp2404.
* The program output from line 21 shows that the student elements are now ordered by name.

Lines 23-25:
e These lines remove the last element in the 1ist.

* Line23 callsthe 1ist class’'serase () member function to remove the last elementin comp2404.
The member function takes an iterator as parameter to indicate where the deletion should
begin. Because no second parameter is used to specify where the deletion should end, the
member function deletes every element from the starting point to the end of the 1ist.

* The iterator’s overloaded decrement operator is used on line 23 so that the deletion begins
with the last element. Because an STL 1ist does not support random access iterators, we
cannot use a subtraction operation. However, the decrement operator is implemented for
the 1ist class’s bidirectional iterators.

* Line 25 uses the STL copy () algorithm to print out the contents of comp2404 to the screen.
* The program output from line 25 shows that the last element has been removed.

Lines 27-30:

* These lines add a new element to the 1ist, and sort it.

Line 27 adds a new student object to the back of the 1ist.

Line 28 calls the 1ist class’s sort () member function to reorder the elements by name.

* Line 30 uses the STL copy () algorithm to print out the contents of comp2404 to the screen.

* The program output from line 30 shows that the new element has been added, and the list
has been sorted again.

15.3.8. Coding example: STL deques

1 int main ()

2 {

3 Student matilda ("100567899", "Matilda", "CS", 9.0f);

4 Student Jjoe ( "100789111", "Joe", "Physics", 8.3f);

5 Student stanley ("100456123", "Stanley", "Geography", 5.6f);
6 Student amy ( "100123444", "Amy", "Math", 10.8f);

7 Student bob ( "100987555", "Bob", "Chemistry", 11.9f);

8 Student alice( "100342322", "Alice", "CS", 7.8f);

9 Student ted( "100765444", "Ted", "Math", 8.6f);

10
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deque<Student> stuDeque;
ostream_iterator<Student> outlItr (cout);
.push_back (matilda) ;
.push_back (amy) ;
.push_back (stanley) ;
.push_back (joe) ;

stuDeque
stuDeque
stuDeque
stuDeque

cout <<

stuDeque.push_front (bob) ;
stuDeque.push_front (ted) ;

"List of students:"
copy (stuDeque.begin (),

stuDeque.pop_back () ;
cout << endl <<

copy (stuDeque.begin (),

stuDeque.insert (stuDeque.end () -2,

cout << endl <<

copy (stuDeque.begin (),

cout << endl <<

return O;

Don't Panic ==> p7
List of students:

Student:
Student:
Student:
Student:

188567899
198123444
188456123
le8789111

"Updated list of students:"
stuDeque.end(),

"Deque at index 2:

Matilda
Amy
Stanley
Joe

Updated list of students:

Student:
Student:
Student:
Student:
Student:

List of students after insert:

Student:
Student:
Student:
Student:
Student:
Student:

108765444
188987555
100567899
180123444
108456123

100765444
1808987555
188567899
188342322
198123444
188456123

Deque at index 2:

Student:

188567899

Don't Panic ==> I

Program purpose:

demonstrates some commonly used member functions for the STL deque.

Ted
Bob
Matilda
Amy
Stanley

Ted

Bob
Matilda
Alice
Amy
Stanley

Matilda

<< endl;

stuDeque.end(),

outItr);

outlItr);

alice);
"List of students after insert:"
stuDeque.end(),

outItr);

<< endl <<

Terminal — -csh — 80x28

CSs

LER
Geography
Physics

Math
Chemistry
Cs

Math
Geography

Math
Chemistry
Cs

Cs

LER
Geography

Program-15.7: STL deques

* The student class used in this program is identical to

©Christine Laurendeau
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<< endl;

<< endl;

stuDeque[2] << endl;
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Lines 3-16:

These lines declare and initialize some student objects, as well as an STL deque to store
them, and an output stream iterator to print them.

Lines 3-9 allocate and initialize seven student objects.

Line 11 declares an STL deque of student objects, called stubeque, and lines 13-16 add four
of the student objects to it.

Line 12 declares an output stream iterator as an STL ostream_iterator object that operates
on Student objects, and it’s initialized with the cout object for standard output.

Lines 18-25:

These lines add and remove elements from the ends of the deque.

Line 19 uses the STL copy () algorithm to print out the entire contents of stubeque to the
screen. This requires the elements inside the deque to implement the overloaded stream
insertion operator, which the student class does.

The program output from line 19 shows that the student objects are in the order in which
they were added to the deque on lines 13-16.

Lines 21-23 call the deque class’s push_front () and pop_back () member functions to add
two elements to the front of stubeque and remove one element from the back.

Line 25 uses the STL copy () algorithm again to print out the contents of stubeque.

The program output from line 25 shows two new elements at the front and the last element
removed.

Lines 27-31:

These lines insert a new element in the middle of the deque, and we see the subscript operator
at work.

Line 27 uses the deque class’s insert () member function to insert a new student in the
third position from the end of stubeque. The member function takes an iterator as its first
parameter, to indicate the insertion point, and the new element as its second parameter.

The iterator’s overloaded subtraction operator is used on line 27 so that the insertion is made
at two elements from the end of stubeque. An STL deque supports random access iterators,
SO we can use a subtraction operation.

Line 29 uses the STL copy () algorithm again to print out the contents of stubeque.
The program output from line 29 shows the new element inserted in the correct position.

Line 31 uses the deque class’s overloaded subscript operator to access the element at index
2. The student object’s overloaded stream insertion operator is used to print the element.

15.3.9. Associative containers

15.3.9.1. What is an associative container:

An associative container is an STL container that stores elements using keys.

The keys in an associative container are stored in a user-specified order, which is ascending
order by default. A predicate may be used to define the order.

The STL provides several associative containers, including: set, multiset, map, and multimap.

15.3.9.2. Characteristics of associative containers:

The different types of associative containers are organized as follows:
- the set and multiset containers store keys only

- the map and multimap containers store pairs of keys and values
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- set and map do not allow duplicates
- multiset and multimap do allow duplicates

* Each associative container implements a number of useful member functions, including
insert, find, lower_bound, upper_bound, and many more.

» Associative containers support bidirectional iterators.

15.3.10. Container adapters

15.3.10.1. What is a container adapter:

* A container adapter is a higher-level STL container that strictly regulates the access to its
elements, which are stored in a programmer-selected underlying container.

* The STL provides several container adapters, including: stack, queue, and priority_queue.

15.3.10.2. Characteristics of container adapters:

* A container adapter can use different types of underlying containers to store its elements:
- a stack can be implemented using any sequence container

- a queue can be implemented using an STL deque or 1ist
- apriority_gqueue can be implemented using an STL vector or deque

* Container adapters do not support iterators.

15.4. STL Algorithms

We discuss the STL algorithms and their characteristics.
15.4.1. What is an STL algorithm:

* An STL algorithm is a global function template that performs useful operations on containers.

* STL algorithms use iterators instead of accessing the containers and their elements directly.

This allows for the development of more generic algorithms that can work with different types
of containers.

* Some algorithms also work on non-STL containers, such as primitive arrays.

15.4.2. Characteristics of STL algorithms:

* STL algorithms often operate on containers using a pair of iterators, for example to indicate
the range (the beginning and the end) of an operation.

* The return value of an STL algorithm is often an iterator.

* Each algorithm requires a specific category of iterators in order to work. As a result, each
STL algorithm only works with certain types of containers.

* The STL provides several useful algorithms, including: copy (), sort (), remove (),and £i11 (),
and many more.
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Chapter 16

Streams and Files

The standard C++ library provides several useful classes and predefined objects to assist with
input/output (I/0), including console I/0 and files.

In this chapter, we introduce the basics of I/O in C++, including streams and files.

16.1. Streams

We discuss the concept of streams in Unix programming, and how they are implemented in C++.

16.1.1. Concepts

16.1.1.1. What is a stream:

* A stream is a linear sequence of bytes that flows from a data source into program memory,
and from program memory into a data sink.

* Examples of a data source include a keyboard, an input file, and a network adapter.

* Examples of a data sink include a screen, an output file, a printer, and a network adapter.

16.1.1.2. The iostream classes:

* The iostream library is part of the C++ standard library, and it contains many I/O template
specializations.

* The istream class provides functionality for input streams. For example, the standard input
object, cin, is an instance of the istream class.

* The ostream class provides functionality for output streams. For example, the standard out-
put object, cout, is an instance of the ostream class, as are the standard error and standard
log objects, cerr and clog, respectively.

16.1.1.3. Characteristics of stream classes:

* Every stream object maintains a set of error flags that indicate its current state.

The error flags include: goodbit, failbit, and badbit.

The ostream and istream classes provide member functions that test the error flags, as we
discuss in section 16.3.

They also provide several overloaded operators, as discussed shortly.
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16.1.1.4. Characteristics of input streams:

16.

There are two ways to read data from an input stream:
- to read formatted data, we use the stream extraction operator (>>)

- to read unformatted data, we use istream member functions like get () or getline ()

Formatted data is only read up to a white-space delimiter, like a space, a tab, or a newline.
If we need to input multiple items on the same line, we need to use the unformatted data
approach.

Unformatted data is read as one long string, up to a delimiter, with a newline character as
the default delimiter. If the program needs this long string to be separated into different
parts, then it must parse the string explicitly.

Every input stream has an end-of-file flag, called eofbit, to indicate that the end of the input
has been reached. When this happens, the stream’s eofbit automatically gets set, and it
can be tested using the eof () member function.

1.2. Overloaded stream operators

16.1.2.1. The overloaded logical NOT operator (!):

When used on stream object operand, the logical NOT operator (!) returns true if one of the
following flags is set: failbit, Oor badbit, Or eofbit.

This allows a program to test if any stream has encountered an error, or if an input stream
has reached the end of the input.

16.1.2.2. The overloaded conversion (typecast) to void+ operator:

16.

The overloaded typecast operator is called implicitly when a stream object is tested as a
condition, for example in an if-statement condition or a loop header.

When used on stream object operand, the operator first converts a stream to a void pointer:
- the conversion returns a null pointer if one of the failbit, badbit, or eofbit flags is true

- otherwise, it returns a non-null pointer

Then the operator tests the void pointer:
- the test returns true if the typecast operator returns a non-null pointer

- it returns false if the typecast operator returns a null pointer

This allows our programs to easily check if a stream is in an error state or not, or if the end
of an input stream or file has been reached.

1.3. Coding example: Streams

1 int main ()

2 {

3 cout << endl << "xx Testing good flag: xx" << endl;
4 testGoodFlag() ;

5 cin.clear();

6 testGoodFlag () ;

7 cin.clear();

9 cout << endl << "xx Testing eof flag: x*" << endl;
10 testEOF () ;
11 cin.clear () ;

13 return 0;
14 }
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void testGoodFlag()
{

string sl, s2;
int num;
cout << "Enter <str> <str> <num>:" << endl;
cin >> sl >> s2 >> num;
if (cin.good()) {
cout << "Good input: " << sl << " " << 52 <<
}
else {
cout << "Bad input!" << endl;
}
}
volid testEOF ()
{
string str;
cout << "Enter <str>:" << endl;
cin >> str;
while (!cin.eof()) {
cout << "you entered: " << str << endl;
cout << "Enter <str>:" << endl;
cin >> str;
}
cout << "End of file detected" << endl;

Don't Panic ==> pl

** Testing good flag: =%
Enter <str> <str> <num>:
Hello World! 2484

Good input: Hello World!
Enter <str> <str> <num>:
Hello World! sup

Bad input!

2484

*% Testing eof flag: #*=*

Enter <str>:

you entered: sup
Enter <str>:

hello

you entered: hello
Enter <str>:

world

you entered: world
Enter <str>:

End of file detected
Don't Panic ==> I

Terminal — -esh — B0x28

Program-16.1: Streams

Program purpose:

n

<< num << endl;

demonstrates the istream class’s good () and eof () member functions on the

standard input stream.
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Lines 1-14:

* These lines show the implementation of the main () function.
* Lines 3-7 call the testGoodFlag () function twice to test both correct and incorrect input.

e After each function call, the istream class’s clear () member function is used to unset the
error flags on the cin object on lines 5 and 7.

e Line 10 calls the testEOF () function to demonstrate the use of the end-of-file marker on an
input stream.

Lines 15-28:

* These lines show the implementation of the testGoodFlag () global function.

* Line 21 uses the stream extraction operator to read from the end-user three different values:
two strings and an integer.

* Line 22 calls the istream class’s good () member function to see if the cin stream is fine, or
if it’s in an error state.

* From the program output, we see that, during the first call to testGoodFlag (), the user
enters a value of 2404 for the integer. This is a valid value, so the good () member function
returns true, and the program prints out the user-entered values on line 23.

* However, during the second call to testGoodFlag (), the user enters a string instead of an
integer. Because this is an invalid value, the good () member function returns false, and an
error message is printed out on line 26.

Lines 30-42:

* These lines show the implementation of the testEOF () global function.

* Lines 36-40 implement a loop that repeatedly reads a string from the end-user until the end-
of-file value is entered. In Unix-type systems, the end-of-file value is ctr1+D.

* From the program output, we see that the string entered instead of an integer value during
the second call to the testGoodFlag () function on line 6 is still in the input stream. This
value is read as the first user-entered string. The user enters two more strings, then presses
ctrl+D, which sets the eofbit flag. The condition on line 36 is now false, and the loop
terminates.

16.2. Files

We discuss how file I/O operates in C++.

16.2.1. Concepts

16.2.1.1. What is a file:
* Afile is a stream that is stored in persistent storage, also called non-volatile storage.

» Persistent storage is memory that is not deallocated when the OS shuts down, for example
a hard disk or a solid-state drive (SSD).

* Volatile storage is memory that is deallocated and does not persist beyond a system shut
down, for example random access memory (RAM), also called main memory.
16.2.1.2. Characteristics of files:

* A file is a linear sequence of bytes, terminated by an end-of-file marker. This is a special
character that is OS-dependent and indicates that the end of the file has been reached.

* In C++, a file is represented virtually as an object.
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16.2.1.3. The iostrean file 1/O classes:
* The iostream library contains file-related I/O template specializations.

e The ifstream class is derived from the istream class, and instances of ifstream are used
to represent input files.

e The ofstream class is derived from the ostream class, and instances of ofstream are used
to represent output files.

16.2.2. Files as objects

16.2.2.1. Characteristics of input and output files:
* Every instance of ifstream Or ofstream maintains an internal file buffer object.
* The destructor for this file buffer closes the corresponding file.

* Every file maintains a set of error flags to indicate its current state, and an input file also
stores an eofbit flag.

* The overloaded operators to test for errors and the end of the file can be used with files, as
with any stream.

16.2.2.2. Useful member functions for input and output files:

* The ifstream and ofstream classes provide many useful member functions to work with
input and output files.

* The constructor can optionally open the file. A second constructor parameter is specified to
indicate the mode of file opening, for example input, output, append, and so on.

* The ifstreamand ofstream classes also provide member functions for file management, for
example opening or closing the file.

* Some useful member functions for input files:
- the stream extraction operator (>>)
- get () Orgetline()

* Some useful member functions for output files:
- the stream insertion operator (<<)
- put () Orwrite ()
- flush ()
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16.2.3. Coding example: File output

1 int main ()

2 {

3 string num, name, majorPgm;
4 float gpa;

6 ofstream outFile("students.txt", ios::out);

7 if (!outFile) {

8 cout<<"Could not open file"<<endl;

9 exit (1) ;

10 }

12 cout<<"Enter student number, name, majorPgm, and GPA: " << endl;
13 while ( cin >> num >> name >> majorPgm >> gpa ) {

14 Student stu(num, name, majorPgm, gpa);

15 outFile << stu;

16 }

18 return 0;
19 }
Terminal — -csh — 80x28

Don't Panic ==> 1ls *.txt

1s: No match.

Don't Panic ==> pZout

Enter student number, name, majorPgm, and GPA:
108567899 Mathilda CS 9.8
108789111 Joe Physics 8.3
188456123 Stanley Geography 5.6
180123444 Amy Math 18.8

Don't Panic ==> 1ls #*.txt
students.txt

Don't Panic ==> cat students.txt
1908567899 Mathilda CS
188789111 Joe Physics
108456123 Stanley Geography
180123444 Amy Math

Don't Panic ==> I

Program-16.2: File output

Program purpose:

. demonstrates the use of an output file to store user-entered data.

* The program repeatedly prompts the end-user to enter student data, creates a new student
object for each one, and calls the student class’s overloaded stream insertion operator to
output each student object to a file.

* The student class used in this program is identical to

Lines 6-10:

* These lines open a file for output and check that the operation succeeded.

* Line 6 declares an instance of the ofstream class, called outFile. The first parameter to
the ofstream constructor indicates that the file name is "students.txt", and the second
parameter specifies that the file must be opened for output.

* Line 7 uses the overloaded logical NOT operator to test if the file was opened successfully. If
not, lines 8-9 print out an error message and terminate the program.
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* There are several reasons why opening a file for output might fail. For example, the end-user
may not have write permission in the directory where the file is created.

Lines 13-16:

* These lines contain a loop that reads data from the end-user until the end-of-file value is
entered.

* Line 13 shows the while-loop header. It uses the stream extraction operator to read four
values from the end-user. When the user enters the end-of-file value, the eofbit flag for cin
gets set. Testing the cin object returns true as long as no error occurs, and false when it
reads in the end-of-file value. At that point, the loop terminates.

» At every iteration of the loop, line 14 creates a new student object with the entered values.
Then line 15 uses the stream insertion operator to output that object to the outFile file.

* When the program ends, the outFile object’'s destructor closes the "students.txt" file.

Program output:

* The program output shows that the "students.txt" file doesn’t exist beforehand.

» After we run the program and enter the data, the file has been created and contains the
Sstudent data that we entered.

16.2.4. Coding example: File input

1 int main ()
2 {

3 string num, name, majorPgm;

4 float gpa;

5 vector<Student> stuVect;

6 ostream_iterator<Student> outItr (cout);

8 ifstream inFile("students.txt", ios::in);

9 if (!'inFile) {

10 cout<<"Could not open file"<<endl;

11 exit (1) ;

12 }

14 while ( inFile >> num >> name >> majorPgm >> gpa ) {
15 Student stu(num, name, majorPgm, gpa);

16 stuVect .push_back (stu) ;

17 }

19 cout << "List of students:" << endl;

20 copy (stuVect.begin (), stuVect.end(), outlItr);

22 return O;
23 }
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Terminal — -esh — B0x28

O

Don't Panic ==> cat students.txt
188567899 Mathilda Ccs
108789111 Joe Physics
108456123 Stanley Geography
188123444 Amy Math

Don't Panic ==> p2in

List of students:

108567899 Mathilda Cs
108789111 Joe Physics
180456123 Stanley Geography
180123444 Amy Math
Don't Panic ==> l

Program-16.3: File input

Program purpose:

* Program-16.3 demonstrates the use of an input file to read in student data.

* The program reads in the student data from a file, creates a new student object for each
one, and adds it to an STL vector. The vector is then printed to the screen.

* The student class used in this program is identical to Program-13.5.

Lines 8-12:

* These lines open a file for input and check that the operation succeeded.

* Line 8 declares an instance of the ifstream class, called inFile. The first parameter to
the ifstream constructor indicates that the file name is "students.txt", and the second
parameter specifies that the file must be opened for input.

* Line 9 uses the overloaded logical NOT operator to test if the file was opened successfully. If
not, lines 10-11 print out an error message and terminate the program.

* There are several reasons why opening a file for input might fail. For example, the file may
be missing, or the end-user may not have read permission in the directory where the file is
located.

Lines 14-17:

* These lines contain a loop that reads data from the input file until the end-of-file marker is
reached.

* Line 14 shows the while-loop header. It uses the stream extraction operator to read four
values from the input file. When the end-of-file value is reached, the eofbit flag for the
input file gets set. Testing the inFile object returns true as long as no error occurs, and
false when it reads in the end-of-file value. At that point, the loop terminates.

* At every iteration of the loop, line 15 creates a new student object with the values read from
the input file. Then line 16 adds that object to an STL vector called stuvect.
Lines 19-20:

* Line 20 uses the STL copy () algorithm, with an output stream iterator, to print out the entire
contents of stuvect to the screen.

* When the program ends, the inFile object’s destructor closes the "students.txt" file.

Program output:

* The program output shows that the data stored in the "students.txt" file in Program-16.2
is read from the input file into the STL vector, and the same data is printed to the screen.
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16.3. Error state flags

We discuss the error state flags associated with every stream in C++.

16.3.1. Concepts

16.3.1.1. What are error state flags:

* Every stream object maintains a set of error flags that indicate its current state. These are
called the stream’s error state flags.

* The flags include:
- the goodbit flag: if set, it indicates that none of the other error flags are currently set
- the failbit flag: if set, it indicates that a formatting error has occurred
- the badbit flag: if set, it indicates an unrecoverable error

* |n addition, instances of the istream class, including its i fstream derived objects, maintain
an eofbit flag. If set, it indicates that the end of the input has been reached.

16.3.1.2. Stream member functions for testing error state flags:

* The following member functions are used to test the individual flags:
- fail() returns trueif failbit is set

bad () returns true if badbit is set

eof () returns true if eofbit is set

- good () returns true if goodbit is set

* We can unset a stream’s error state flags with the clear () member function. By default, this
member function clears all the errors and sets the goodbit flag.

16.3.2. Coding example: Error state flags

1 int main ()

2 {

3 bool inputOk = false;
4 int num, result;

6 while (!inputOk) {

7 cout << "Please enter a number between 0 and 100: ";
8 cin >> num;

9 inputOk = checkNum (num) ;

10 }

12 doubleNum (num, result);
13 cout << "Result: " << result << endl;

15 return 0;
16 }

18 void doubleNum (int n, int& res)
19 {

20 res = n * 2;

21}

22
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23 bool checkNum(int n)

24 {

25 if (!cin.good()) {

26 cout << "Bad input!" << endl;
27 cin.clear () ;

28 cin.ignore () ;

29 return false;

30 }

32 return ( n>=0 && n<=100);
33 }

& ) Terminal — -csh — 80x28

Don't Panic ==> p3

Please enter a number between ® and 108:
Bad input!

Please enter a number between @ and 108:
Bad input!

Please enter a number between ® and 188:
Please enter a number between © and 108:
Result: 154

Don't Panic ==> fJ

Program-16.4: Error state flags

Program purpose:

Program-16.4 demonstrates how the standard input stream is tested for errors.

The program is a variation of Program-2.6, which prompts the end-user for a numeric value
and doubles it.

Lines 1-21:

Lines 1-16 show the implementation of the main () function.

Lines 6-10 contain a loop that prompts the end-user until a valid value is entered, and line 9
calls the checkNum () function to verify the value.

Line 12 calls the doubleNum () function to double the value, and line 13 prints out the result.
Lines 18-21 show the implementation of the doubleNum () function.

Lines 23-33:

These lines show the implementation of the checkNum () function.
Line 25 calls the istream class’s good () member function to test the cin object for errors.

If line 25 detects an error, line 26 prints out an error message. Then line 27 clears the
standard input stream of errors, line 28 forces the standard input stream to skip over the
invalid value, and line 29 returns false to indicate that the entered value is invalid.

If no input error is detected, we know that a numeric value was entered. Line 32 tests the
entered value for the correct range and returns the result of that test.

From the program output, we see that a letter and punctuation character are entered instead
of a numeric value in the first two iterations of the loop on lines 6-10. An error message is
printed out, and the user is prompted again for a valid value.
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