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This paper presents a definition of

‘optical clusters’ which is derived from

the concept of optical resolution. The

clustering problem (induced by this def-
inition) is transformed such that the ap-
plication of well known Computational

Geometry methods yields efficient so-

lutions. One result (which can be ex-

tended to different classes of objects
and metrices) is the following:

Given a set S of N disjoint line seg-

ments in EZ.

(a) The optical clusters with respect to
a given separation parameter reR
can be computed in  time
O(N log? N).

(b) Given an interval [a,b] for the
number m(S,r) of optical clusters
which we want to compute, then
time O(N log? N)[O(N log? N
+ CN)] suffices to compute the in-
terval [R(b), R(a)]={reR/m(S,r)
ela,b]} [all C optical clusterings
with R(b)<r<R(a)].

Key words: Clustering methods — Com-
putational geometry — Picture analysis
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4 his paper considers the following problem:
" Given a set S of N objects (i.e. line seg-
ments in E?, see Fig. 1) find a suitable
L clustering of S which supports picture
recognition (Deday and Simon 1980).
There are several ways to specify such a cluster-
ing process. Most of the proposed strategies in
clustering literature can be classified according
to Fig. 2.
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Agglomerative hierarchical (divisive hierarchi-
cal) algorithms produce a sequence of nested
partitions with decreasing (increasing) number
of clusters. Partitional strategies divide S into C
clusters at once (approximately) optimizing
some given clustering rheasure (and mostly try-
ing to improve this partitioning in some post-
processing steps) - refer to Day and Edels-
brunner 1983; Dubes and Jain 1980; Dehne
and Noltemeier 1985a—c; Murtagh 1983; Page
1974; Rohlf 1973).

In this paper we propose the following cluster-
ing strategy:

If you look at Fig. 1 and assume that it be-
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comes blurred then all objects seem to grow
and those ones forming a ‘natural’ cluster start
to unite. Thus, we consider optical selectivity as
a model for our clustering strategy. With D
denoting the minimum distance of two points
(ie. in E?) such that both points are separable
from each other, all points which lie inside
some circle of radius D/2 are not separable and
have to be considered identical. With this we
define two line segments separable if no two
points (one of each segment) exist which are not
separable. This yields a definition of clusters
which we will call optical clusters.

Part 2 of this paper gives a general framework
including a precise definition of optical clusters
and a transformation of this clustering problem
such that well known Computational Geometry
methods can be applied and yield efficient so-
lutions. Part 3 and 4 show how these results
can be applied to several classes of geometric
objects.

A general framework
for optical clustering

Let S={s,,...,sy} be a set of N disjoint objects
in R" (compact subsets of R" without holes),
consider some convex distance function
d: R"xR"—>R[(Vs, s'€S): d(s,s'):=inf {d(x, y)/xes,
yes'}], and let c(P,r):={xeR"/d(P,x)<r} de-
note the ball with center P and radius r.

i»5;€S are r-connected (s; ~,s;) iff

(3c(P,r),r <r): c(P,r)ns;+0 and
c(P,r')ns;+0.
Since the transitive closure cl(~,) of ~, is an

equivalence relation we define ‘optical clusters’
as follows:

Definition. s

Definition. The equivalence classes of cl(~,) are
called optical clusters with resp. to (separation
parameter) r.

Let m(S,r) denote the number of optical clus-
ters of S with resp. to r.

With this the following lemma is obvious:

Lemma 1. r <r' = m(S,r)=m(S,r’).
Given the task to construct the optical clusters
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of a set S of geometric objects with respect to

some given resolution r a naive solution may be

the following:

(1) Compute the graph (S, ~,) [Let (S, ~,) de-
note the graph with vertex set S and edges
between all pairs of vertices (s, s’)e ~,.].

(2) Find the connected components of (S, ~,).

But there is one major drawback to such a
simple solution: Since |~,|eQ(N?) in the worst
case we may have to compute a graph with
Q(N?) edges.

However, we are only interested in the equiva-
lence classes of cl(~,) which raises the follow-
ing question:

Is there another relation ¢, with cl(¢,)=
and [©,|eO(N)?

We will answer this question affirmatively for
n=2.

cl(~,)

Definition
(a) s;,s;€S are Delaunay connected with resp. to
r (s ¢ s;) iff
@ar <r PeR"): d(P,s;)=r'=d(P,s; and
(Vs eS—{s;,s;}): d(P,s)>r'.
(b) sl,sJeS are a'lzrectly connected with resp. to
r(s;~,s;) iff
(Hc(P r/) r' <r): ¢(P,r)ns;+0 and
c¢(P,r)ns,;+0 and
(V5,8 — {5, 8): s, e(Pr)=9.
With this, we prove the following

Lemma 2.

(a) cl(~)=cl(%,)

(b) =, =

Proof.

(@) (i) Since ~, < ~,, cl(=x,)ccl(~,).

(ii) Let s;~,s;, then we have objects

Los-eesly eS such that
s —to ~ by~

Thus we get (s,,s )ecl( ) 1f the folllow-
ing lemma holds:

Lemma. (Vs,s'€S): (s,s)e ~, = (s,5)ecl(=,)

Proof. The proof of this lemma is sketched by
Fig. 3:If 5,5 are connected by some ball B that
is intersected by some other objects, then there
is a path of balls b,,...,b; which transitively
connect s and s’ and do not intersect other
objects.



(b) () ©,<= =, is obvious.

(ii) Let s=,s’, and let c¢(P,r) be a ball as
described in the definition of relation
,. Let q[q'] be the point of s[s'] clos-
est to P, 1[1'] be the line segment con-
necting P and ¢q[q'], and L be the union
of 1 and 1. With BS(s,s'):={xeR"/d(x, s)
=d(x,s’) denoting the bisector of s and
s’ it is easy to see that the ball c¢(P',r)
with P':=LNBS(s,s’) and r':=d(P’,s)
satisfies the conditions described in the
definition of &,, thus s<¢,s" (see Fig. 4
for an illustration in E?).

This yields the following
Theorem 1. (a) cl(~,)=cl(®,)
(b) [©,1€O0(N) for n=2.

Proof. (a) is a trivial consequence from Lemma
2. For n=2 it is easy to see that the graph
(S,¢,) is planar (see Fig. 5), thus (b) follows
immediately.

Thus, the optical clusters of S with respect to
separation parameter r are exactly the connect-
ed components of the graph (S,<,), and (S,<,)
has O(N) edges in the planar case.

Fig. 5
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On the other hand it is easy to see that if
(S,DT(S)) denotes the Delaunay Triangulation
(Shamos and Hoey 1975; Lee and Drysdale
1981) then we have DT(S)= | ) ¢

rz0

With this we‘ define min (s, s/_)==min {r=0/(s,s")

€.} for all (s,s)eDT(S) and call the labeled

graph (S, DT(S)) with labeling (s,s")—>min(s,s’)

clustering graph of S (denoted by CG(S)).
Hence, ¢, = (s, s").

[(s,s")eDT(S), min(s,s’) =r]

Clustering sets
of line segments in E?

Let S={s,,...,sy} be a set of disjoint line seg-
ments in E2. From Lee and Drysdale (1981) we
know that the Voronoi diagram V(S) and the
Delaunay triangulation DS(S) (which is the dual
of V(S), see Fig. 6) can be constructed in time
O(N log? N). For each edge e;=(s,s')eDT(S) we
compute the value min(s, s’) as follows:

Consider the Voronoi edge v which is an edge
of the Voronoi polygons of both s and s It is

/ =———— Line segment
————— Voronoi Edge

Delaunay Edge
Fig. 6 (from Lee and Drysdale 1981)
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easy to see that v is exactly the set of all centers
of circles which “connect’ s and s’ as described
in the definition of relation ¢, for all r>0.
Thus, min (s, s")=min {d(s, x)/xev}. Since v con-
sists of at most two segments of parabolas and
three segments of bisectors (Lee and Drysdale
1981) min(s,s’) can be computed in constant
time.

Thus, we get

Lemma 3. The clustering graph CG(S) of a set of
N disjoint line segments in the Euclidean plane
can be computed in time O(N log? N).

Given the clustering graph CG(S) and a real
value r>0 we can compute the optical clusters
with respect to separation parameter r (and the
number m(S, r) of such clusters) as follows:
Delete all edges (s,s) of CG(S) with
r<min(s,s’) and compute the connected com-
ponents with resp. to the remaining edges (Aho
et al. 1974, Chap. 5).

Since linear time suffices to compute the con-
nected components of a graph, we state

Lemma 4. Given the clustering graph CG(S) and
a real number r>0 then the optical clusters with
respect to separation parameter r and their num-
ber m(S,r) can be computed in time O(N).

However, who knows a suitable r?

Consider Fig. 1: If r is too small, then each line
segment might become a cluster of its own and
if r is too large then all line segments might
become one cluster. In fact, the knowledge of a
suitable r already includes nontrivial knowledge
about the structure of the picture. We might
know, however, that Fig. 1 contains about 4
objects or that the number of objects is between
say 3 and 6. N

Can we compute a suitable r with such knowl-
edge?

Let [a,b]<={l,...,N} be an interval denoting
the desired range of m(S,r). Given the task to
find the set R(a,b)cR with {m(S,r)/reR(a,b)}
=[a, b] we proceed as follows:

Since m(S,r) is monotone and decreasing with
respect to r (see Lemma 1) it is clear, that
R(a, b) is a closed interval [R(b), R(a)].

Let CG(S) have k edges and min,, ..., min, be
the values of their labels min(s,s’) in increasing
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sorted order then we have
m(S, min;) =2m(S, min,) > ... 2m(S, min,)
and

(V1=i<k,re[min;, min,, ,)): m(S,r)=m(S, min,).
Thus, R(a) and R(b) can be calculated using a
binary search strategy. Since m(S, ...) has to be
computed O(logk) times and keO(N) we get an
O(N log N) time complexity for this step, which
is dominated by the time complexity for the
computation of CG(S).

Summarizing this we get

Theorem 2. Given a set S of N disjoint line

segments in the Euclidean plane.

(@) The optical clusters with respect to a given
Separation parameter reR can be computed in
time O(N log? N).

(b) Given an interval [a,b] for the number of
optical clusters which we want to compute,
then time O(N log®N) [O(N log? N + CN)]
suffices to compute the interval [R(b), R(a)]
={reR/m(S,r)e[a,b]} [all C optical cluster-
ings with R(b)<r<R(a)].

Clustering other classes
of objects (in R?)

Since the construction of Voronoi diagrams is
crucial for Theorem 2 it can easily be general-
ized to sets of disjoint polygonial chains (with a
total number of N edges) and set of circles in
E? (Lee and Drysdale 1981). The results do also
hold for a class of different metrices in R?2
which is characterized in Lee and Drysdale
(1981).

For planar point sets and a large class of con-
vex distance functions (Chew and Drysdale
1985) Theorem 2 holds, too, but with all terms
‘Nlog? N’ replaced by ‘N log N, respectively.

Conclusion

The definition of optical clusters as given in this

paper has three advantages:

(1) It is an analytical definition (not an algor-
ithmic ie hierarchical specification) of a
clustering strategy which is of considerable
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interest in picture processing and related ap-
plicational fields and which allows efficient
computation.

(2) The clustering method can be efficiently ap-
plied to various classes of geometric objects
in the plane.

(3) Depending on the a priori knowledge about
the picture it is possible to chose a local
(distance between objects) as well as a glo-
bal (number of clusters) input parameter for
the control of the clustering process.
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