“Visual
Computer

Clustering methods
for geometric
objects and
applications to
design problems

F. Dehne and H. Noltemeier

Informatik I, University of Wiirzburg,
Am Hubland, D-8700 Wiirzburg,
Federal Republic of Germany

Clustering of geometric objects is a very
familiar and important problem in
many different areas of applications as
well as in the theoretical foundation of
some modern fields of computer sci-
ence. This paper describes how design
problems, especially the design of an
assembly line, can be transformed into
a clustering problem. In order to solve
the problem for large sizes of input
data we introduce a structure, called
Voronoi Tree, which applied to our real
world data (assembly line design) did
not only reduce the time to get a fea-
sible design of an assembly line
dramatically, but additionally increased
the value of the design by more than
30% (in comparison with standard de-
sign methods). In addition to this we
introduce a clustering method which is
of interest for those applications which
can be transformed to planar clustering
problems. In this particular case it is
possible to compute an (hierarchically)
optimized clustering with resp. to a
large class of clustering measures in
time O(nn''?log?n+ Up(n)nn'/?+ Fp(n))
[n: number of points; Ug(n), F(n) de-
pendent on the chosen clustering mea-
sure].

Key words: Computational geometry —
Clustering — Layout problems

lustering of geometric objects like
— sets of points in a wide variety of
different spaces

— sets of edges or polygons

— sets of polyhedrons or even more complex
‘geometric objects’ like ‘frames’ etc.
is a very familiar and important problem in
many different areas of applications as well as
in the theoretical foundation of some modern
fields of computer science (i.e. artificial intelli-
gence). By clustering we mean partitioning and/
or aggregation of sets of ‘geometric objects’
with respect to some given criteria (constraints,
objective functions etc.) which may be very sim-
ple in some circumstances but can be very com-
plicated in other cases which we will sketch
later on, too.
To give a first very special but common exam-
ple of aggregation and partitioning methods re-
member the well known convex hull operation
(Preparata and Hong 1977). Figure 1 illustrates
a set of points in the plane (a). A minimal
convex aggregation leads to the convex hull (b)
of the point set whereas a more sophisticated
(parameterized) modification generates the
shape hull (c) which in some cases gives us
more insight into the structure of the point set
(Edelsbrunner et al. 1981).
Very recently (Dehne 1985) significant advances
were done in the area of clustering more com-
plex objects (scenes of edges, polygons, polyhed-
rons, disjoint sets of compact objects in general,
etc.).
In general clustering of geometric objects is an
important tool for
— pattern recognition
— pattern matching
— image processing
— image understanding
— motion analysis
as well as for numerous layout and design
problems:
— VLSI placement problems
— board design
— design of assembly lines and manufacturing
processes in general et al.

Fig. 1

The Visual Computer (1986) 2:31-38 31
© Springer-Verlag 1986

— "Visual
Computer

In the following we will illustrate our ideas by a
(simplified) example of an assembly line design.
Section 2 will introduce the design problem,
which will be transformed into a geometric
framework in Sect. 3. To finally solve the prob-
lem we present a new structure called Voronoi
tree in Sect. 4 and summarize our experimental
results.

In the second part of our paper (Sect. 5) we will
briefly introduce one more clustering method
which is particularly important for those appli-
cations (some are listed above) which can be
transformed into planar clustering problems.
- This clustering method has the additional ad-
vantage that it generates an (hierarchically) op-
timized clustering with resp. to any given (ef-
ficiently computable) clustering measure.

2. A (simplified) design problem

In order to give the reader an idea how cluster-
ing methods can support the solution of design
problems let us try to illustrate our methods by
an example of an assembly line design.
Consider that a wide spectrum of products
(‘groups’) has to be assembled on an assembly
line and that each product consists of a multiset
of parts (‘elements’) which is a subset of one
large set of elements.

Let E={e,,...,e,} denote the set of all ele-
ments and G={g,,...,g,s the set of groups
(types of products). We assume that the pro-
duction data is given by a ‘Gozinto graph’
(which element belongs to which group) as il-
lustrated in Fig.2 with some integer values m;;
assigned to the arcs (which may represent the

e » g,
el N l92
e i
: g,
e
e ig,
Fig. 2

32

number of occurences of element e; in group g))
and some nonnegative weights h; assigned to
the groups (which may represent the frequency
of production of g; in the actual period). Some-
times additional “weights” of the elements have
to be taken into account (which may represent
the characteristic of the element with respect to
robot operation, etc.).

Our ‘real world’ data consisted of about m
=15,000 elements, n=2,500 groups, and some
hundred thousand edges in the Gozinto graph
(our experiences and results are summarized in
Sect. 4).

The design problem roughly is to distribute the
elements on ‘tables’ (manufacturing units which
can be handled by a person, a team, or a robot)
along the assembly line such that ‘highly paral-
lel” manufacturing is possible and the ‘output’
(in some precise sense) is maximized (obeying
limited amount of investment, cost of inventory,
etc.). ‘

More abstractly we have to find a suitable fam-
ily of subsets of E (the set of all elements) with
each subset representing those elements of E
which are ‘stored’ (and ‘handled’) on one ta-
ble.

In this paper we will restrict our attention to
the simplest case that every element is placed
on exactly one table, thus, we have to partition
E into disjoint subsets.

In the following we will briefly demonstrate
how to transform this problem into a more
“geometric” framework.

3. Transforming the design
problem into a geometric
framework

Let E={e,,...,e,} be a nonempty finite set (of
elements), G:={g,,...,g,} (g <E) a family of
subsets of E, and G;:={g;eG/e;eg;} the set of
all subsets which contain e;, with [’G,.l denoting
the cardinality of G,.

With this we can state the following

Theorem 3.1. The mapping d: E*—>R, defined
by d(e;,e):=|G|+1G;|=2|G;nG,| generates a
quasi metric on E.

Tl

This means that (for all e,e’,e”€E):

— d(e,e)=0

— d(e,e')=d(e',e) (symmetry)

— d(e,e")<d(e,e')+d(e,e")
(triangle inequality).

However, it may happen in quasi metric spaces
that there are two different clements e,e'eE
with d(e,e’)=0, since, if eeg,<e'eg, for all
2,€G, then d(e,e’)=0.

Theorem 3.2. If h: G—R_ is any nonnegative
real wvalued function then the mapping d,:
E*> >R, defined by

dyle,€):=) h(g)+ Y h(g) =2) h(g)

eeg e'eg e,e'eg

generates a quasi metric on E.

Remarks

1. h has to be chosen adequately with respect to
the specific problem and may fe. regard to
the frequency of production, characteristic of
robot operation, etc.

2. Given additionally a nonnegative edge-
weight w: ExG— R, then the analogous

mapping
d,, w(e,€): =3 wle,g)h(g)

eeg

+ Y w(e,) h(g)

e'eg

— ¥ [Owle,g)+w(eg) h(g)]

e,e’eg
in general does not fullfill the triangle in-
equality even for h=1 (see Noltemeier (1985)
on how to avoid this problem).

4. Using Voronoi trees
to solve clustering problems
in quasi metric spaces

This section will present a new data structure
called Voronoi tree to support the solution of
proximity problems in general quasi-metric
spaces with efficiently computable distance
functions.

We will analyse some structural properties and
report experimental results showing that Vo-
ronoi trees are a proper and very efficient tool

Visual —
Computer

for the representation of proximity properties
and generation of suitable clusterings.

Only very few papers on clustering in such gen-
eral spaces have been published yet.

Let E be an arbitrary space, d: E>—> R, a map-
ping which induces a quasi metric on E (which
is computable efficiently). We are given a finite
set S={e,,...,e,} of “points” of E and we first
will represent this set S by a binary tree (called
‘bisector tree’ or ‘bs-tree’ for the remaining of
this paper) in the following way (see Kalantari
and McDonald 1983):

(i) each node of the actual tree T (representing
the actual set S;:={e,,...,e;}, 0<i<n) con-
tains at least one (p;) and at most two ele-
ments (p;, and pg) of S,.
(ii) to insert a new element ¢;, , into T; (yielding
T;, ,) start at the root node of T; as follows:
—if the actual node v contains only one
element then insert e;, , into v

—if (otherwise) v contains two elements p,
and p, then recursively
insert e;, , into the left subtree (which has
root p;) if d(e;, 1, py)<d(e;,1,Pr)
or into the right subtree (which has root
pg) if d(e; .y, pr)<d(e;,1,PL)
and arbitrarily if the distances are
equal.

To support nearest neighbor queries each node

v of the bs-tree T storing two elements p;,pg

with left subtree T, and right subtree T; ad-

ditionally stores the following two values:

1772
Fig. 3

33

— "Visual
Computer

LRADIUS(v): =max{d(p, p.)/p is stored in T} }
(left radius of v)

RRADIUS(v): =max {d(p, pg)/p is stored in Ty}
(right radius of v).

Thus, given a query point PeE and a bs-tree
representing a set ScE in order to search for
the nearest neighbor of P in S, the search pro-
cess can prune the left [right] subtree 7} [T;] of
an actual node v if

(*) d(P,B)—LRADIUS(1)=DACTUAL
[d(P, B)— RRADIUS (v)= DACTUAL]

holds with DACTUAL denoting the distance of
P to its actual nearest neighbor in S (see Kalan-
tari and McDonald 1983).

However, we have to state the following re-
marks:

(R1) A son may have larger radia than his fa-
ther (‘eccentric son’).

(R2) There are cases in which a bs-tree has to
be searched exhaustively even if we con-
sider only balanced bs-trees (having loga-
rithmic height).

(It is easy to construct examples for such cases
even in E? and is left to the reader.)

To overcome some disadvantages of bs-trees let
us introduce ‘Voronoi trees’.

A Voronoi tree (VT) which represents S is a
ternary tree with each node representing at least
two and at most three points of S. To insert a
new point into a VT we proceed in essentially
the same way as described above but with the
following difference:

bisector B(PM R

Fig. 4. Voronoi-tree

34

(**) If a new leaf v has to be created in order
to store a new point P and Q is P’s nearest
neighbor of the (three) points stored in the
father node of v, then Q (redundantly) has
to be stored in v, too (see Fig. 4).

With this we can prove the following

Theorem 4.1
1. Voronoi trees do not have eccentric sons.

2. A Voronoi tree is transitive in the following
sense:
d(P, father(P))=min {d(P, P')/P’eancestors(P)}
(with ancestors(P) denoting the set of all ele-
ments stored in those nodes which are on the
path from the root to P).

3. If we search for nearest neighbors of points
which are stored in the root node, then this
search is possible in time O(h) with h denoting
the height of the tree.

Proof. Part 1 follows immediately from the defi-
nition of Voronoi trees where we have to dis-
tinguish LRADIUS(v)), MRADIUS(v), and
RRADIUS(v), respectively. Part 2 and 3 are a
consequence of (k).

Remark. The term ‘Voronoi tree’ is chosen due
to the fact that all triples of bisectors exactly
determine the vertices of all order k Voronoi
diagrams (Dehne 1983; Shamos and Hoey
1975).

Now, we will present experimental results to
demonstrate that Voronoi trees can be ef-
ficiently used to represent proximity properties
in quasi metric spaces (in general no linear
spaces) and especially that VTs are an efficient
tool for the solution of clustering problems.
Our test data were taken from two very dif-
ferent areas:

1. Randomly generated points in the unit cube
of the d-dimensional real space RY with L,-
norm (with d=2,3,4,5 and p=1,2,)

2. Real production data in order to support the
design of an assembly line (see Sect. 2):
A set of 15,000 elements and three different
quasi metrices which were induced by a given
Gozinto graph and some other superponing
effects alternatively gave the basis for our
field experiments.

In each case the Voronoi tree was constructed

(with a wide range of different parameters and

t “Visual
Computer

number of points in the first environment) and
the computation time, storage requirement, - ',
heights of the VT3, scattering of the heights of the . v
leafs, etc. was analysed and compared with ex- T, S
perimental results from bs-trees and ternary bs- TR v
trees (bs-trees with at most 3 points stored in : ‘ 3
each node but without condition (**), k=3 in LA }
Kalantari and McDonald 1983). D =.01 D=.05 i
Additionally, the VT could be modified by
choosing some rule how to place a copy of a

father Q in his son node with respect to con- ; £ : !
dition (), i.e. fixed place, cyclic placement dur- ! b 3
ing the construction process, randomly chosen, i 4 : 53-
or “at the same place as in the father node” i 5 i
(hereditary property). { +t } {
We furthermore studied how the order in which ; £ A o
the points are inserted into the VT influences 3 E i
the final result, especially some (dynamic) self- 3 ' ! 5,

organizing principles.

The following figures illustrate a small but typi-
cal sample from our test series.)
Similar to this series (with relatively small sam- Ny
ple set) our test series in the second environ- A
ment showed that the time required to con-
struct a Voronoi tree is much smaller than the
time needed to build a bs-tree or ternary bs-

tree.) D=.99
This result is due to the fact that Voronoi trees b=75 D=.95 ;
'showed to be balanced much better than bs- § ;
trees which was expectable from Theorem i i i

4.1. i
The following table states some experiences ‘i_
with our large scale assembly line design prob- i

lem (Sect. 2) and examplifies our general experi- b ':'sa)
mental results: i ¥ ;
Gozinto-Graph (see Dehne and Noltemeier ¢ i :

1985¢; Noltemeier 1985) containing]
Fig. 6. Comparison of the height of bs-trees (upper

14,457 elements diagrams) and Voronoi-trees (lower diagrams). D: den-
2,259 groups . sity of edges in the Gozinto-graph
54,735 edges (density D =0.00168)

oz
- lb-o -, . Q.
P S g N S S U IV NI SRS Sy Ey
' X JON x - - — - - -
- 0
—_ - . ,- - - e s e eee s - . - .o o—-‘.... - " '. '- 9

Fig. 5. Voronoi-tree (representing 1,000 points from R?, L,-metric): Heights of leafs (upper part), heights of first
occurrence of the father corresponding to the leaf (lower part)

35

— Visual

omputer
ms-tree Voronoi tree*
Construction time in- CPU sec 513 35
Number of leafs 1,512 4273
Minimum height of leafs 5 5
Maximum height of leafs 1,211 16
Average height of leafs 427.27 10.24

* with hereditary property

It is obvious that subtrees of a Voronoi tree
represent subsets of points with certain proxim-
ity properties (with resp. to the chosen quasi
metric of course).

How good these proximity properties are repre-
sented by Voronoi trees is exemplified in Fig. 7.
(Here by a cluster we mean an arbitrary subset
of the set S which is represented by VT A
clustering is a disjoint partition and cover of S.
The diameter of a cluster is defined to be the
maximal distance of points in the cluster. There
are usually some additional constraints such as
upper and lower bounds on the size or number
of clusters. See Dubes and Jain (1980) for more
details about clustering.)

Applied to our real world problem (assembly
line design) the use of Voronoi trees did not
only reduce the time to get a feasible design of
an assembly line dramatically, but additionally
increased the value of the design by more than
309 (in comparison with standard design
methods).

5. Optimized hierarchical
clustering of planar point
sets using generalized
Voronoi diagrams

In this Section we will briefly introduce one
more clustering method which is particularly
important for those applications which can be
transformed into planar clustering problems.
This clustering method has the additional adven-
tage that it generates an (hierarchically) opti-
mized clustering with resp. to any given (ef-
ficiently computable) clustering measure.

5.1. Basic definitions and properties

Several clustering methodologies (e.g., our
above method, see also Dubes and Jain (1980)
for other methods) select cluster centers from S
assigning the remaining points to their nearest
cluster center (consult Dubes and Jain (1980)
for more details).

We extend this to the following

Definition 5.1

(@) A cluster S;=8S is called “centralized”, if
there exists a center xeR? with S; being the set
of s; nearest neighbors of x with respect to S.
(Let s;:=|S;| for the remaining of this paper.)

(b) A C-clustering (S, ...,Sc) of S is called cen-
tralized, if all S; (1<i< C) are centralized.

n
O Number of Clusters

- -
o w
1 1

[3,]
J
-
%
1
- <‘>‘_
3
=
-
N\,
<
? el
r-
£
Y
-
-L/
et 3
o
-
"
.
N

L.

5,000 points in E>, cluster size between 30 and 50

Fig. 7. Distribution of the diameters of clusters induced by Voronoi-trees (a) and randomly generated (b). Sample set:

55 Cluster Diameter

36

(c) A C-clustering (S, ...,Sc)of Sis called * balan-
ced”, if for all 1Zi<j<C: |s;—s;|<1 (This is
the most interesting case in practice).

Let v,(S;,S) be the order k Voronoi polygon of
some S;SS (k=s;) and V,(S) be the order k
Voronoi diagram of S (Shamos and Hoey 1975;
Lee 1981). We shall call S; the “label” of the
Voronoi polygon v,(S;,S). Using the notations
of Shamos and Hoey (1975), Lee (1981) and
Dehne (1983)

Lemma 5.1

5.1.1. S, S is a centralized cluster if and only if
S, is the label of some Voronoi polygon
0 (S, S)*{ }

5.1.2.(S,,...,S) is a centralized C-clustering if
and only if all S; (1<i<C) are labels of some
Voronoi polygon of some Voronoi diagram V,(S)
and S is the disjoint union of Sy,..., S,

5.1.3. (S,...,S¢) is a balanced centralized C-
clustering of S if and only if all S; (1Si<C) are
labels of some Voronoi polygon of Vi,c/(S) or
Viwci(S) and S is the disjoint union of S4,..-,S¢.

Thus, a centralized C-clustering is a selection
of disjoint labels of Voronoi polygons. This
leads to the idea, to use the geometric proper-
ties of Voronoi diagrams for the design of clus-
tering methodologies.

5.2. Divisive hierarchical clustering
of planar point sets

Using our above definitions a (C-nested) di-
visive hierarchical clustering is a nested se-
quence of C-clusterings (which we will call clus-
tering steps) successively decomposing S into
smaller subsets as demonstrated in Fig. 8.
(S1,5,) (S115S12) (S51,85,).is a 2-clustering of
S, S,,S, respectively

s, S,
ANEAN

SIISIZ S21S22

We shall call a divisive hierarchical. clustering
centralized (balanced), if all clustering steps are
centralized (balanced).

"Visual —
Computer

This Section will demonstrate the relationships
between order k Voronoi diagrams and 2-nes-
ted centralized divisive hierarchical clustering.

Definition 5.2. Two disjoint Voronoi polygons
vp, and vp, are “opposite” to each other, if
there are two nonparallel straight lines g and g’
each containing two disjoint rays r,, r, and
r,,r,, respectively, with r,ricvp, and
r,,r,cvp,. (Note that opposite Voronoi po-
lygons are always open.)

With this definition we prove the following lem-
mata:

Lemma5.2. Let a, b be two positive integers
with a+b<n, a=|S,|, b=IS,| and v,(S;,5),
0,(S,,S) two nonempty Voronoi polygons which
are opposite, then S, and S, are disjoint.

Lemma 5.3. Let a, b be two positive integers with
a+b=n, a=|S,|, b=I|S,| and v,(S,S), v,(S,,5)
two Voronoi polygons with S being the disjoint
union of S, and S,, then v,(S;,S) and v,(S,,S)
are open and opposite.

Summarizing this, we have

Theorem 5.1. The set of all centralized 2-cluster-
ings (S4,S,) of S with |S;|=a and |S,|=b is
exactly the set of all pairs of labels of opposite
Voronoi polygons v,(S;,S) and v,(S,,S) of V,(S)
and V,(S) respectively.

Because every S, <S has exactly one comple-
ment S,=S-S,, it follows immediately, that
every open order k Voronoi polygon v,(S;,S)
has exactly one opposite order n—k Voronoi
polygon, thus the four bounding rays of these
two polygons having pairwise exactly opposite
direction.

This is an interesting property of order k Vo-
ronoi diagrams, which appears to be new.
Consider the problem of constructing an op-
timal centralized 2-clustering (S,,S,) of S with
respect to some clustering measure f(S;,S;)€R
and |S,|=k, |S,/]=n—k. We assume a given
algorithm F, which is able to compute f(S;,5,)
in time B, (n) and exchange exactly one element
of S, and S,, respectively, in Ug(n) steps (even-
tually using heraditary properties). The follow-
ing steps are appropriate to solve the problem:

37

i

“Visual —
Computer

1. Compute all open order k (and n—k) Vo-
ronoi polygons sorted by the angle of their
bounding rays (respectively). (There are
O(nk'?) such polygons; see Theorem 5.1,
Lemma 5.4 and Edelsbrunner and Welzl
1982a).

2. Follow exactly one revolution of a rotating
line pointing at the current pair of opposite
Voronoi polygons and select the optimal one
with respect to f, computing O(n k'/?) updates
using F.

From Edelsbrunner (private communication),

Edelsbrunner and Welzl (1982a,b) we know

Lemma 5.4. The open polygons of V,(S) can be
computed in time O(nk''? log? n).

Since we obtain a centralized divisive hierarchi-
cal clustering by a successive application of this
procedure we get

Theorem 5.2

(a) An optimal centralized 2-clustering can be
constructed in O(nn'?log?n+ Ug(n)nn'’?
+ Fy(n)) steps.

(b) An optimal centralized divisive hierarchical 2-
clustering can be constructed in O(nn'/*log*n
+ Up(n)nn'/? + By(n)) steps.

Thus, allowing cluster centers to be arbitrary
points of R? gives us the possibility to apply
the geometric structure of order k Voronoi dia-
grams as an interesting tool for solving cluster-
ing problems for planar point sets.

References

Day WHE, Edelsbrunner H Efficient algorithms for agglo-
merative hierarchical clustering methods. Report F122,
Institut fiir Informationsverarbeitung, TU Graz, Graz,
Austria N

Dubes R, Jain AK (1980) Clustering methodologies in
exploratory data analysis. In: Yovits MC (ed) Adv
Comput. 19:113-228

Dehne F (1983) An O(n*) algorithm to construct all Vo-
ronoi diagrams for K nearest neighbor searching in the
euclidean plane. Proceedings of the 10th International
Colloquium on Automata, Languages and Program-
ming (ICALP '83), Barcelona, Spain. Lecture Notes in
Comput Sci, no 154

38

Dehne F (1986) Optical clustering. The Visual Computer
2:39-43

Dehne F, Noltemeier H (1985a) Clustering geometric ob-
jects and applications to layout problems. Proc Com-
put Graph. Springer, Tokyo

Dehne F, Noltemeier H (1985b) A computational geome-
try approach to clustering problems. Proceedings of the
1st ACM Siggraph Symposium on Computational Ge-
ometry, Baltimore, MD, USA

Dehne, F, Noltemeier H (1985¢) Voronoi trees and clus-
tering problems. Rep Inf I, Wiirzburg

Dehne F, Noltemeier H (1985d) Clustering geometric ob-
jects and applications to layout problems. In: Kunii
TL (ed) Computer graphics — visual technology and
art, Springer, Tokyo

Edelsbrunner H (private communication)

Edelsbrunner H, Kirkpatrick DG, Seidel R (1981) On the
shape of a set of points in the euclidean plane. Rep
F71, Institut fir Informationsverarbeitung, TU Graz,
Graz, Austria

Edelsbrunner H, O’Rouke J, Seidel R (1983) Constructing
arrangements of lines and hyperplanes with appli-
cations. Rep F123

Edelsbrunner H, Welzl E (1982a) On the number of line-
separations of a finite set in the plane. Rep F97

Edelsbrunner H, Welzl E (1982b) Halfplanar range esti-
mation. Rep F98

Edelsbrunner H, Welzl E (1983) Halfplanar range search
in linear space and O(n°°°%) query time. Rep F111

Kalantari, I, McDonald G (1983) A data structure and an
algorithm for the nearest point problem. IEEE Trans-
actions on Software Engineering, vol. SE-9, no 5

Lee DT (1981) An approach to finding the K-nearest
neighbors in the euclidean plane. Rep Dept Electric
Engin Comput Sci, Northwestern Univ, Evanston, 11
60201, USA

Murtagh F (1983) Expected-time complexity results for
hierarchic clustering algorithms which use cluster cen-
ters. Inf Process Lett 16:237-241

Noltemeier, H (1985) Distances in hypergraphs. Report,
Inf. I, Wiirzburg

Overmars MH, Van Leeuwen J (1981) Maintenance of
configurations in the plane. J Comput Syst Sci, vol
23:166-204

Page RL (1974) A minimum spanning tree clustering
method. Commun ACM 17:321-324

Preparata FP, Hong SJ (1977) Convex hulls of finite sets
of points in two and three dimensions. Comm ACM
20:87-93

Rohlf FJ (1973) Hierarchical clustering using the mini-
mum spanning tree. Comput J 16:93-95

Schrader R (1983) Approximations of clustering and sub-
graph problems on trees. Discrete Appl Math 6

Shamos MI, Hoey D (1975) Closest point problems. Proc.
16th Ann. IEEE Symp Found Comp Sci

Willard DE (1982) Polygon retrieval, SIAM. J Comput
11:149-165

Yao FF (1983) A 3-space partition and its application
(Extended Abstract), Proc 15th ACM Symp Theory
Comp

