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Consider a set S of n points in the Euclidean plane. We obtain efficient parallel algorithms for the following two problems:
(i) compute the contour spanned by the maximal elements of S, and (ii) compute the number of dominated points for every
element of S (ECDF searching problem). Both algorithms run in O(n'/?) time on a mesh of n processors, which is
asymptotically optimal since any nontrivial computation requires £(n'/?) time on the mesh. The algorithms can be generalized
to solve the d-dimensional maximal elements and ECDF searching problem in O(n'/?*'°22(4=2)) (d > 2) time.
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1. Introduction

Chazelle [1] has recently studied the parallel
complexity of a number of problems in computa-
tional geometry. In this paper we explore two
further problems from a similar point of view for
implementation on a mesh of processors. A mesh-
connected parallel computer of size n is a set of n
synchronized processing elements (PEs) arranged
in a vn Xyn grid. Each PE is connected via
bidirectional unit-time communication links to its
four neighbors, if they exist (see Fig. 1).

Each processor has a fixed number of registers
and can perform standard arithmetic and compari-
sons in constant time. It can also send the contents
of a register to a neighbor and receive a value from
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Fig. 1. A mesh-connected parallel computer of size 16.

a neighbor in a designated register in O(1) time
units. Each PE in the leftmost column has an I/0
port. Thus, we can ‘load’ S in O(n'/?) time units
such that each processor contains exactly one arbi-
trary point of S.

We may think of these processors as individual
VLSI chips or several chips each containing some
part of the grid on a circuit board (cf. [4,9]).

The problems considered from computational
geometry are the following. Let S = {s;,...,s,} be
a set of n points in the Euclidean plane. (To
simplify the exposition of our algorithms we as-
sume that n = 4* for some integer k and all points
have distinct x- and y-coordinates.)

Given a point p, p.x and p.y denote the x- and
y-coordinate of p, respectively.

Definition 1.1. A point q dominates a point p,
written p < q, iff p.x < q.x and p.y < q.y. A point
s €S is called maximal if there is no other s’ €S
with s < s'.

We are interested in computing the contour
spanned by the maximal elements of S, called the
m-contour of S.
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From a more general point of view, maximal
element determination is a special case of the
ECDF searching problem. The ECDF searching
problem consists of computing for each p € S the
number D(p, S):= |{q€ S|q<p}|. (D is called
the ‘empirical cumulative distribution function’.)

It is well known that the time complexity for
computing the maximal elements and the m-con-
tour is 8(n logn) using a sequential computer (see
[3]). The ECDF searching problem has the same
time complexity 8(nlogn) on a standard com-
puter. Consult [7] for more details and applica-
tions (see also [6]).

In this paper we will give efficient algorithms
for solving both problems on a mesh of n
processors (with a constant number of registers for
each processor) in O(n'/?) time.

2. Computing the maximal elements and the
m-contour

We use the well-known divide-and-conquer ap-
proach (cf. [4,8,9]) for computing the maximal
elements of S on a mesh of n processors.

It is assumed that every processor of the mesh-
connected computer contains exactly one arbitrary
point of S. Each PE also has a boolean register
MAXEL which denotes whether the point stored in
this PE is a maximal element or not. The register
MAXEL is initialized to ‘false’ for all PEs.

The preprocessing consists of sorting S accord-
ing to the x-coordinate of the points, using a
sorting technique of Thompson and Kung [8].
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Since Thompson and Kung’s algorithm computes
a snake-like ordering of the points of S on the
mesh-connected computer (see Fig. 3 on page 305),
we can assign to each point the rank of this sorted
order (called x-index in the remaining of this
paper) in O(n'/?) time units.

The m-contour will be represented as follows:
every processor has a register NEXTEL such that,
when it contains a maximal element, NEXTEL con-
tains the x-index of the next point of the m-con-
tour.

Algorithm A. Divide S into two disjoint subsets L
and R of equal size with £.x < r.x for all € L and
r€R (see Fig. 2) by computing the minimum
(min _ind) and maximum (max _ind) x-index of all
points of S (which takes O(n'/?) time units, cf. [4])
and broadcasting med_ind = }(min_ind +
max _ind) to all PEs. Now, every PE knows whether
its point belongs to L or R and the mesh of
processors can shift all points of L and R to its left
and right half, respectively, and (recursively) solve
the problem for L and R in parallel.

In order to combine the solutions of both sub-
problems and solve the problem for L UR, the
processor containing a point p € R with minimum
x-index (x_min) with respect to R broadcasts Py
and x_min to all other PEs. All processors con-
taining a point t € L that is maximal with respect
to L but ty<p.y set their MAXEL register to
‘false’ and the processor containing the point g € L
with q.y > p.y and maximum x-index with respect
to {/€L|/y>p.y} sets its NEXTEL register to
X _min.
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Theorem 2.1. Algorithm A computes the maximal
elements and the m-contour of a set of n points in
O(n'/?) time.

Proof. Sorting n points takes O(n'/?) time as
described in [8]. Maximum/minimum determina-
tion, broadcasting, communication between two
PEs, and data compression (moving the points of
L and R into two subgrids of equal size) also takes
Om'/?) time units. (For more details, consult
[4,8,9].) Using T(n) to denote the time complexity
of our algorithm, we get the following recurrence
formula:

T(n) < T(3n) + ¢ n'/2.

Hence, T(n) = O(n'/?). O

3. The ECDF searching problem

In addition to computing the empirical cumula-
tive distribution function D(p, S):= |{q€ S|q <
p} | we shall also compute the function B(p, S) :=
[{9€S|q.y <p.y}|, i.e., the number of points
‘below’ p (for all p€S). The mesh-connected
computer is initialized as before and the same
preprocessing (sorting and computation of x-in-
dices) is used as described in Section 2. In this
case, the two registers MAXEL and NEXTEL of each
processor used by Algorithm A are replaced by
two registers D and B. These registers store the
current value of the functions D and B. Initially,
they are both set to zero. Each PE has two ad-
ditional registers STATUS and VALUE and all PEs
in the leftmost column have three more registers
called READY, Row_StATUS and Row_VALUE.

Algorithm B. The structure of Algorithm B is
essentially the same as for Algorithm A. Therefore,
we shall only describe how to combine the solu-
tions for two subsets L and R of S with Zx <rx
for all /€ L and r € R in O(n'/?) time.

The final result of this procedure will be the
following:

(1) D(¢,S)«<D(¢,L) forall /€L,
(2) D(r, S) < D(r,R)
+max{B(¢,L)|Z.y <r.y}
forallreR,
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Fig. 3. Snake-like ordering of a mesh-connected computer.

(3) B(¢,S)«< B(4,L)
+max{B(r, R) |r.y <?Z.y}
for all /e L,
(4) B(r,S)«< B(r,R)
+max{B(¢,L)|/.y<r.y}
forallreR.

To compute D(r, S) for all r € R (steps (3) and (4)
can be implemented in essentially the same way)
we first sort S according to the y-coordinates of its
points (using the algorithm of Thompson and Kung
[8]) and assign to each point its rank (called y-in-
dex) of this order. After this step, all points of S
are sorted in a snake-like row-major indexing (see
Fig. 3). Since for all r € R the number
max{B(Z, L)|Z.y <r.y} is exactly B(¢, L) of the
point /€ L with maximum y-index and below r,
the simultaneous computation of B(r, S) for all
points r € R can be implemented as follows (see
Fig. 4):

Each PE stores B(¢, L) into, its VALUE register
and sets STATUS := 1 if it contains a point /€ L or
the point with lowest y-index, otherwise both reg-
isters are set to zero. Each row of PEs computes
the maximum of its STATUS (VALUE) registers and
stores it into the ROow_STATUS (ROW_VALUE) reg-
ister of its leftmost PE, respectively. Then all left-

Fig. 4. Processors containing points of L (M) and R (O) in a
snake-like ordering.
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most PEs with Row_STATUS = 1 sent the contents
of their ROwW_VALUE register upwards to PEs in
the leftmost column with Row_STATUS = 0. Now
at least one PE of each row has the correct value
max{B(¢, L)|£.y <r.y} stored in its VALUE reg-
ister. Thus, all B(r, S) can be computed simulta-

neously by shifting around these data in each Tow

of PEs, respectively.

Theorem 3.1. Algorithm B computes all values of
the empirical cumulative distribution function
D(p, S) in O(n'/?) time.

Proof. Passing the B(¢, L) upwards through the
snake-like ordering would surely produce a correct
answer, too. However, it could take more than
8(n'/?) time units since there might be several rows

of PEs containing only points of R. This algonthm '

does essentially the same but only needs on'’?)
time since it detects such rows of PEs and passes
the information upwards through the leftmost col-
umn of PEs first. Thus, Algorithm B has the same
asymptotic time complexity as given for Algorithm
A. O '

4. Generalization to higher dimensions
To solve the maximal elements and ECDF

searching problem in d-dimensional Euclidean
space simply introduce one more divide-and-con-
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quer step for each additional dimension and use
the same algorithms as described in Sections 2 and
3 to combine the solutions of the subproblems.
This yields algorithms running in O(n'/>*+'%82(4=2)
(d > 2) time, which is asymptotically optimal for
d =3, too.
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