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Abstract—This paper presents a new data structure called Voronoi trees to support the solution of
proximity problems in general quasi-metric spaces with efficiently computable distance functions. We
analyze some structural properties and report experimental results showing that Voronoi trees are a proper
and very efficient tool for the representation of proximity properties and generation of suitable clusterings.
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1. INTRODUCTION

Cluster analysis is a familiar technique not only in the
field of pattern recognition, but is very important in
other domains too, especially in information re-
trievel. It may be characterized by the use of resem-
blance or dissemblance measures between objects to
be identified. The objective of a cluster analysis is to
uncover natural groupings, or types, of objects [1,2].

In this paper we are concerned with the problem of
how to support proximity and clustering problems in
quasi-metric spaces.

A set E is called quasi-metric space if there is a
distance function d:E? - R, with the following prop-
erties (for any e,e’,e" € E):

(1) d(e,e)=0;

(2) d(e, e’) = d(e’, e) (symmetry);

3) d(e,e”")<d(e,e’)+d(e’, e")
equality).

(triangle  in-

However, it may happen in quasi-metric spaces that
there are two different elements e,e’€ E with
d(e,e’) = 0. Most of the literature of nearest neigh-
bor problems is dealing with finite dimensional real
spaces with some L, norm—very few are considering
more general spaces.

One of these few more general approaches is the
recent work of Kalantari and McDonald [3]. The
data structure they propose is a straightforward
generalization of binary search trees (wh:ch can
support nearest neighbor search in E') and is appli-
oable to any normed space if the norm is computable
offectively. The next section will briefly summarize
their approach but will also point out some disadvan-
tages. In section 3 we propose a slightly different
structure (which we call “Voronoi tree”) which,
however, will show significant structural advantages.
Some experimental results will be stated in Section 4.
Due to their structural advantages it turned out that
Voronoi trees are a proper and very efficient tool for
the representation of proximity properties and solu-
tion of clustering problems. .

1

2. BISECTOR TREES

Let E be an arbitrary space, d:E2— R, a mapping
which induces a metric on E, and S={¢,,...,¢,} a
finite point set in E [3]. Represent S using a binary
tree (called “bisector tree” or “bs-tree” for the re-
mainder of this paper) as follows:

(a) each node of the actual tree T, (representing the
actual set S;:={e,,..., ¢}, 0<i<n) contains at
least one (p.) and at most two elements (p_ and pg)

. of §;

(b) to insert a new element e, , into T, (yielding
T,, ) start at the root node of T, as follows:

—if the actual node v contains only one element
then insert e, into v;

—if (otherwnse) v contains two elements p. and
pr then recursively insert e, into the left
subtree (which has root p;) if d(e,,;,p) <
d(e;,, pr), or into the right subtree (which
has root pg) if d(e;,,Pr) <d(e/,y,p) and
arbitrarily if the distances are equal.
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To support nearest neighbor queries each node v of
the bs-tree T storing two elements p,, pg Wwith left
subtree T, and right subtree Ty additionaly stores the
following two values:

LRADIUS(v): = max{d(p, p.)/p is stored in T, } (left
radius of v);

RRADIUS(v): = max{d(p, pg)/p is stored in Tg}
(right radius of v).

Thus, given a query point PeE and a bs-tree
representing a set Se E in order to search for the
nearest neighbor of P in S, the search process can
prune the left [right] subtree T, [Tg] of an actual node
v if
(*) d(P, P.) — LRADIUS(v) > DACTUAL
[d(P, Pr) — RRADIUS(v) > DACTUAL]

holds with DACTUAL denoting the distance of P to

its actual nearest neighbor in S (for more details see

(3D-

However, we have to state the following remarks:

(i) a son may have larger radia than his father
(““eccentric son”)

(ii) there are cases in which a bs-tree has to be
searched exhaustively even if we consider only bal-
anced bs-trees (having logarithmic height).

(It is easy to construct examples for such cases even
in E? and is left to the reader.)

3. THE VORONOI TREE (VT)

To overcome some disadvantages of bs-trees let us
introduce “Voronoi trees”. Let E be any quasi-metric
space (with distance function d) as described in
Section 1, and S be a finite subset of E.

A Voronoi tree (VT) which represents S is a ternary
tree with each node prepresenting at least two and at
most three points of S—the root node of course
additionally is allowed to represent only one element
too. To insert a new point into a VT we proceed in
essentially the same way as described in Section 2 but
with the following difference:

(**) If a new leaf v has to be created in order to store
a new point P and Q is P’s nearest neighbor of the
(three) points stored in the father node of v, then Q
(redundantly) has to be stored in v, too (see Fig. 2).

With this we can prove the following

Theorem

(1) Voronoi trees do not have eccentric sons.

(2) A Voronoi tree is transitive in the following
sense: d[P, father(P)]=min{d(P, P’)/P’e ances-
tors(P)} [with ancestors(P) denoting the set of all
elements stored in those nodes which are on the path
from the root to P).

(3) If we search for nearest neighbors of points
which are stored in the root node, then this search is
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Voronoi - tree :

possible in time O(h) with h denoting the height of
the tree.

Remark: The term “Voronoi tree” is chosen due to
the fact that all triples of bisectors exactly determine
the vertices of all order k Voronoi diagrams (cf. [4,5]).

4. EXPERIMENTAL RESULTS

In this section we will present experimental results
to demonstrate that VT-trees can be efficiently used
to represent proximity properties in quasi-metric
spaces (in general no linear spaces) and especially that
VT-trees are an efficient tool for the solution of
clustering problems.

Our test data were taken from two very different
areas:

(1) randomly generated points in the unit cube of
the d-dimensional real space R? where the metric can
be chosen from arbitrary L, norm (e.g. d =2,3,4,5
and p =1,2,0);

(2) a set of 15,000 elements and three different
quasi-metrices which were induced by a given
Gozinto graph (see [6,7]) alternatively gave the basis
for our field experiments.

In each case the Voronoi tree was constructed
(with a wide range of different parameters and num-
ber of points in the first environment) and the
computation time, storage requirement, height of the
VT-tree, scattering of the heights of the leafs, etc. was
analyzed and compared with experimental results
from bs-trees and ternary bs-trees (bs-trees with at
most 3 points stored in each node but without
condition (**), k =3 in [3)).

Additionally, the VT could be modified by choos-
ing some rule how to place a copy of a father P’ in
his son node with respect to condition (**), i.e. fixed
place, cyclic placement during the construction, ran-
domly chosen, or “at the same place as in the father
node” (hereditary property).
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Fig. 4. Comparison of the height of bs-trees (upper-diagram) and Voronoi-trees (lower diagram). D:
density of edges in the Gozinto-graph.
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Table 1. Gozinto-graph (see [6,7]) containing 14,457 elements, 2259 groups and
54,735 edges (density D = 0.00168)

bs-tree Voronoi tree*
Construction time (CPU, s) 513 35
Number of leafs 1512 4273
Minimum height of leafs 5 5
Maximum height of leafs 1211 . 16
Average height of leafs 427.27 10.24
*With hereditary property.
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Fig. 5. Distribution of the diameters of clusters induced by Voronoi-trees (a) and randomly generated (b).
Sample set: 5000 points in E*, cluster size between 30 and 50.

We furthermore studied how the order in which the
points are inserted into the VT-tree influences the
final result, especially some (dynamic) self-organizing
principles.

The figures illustrate a small but typical sample
from our test series.

Similar to this series (with relatively small sample
set) our test series in the second environment showed
that the time required to construct a Voronoi tree is
much smaller than the time needed to build a bs-tree
or ternary bs-tree. This result is due to the fact that
Voronoi trees showed to be balanced much better
than bs-trees which was expectable from the theorem.
Table 1 states some experiences with our large scale
real world data (environment 2) and exemplifies our
general experimental results.

Applied to our test data the use of Voronoi trees
did not only reduce computation time dramatically,
but did also induce feasible clusterings of large point
sets in quasi-metric spaces. It showed that subtrees of
a Voronoi tree represent subsets of points with
certain proximity properties (with respect to the
chosen quasi-metric of course). How good these
proximity properties are represented by Voronoi trees
is exemplified in Fig. 5.
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