g Yo |
— Visual

Computer

Translation
separability of
sets of polygons

Frank Dehne
and Jorg-Ridiger Sack *

School of Computer Science, Carleton University,
Ottawa, Canada K 1S 5B6

We consider the problem of separating a
set of polygons by a sequence of transla-
tions (one such collision-free translation

motion for each polygon). If all transla- -

tions are performed in a common direction
the separability problem so obtained has
been referred to as the uni-directional se-
parability problem; for different transla-
tion directions, the more general multi-di-
rectional separability problem arises. The
class of such separability problems has
been studied previously and arises e.g. in
computer graphics and robotics. Existing
solutions to the uni-directional problem
typically assume the objects to have a cer-
tain predetermined shape (e.g., rectangular
or convex objects), or to have a direction
of separation already available. Here we
show how to compute all directions of uni-
directional separability for sets of arbitrary
simple polygons.

The problem of determining whether a set
of polygons is multi-directionally separa-
ble had been posed by G.T. Toussaint.
Here we present an algorithm for solving
this problem which, in addition to detect-
ing whether or not the given set is multi-
directionally separable, also provides an
ordering in which to separate the poly-
gons. In case that the entire set is not mul-
ti-directionally separable, the algorithm
will find the largest separable subset.

Key words: Computational geometry —
Data structures — Motion problems — Se-
parability
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1 Introduction

Motion problems are manifold due to the variety
of areas in which they may occur; among these
areas we find e.g. robotics, computer graphics,
computer vision etc. One class of motion problems
recently being investigated is the separability prob-
lem. To state separability problems formally, we
introduce some terminology. For a survey article
on separability problems see Toussaint (1985).

Let P={P, ..., B,} be a set of M n-vertex polygons
(in the Euclidean plane), with pairwise non-inter-
secting interiors. A translation of a polygon PelP
is specified by the translation direction and dis-
tance. A separating motion of P. is a translation
of F, in some direction by an arbitrarily large dis-
tance. B is said to collide with polygon P, i+j,
if, at any distance during the separating motion,
the interiors of P and P, intersect; otherwise, P
and P, are separable in the given direction. P, and
P, interlock if there exists no direction in which
they are separable. A polygon P, is separable from
the set, IP, if there exists some direction d such that,
in this direction, P, is separable from each of the
remaining polygons P, j+i, 1 <j< M. E.g. polygon
1 in Fig. 1 is separable from the polygon set in
direction d, as indicated.

A set of polygons P={P, ..., B,} is sequentially
separable (by a sequence of M translations) if there
exists a multi-directional translation ordering
(Be1y> B2y ---» Poary) of P such that for i=1, ...,
M —1 polygon P, is separable from the set of re-
maining polygons P, ,={P,i+y), ..., By} by a
translation in some direction d;,. We refer to this
problem as the Multi-Directional Separability
Problem (MDS-Problem).

In case that all translations are to be performed
in a common direction d we obtain the Uni-Direc-
tional Separability Problem (UDS-Problem) and the
respective translation ordering is called a (uni-di-
rectional) translation ordering for IP. A set IP exhib-

Fig. 1. Polygon 1 can be separated from the object set via
a translation in direction d
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its the translation ordering property if a translation
ordering exists in each direction.

In the following section we will review some results
from the existing literature some of which we will
use in subsequent sections. It turns out that existing
solutions to the uni-directional problem assume
the objects to have a certain predetermined shape
(e.g. rectangular or convex objects), or to have a
direction of separability available. In Sects. 3 and
4 we will show how these drawbacks can be over-
come. Among other results, we show how to com-
pute all directions of uni-directional separability
for sets of arbitrary simple polygons.

In Sect. 5 we will present a solution for the multi-
directional separability problem as posed by G.T.
Toussaint. In addition to detecting whether or not
a given set is multi-directionally separable, the al-
gorithm also provides an ordering among the poly-
gons to perform such a separation. In case the en-
tire set is not multi-directionally separable it finds
the largest separable subset.

Summarizing, this paper presents algorithms for
the following detection and determination prob-
lems (for any set IP of simple polygons in the Eu-
clidean plane with no pairwise intersection occur-
ring among (the polygons):

Detection Problems

® Detect whether a translation ordering for IP ex-
ists (in some arbitrary direction).

® Detect whether IP is uni-directionally sequential-
ly separable in a given direction.

® Detect whether IP is multi-directionally sequen-
tially separable.

Determination Problems (UDS-Problem)

® Find a direction in which IP is uni-directionally
sequentially separable.

® Determine the set of all directions in which IP
is uni-directionally sequentially separable.

Determination Problems (MDS-Problem)

® Determine a multi-directional translation order-
ing for IP, including one or all collision-free trans-
lation directions for each polygon.

® Determine the maximal subset of IP which is
multi-directionally separable.

2 Some results
from the literature

Several authors studied the question of determin-
ing a translation ordering among a set of objects,
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in a given direction. The approach taken by Guibas
and Yao (1980) was designed to work for rectangles
and was adapted to work for convex polygons. For
the latter case an alternate solution is due to Man-
souri and Toussaint (1985). Touissaint also studied
other restrictive classes of objects (e.g., spheres), see
Toussaint (1984). Neither of these approaches gen-
eralizes to arbitrary simple polygons, since the so-
lutions are typically obtained by exploiting some
specific properties of the object classes at hand.
Whereas for convex polygons, spheres etc. a trans-
lation ordering will exist for every direction speci-
fied (see Corollary 2 below), this is clearly no longer
true when dealing with arbitrary simple polygons.
Thus a preliminary task is to determine whether
or not such an ordering exists. In this section we
show how to test a given collection of objects for
uni-directional separability.

To determine whether or not a collection of M
n-vertex polygons P={P, ..., B,} is uni-direction-
ally separable the following result obtained in
Toussaint (1985a) is useful:

Theorem 1. A4 set of polygons P={P, ..., B} ad-
mits a translation ordering in direction d if, and only
if, every pair of polygons, viewed in isolation, is sepa-
rable with a single translation in direction d.

Corollary 2. A translation ordering will always exist
if each pair P,, P, of polygons in IP has non-intersect-
ing convex hulls.

In view of this theorem the study of separability
for single pairs of polygons becomes important.
Recall that two polygons are separable (by a single
translation) if one of them can be translated an
arbitrary distance away from the other without a
collision occuring between the objects. Two objects
interlock if they are not separable. These notions
are illustrated in Fig. 2a, b.

The problem of detecting whether two polygons
are separable in a given direction of translation
(described by a vector in the unit circle) can be
solved in time, linear in the number of vertices,
see (Toussaint and Sack 1983). The solution is
based on the observation that two polygons are
separable with a single translation in a given direc-
tion d if and only if the interior of the visibility
hulls for P and Q with respect to the direction
orthogonal to d do not intersect. The visibility hull
of a polygon P in a direction d' is defined as the
set obtained by taking the union of P with all line
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Fig. 3. Visibility hull of a polygon

segments [a, b] parallel to d' with a, b in P; see
Fig. 3. Since two visibility hulls can be constructed
and subsequently intersected in linear time (they
are monotone in the same direction), the following
lemma has been obtained (Toussaint and Sack
1983).

Lemma 3. The problem of detecting whether two
polygons can be separated in a given direction can
be solved in time, linear in the number of vertices
of both P and Q. R
In dealing with collections of objects involving
more than two simple, pairwise non-intersecting
polygons different types of problems arise (for a
survey the reader is referred to (Toussaint 1985a)).
Toussaint states two algorithms for the problem
of detecting whether a collection of M, n-vertex,
non-pairwise intersecting polygons is separable in
a given direction. His results are based on Lem-
ma 3 together with existing solutions to certain ge-
ometrical problems. If each pair of visibility hulls
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is tested for intersection an O(M?n) algorithm is
obtained. Alternatively, the M visibility hulls can
be considered as a set of M*n line-segments and

using the method of Shamos and Hoey (1976) a

complexity of O(M nlog M n) is derived.

The entire approach using visibility hulls has two

draw-backs:

(1) The visibility hulls depend on the specified di-
rection and must therefore be computed for
every direction of translation. In particular, for
solving repeatedly separability queries on the
existence of a translation ordering, in a given
query direction, more efficient algorithms must
be designed.

(2) Since there may be an infinite number of direc-
tions of separability, i.e., directions in which the
set is separable, the method cannot be used
(a) to solve the problem of whether the given
set is uni-directional separable or not, i.e., it
does not solve the uni-directional separability
problem
(b) nor to find all directions of separability, if
any.

In Nurmi (1984) the same complexity results are

obtained by using a plane-sweep technique. How-

ever, his approach has the same disadvantages as
stated above.

Next it is demonstrated how these drawbacks can

be overcome.

3 Some tools for solving
separability problems

3.1 Movability wedge for a pair
of polygons, movability wheel
of a set of polygons

In Sack and Toussaint (1983) the problem of deter-
mining all directions of separability for two poly-
gons P, Q was addressed. Clearly, if no such direc-
tion exists then P and Q interlock. Their approach
is based on the observation that if two distinct
directions of separability exist then these directions
determine an entire wedge of directions of separa-
bility. The maximal such wedge, is called the rela-
tive movability wedge Wp(Q) for P relative to Q.
The wedge is maximal in the sense that all direc-
tions inside the wedge define directions of separabil-
ity for P relative to Q and no direction outside
the wedge is a direction of separability. The union
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of Wp(Q) and W, (P) is called the movability wedge
for P and Q, denoted by W(P, Q).

If we assume that both polygons have the same
number of vertices, say n, then the computation
of the movability wedge can be performed in O(n?)
time. By combining several tools of computational
geometry with a partitioning technique developed
for solving this problem, it has been shown in Sack
and Toussaint (1985) that this time can be reduced
to O(nlogn). Let C,(n) denote the time to compute
the movability wedge for two n-vertex polygons.

Lemma 4. For two arbitrary n-vertex polygons P
and Q. The relative movability wedge Wp(Q) and the
movability wedge W(P, Q) can be computed in time
C,(n)=0(nlogn) time.

Movability wedges have been computed for other
more restricted classes of polygons; see Toussaint
and Sack (1983), Toussaint and ElGindy (1984),
Toussaint (1984, 1985). In Table 1 we summarize
all results obtained.

Very recently it has been shown (Sack 1986, unpub-
lished notes; and independently Toussaint 1986,
personal communication) that given a triangula-
tion of the vertex set the movability wedge can
be computed in linear time.

Movability wedges capture information essential
to our solution to separability problems for poly-
gons thereby enabling us to state simple and effi-
cient solutions to uni-directional separability prob-
lems.

We introduce the concept of movability wheel for
a set IP of polygons. The set of all directions d
for which a translation ordering exists is called the
movability wheel W(IP) for IP and for a given direc-
tion d we denote by T(d) the set of all translation
orderings of IP with respect to d. We say that d
is a direction of separability if d is in W(IP). We
denote by W the set of all pairwise movability
wedges, {W(P, P)|1<i<j<M}.

Table 1. Movability wedges for polygon pairs

Movability wedge construction times for pairs
of n-vertex polygons

Polygon class Complexity
Constant size o)
Convex O(logn)
Monotone, star-shaped O(n)
Arbitrary simple O(nlogn)
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Lemma 5. For the movability wheel W(IP) the fol-

lowing holds :

(a) W(IP)is the intersection of all pairwise movabil-
ity wedges W(P, F) in W.

(b) W(IP) consists of at most M (M — 1) disjoint sec-
tors.

Proof. (a) follows from Theorem 1.

(b) Let W denote the set of all pairwise movability
wedges. Since | W|=M (M —1)/2 it suffices to show
that W(IP) consists of at most 2| W]| sectors. The
result is proved by induction on the cardinality
of the set W, called m. For m=1 the result follows
from the above. Assume that, for m> 1, the inter-
section, W’, of m—1 pairwise movability wedges
has at most 2(m— 1) sectors. Let W,, be the next
movability wedge to be intersected with W’. In
worst case (with respect to the number of sectors
in the intersection of W’ with W), 2(m—1)—2 sec-
tors are contained in W,, and the two sectors de-
fined by [0, 360)— W, are contained in the remain-
ing two sectors. Thus the number of sectors in the
intersection of W’ and W,, is at most 2(m—1)—2
+4=2m. See Fig. 4 for an illustration.

Fig. 4. Worst case intersection of the m'™® movability wedge
W

In the following section we introduce a data struc-
ture called “complementary segment tree” which
allows efficient computation of the intersection of
intervals and allows queries of the type “is a given
direction contained in the intersection, or not?”,
as well as “find a direction which is contained in
the intersection”.

3.2 Manipulating sets of intervals:
the complementary segment tree

Let S={I,,...,I,} be a set of k intervals. Such a
set of intervals can be stored in a data structure
called segment tree, as described e.g., in Mehlhorn
(1984). A segment tree is composed of a search
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part, its internal nodes, and of a data part, its leaves
storing the intervals.
Stored with each node v of a segment tree is
(a) an interval xrange(v) designed as the union
over all intervals stored in the leaves of the
subtree rooted at v, and
(b) alist NL(v)={IeS|xrange(v)isin I but x range
(parent(v)) is not in I}.
Operations on segments trees are: Construct, Insert
and Delete. The Construct operations involves set-
ting up the search part, essentially placing a bal-
anced binary search tree on the interval set as well
as calculating the x range values and the sets NL.
The operations, Delete and Insert, delete or insert
an interval, respectively, thus updating the node
fields on the path from the interval to the root.
Note that for each I in S, the query “is I in NL(v)?”
can be answered in O(1) time provided that both
xrange(v) and x range(parent(v)) are given.
For our application we do not need to explicitly
store the lists NL, since storing their sizes, |[NL(v)|,
is sufficient. This reduces the storage from
O(klogk) to O(k) for a segment tree on k intervals.
We will, however, need an additional bit, called
mark(v), stored at each node v. We call a node
marked if its mark bit is true and unmarked, other-
wise. The bit is set as follows:
® If v is a leaf then
mark (v) =true, if [INL(v)|=0
mark (v) =false, otherwise.
® If v is an internal node then
mark (v)=true, if [INL(v)|=0 and at least one
child v’ is marked
mark (v) =false, otherwise.
We will call such a tree a modified segment tree
for S. With Mehlhorn (1984) it is easy to prove
the following:

Lemma 6. A modified segment tree for a set S of
k intervals can be constructed in time O (k log k) time
using O(k) space. An interval I in S can be deleted
from the segment tree, i.e., the values |[NL(v)| and
mark(v) can be updated, in time O(logk), for all v
on the two paths from the root to the end points
of the interval.

Consider now a set S={wy, ..., w;} of k movability
wedges and let wi:=[0,360)—w;. Each w¢ consists
of at most 3 intervals; the set S° of all such intervals
thus consists of at most 3k intervals. The modified
segment tree on S° is called the complementary seg-
ment tree for the interval set S. In the case of rela-
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tive movability wedges, each w has at most 2 inter-
vals and thus §° contains at most 2k intervals.

Lemma 7. Let T be the complementary segment tree

for a set S of movability wedges, and let d be a

direction in [0, 360). Furthermore let INT(S) denote

the intersection of all wedges in S.

(@) dis in INT(S) iff all nodes along the path from
the root of T to the leaf containing d are
marked.

(b) INT(S) is the union of all intervals stored at
leaves v, for which all nodes along the path
from v to the root are marked.

(c) INT(S)=0 iff the root of T is marked.

Proof. We will use the fact that () w;=( () w§)".
Now let Ws:= () w;. wieS wieS
w;eS
(a) = Let de Wg and let d be contained in the inter-
val stored at leaf v. Assume that there is an un-
marked node on the path from the root of T to
v then there is some node, say v, on this path for
which [NL(v')|#0. Thus there exists some w;eS
such that dexrange(v)=w{ and, thus, d is not in
Ws which is a contradiction.
(a) <= Assume that d is not in Wy and hence
de () wi. W.lo.g. assume that dew. Let v be the
w;eS
leaf of T'with de x range (v) then by the construction
of the segment tree x range(v) is in w$. Hence there
exists a node v" on the path from v to the root
of T for which wie NL(v') and thus mark (v') is false.
(b) follows from (a).
(c) = follows immediately from (a).
(c) <= If the root is marked then, using induction,
it is easy to show that there is at least one path
from the root to a leaf of T for which all its nodes
are marked. With this (c) then follows from (a).

Fig. 5. A set of 3 movability wedges
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4 Main results on uni-directional
separability problems

4.1 UDS detection

With these results we are now able to solve the
UDS detection problems stated above. The mova-
bility wheel W(IP) contains all directions in which
a translation ordering for IP exists. From Lemma 5
we have

W)= () WE.B).

W(P;, P)eW

We compute W in time O(M?(C,(n)) and the com-
plementary segment tree Ty, with respect to W in
time O(M? log M), Lemma 6. Thus, by Lemma 7(c)
a translation ordering for IP exists iff the root of
Tw is marked and we get

Theorem 8. The problem of detecting whether any
uni-directional translation ordering for P exists can
be solved in O(M?(Cy(n)+log M)) time.

Proof. Follows from Lemma 6 and 7(c).

Furthermore, given the complementary segment
tree with respect to W and a direction de[0, 360],
then we know from Lemma 7(a), that de(W(IP))
iff all nodes on the path from the root of Ty to
the leaf containing d are marked. Since the depth
of Ty is O(log(M)), using Lemma 6, we get the
following result potentially useful in a dynamically
changing environment:

Theorem 9. Given O(M?(C,(n)+log M)) preprocess-
ing, the existence query of a transition ordering with
respect to a given direction, for any set of M n-
vertex polygons, can be answered in time O (log M).

4.2 UDS determination~

We will now demonstrate how to compute W(IP),
once a complementary segment tree Ty has been
computed. If the root of Ty, is unmarked, then
W(IP)=0. Otherwise, assume that W(IP)<[0, 360]
consists of k intervals I, ..., I,. Since each I ;is con-
tained in all w;e W, its interior may not contain
the border of any such w;. Hence, [; is the union
of the x range of at most three leaves of Ty, . Scan-
ning 3k leaves v of Ty to test whether the path
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from v to the root of Ty, is totally marked, takes
time O (klog M). By Lemma 5, k is O(M?). Finding
one leaf v whose xrange(T) is in W(IP) takes time
O(log M) by taking a totally marked path from
the root to some leaf. With this we get:

Theorem 10. (a) For any set IP of M n-vertex poly-
gons, the set W(IP) of all directions d for which a
translation ordering of P exists, can be computed
in time O(M?(C,(n)+1log M)).

(b) Given the complementary segment tree Ty, then
a direction for which P is uni-directionally sequen-
tially separable can be found in O(log M) time.

5 Multi-directional separability
5.1 MDS detection, MDS determination

Recall from the introductory section, that a set of
polygons P={P, ..., P,} is sequentially separable
by a sequence of translations (not necessarily in
the same direction), if there exists an ordering O,,
such that for i=1,..., M—1 polygon B, can be
separated from the remaining polygons P, ,,, by
a translation in some direction d;. We refer to
this problem as the multi-directional separability
(MDS)-problem, as opposed to the uni-directional
separability problem, discussed so far, in which all
translations are performed in the same direction.
Referring to Fig. 10, while the movability wheel
of the polygon set is empty, there exists a sequence
of separating motions (in order, polygon 1-6 and
finally polygon 7) executed in different directions
separating this set. Thus the given polygon set is
multi-directionally separable, and it is easily seen
that the set is not uni-directionally separable. It
should be clear however that uni-directional separ-
ability always implies multi-directional separabil-
ity.
As before, the problem is studied under the two
aspects of direction and determination as follows:
® MDS detection: Is the given set of polygons mul-
ti-directionally separable?
® MDS determination: Determine an ordering
among the set of polygons.
Our solution to the MDS determination problem
will also produce for each polygon to be moved
next, the maximal set of directions in which it can
be separated.
Again, we use the concept of movability wedges
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Fig. 7. A multi-directionally separable polygon set which
is not uni-directionally separable

Fig. 8. MDS tree for a polygon set P

in connection with complementary segment trees
to efficiently solve these problems.
We denote by MW(B,P):= (| W, (P)the mov-
PielP—{P;}
ability wedge of P, with respect to P, i.e., the maxi-
mum set of directions which admit a translation
of P, without colliding with any PeIP\ {PR}.
The efficiency of an algorithm to solve MDS prob-
lems will depend on how fast (a) it can be deter-
mined whether, initially, there exists a polygon P,
which can be separated, i.e., MW(B,P)30 and (b)
how fast a next separable polygon can be found
after a polygon has been separated from the set.
Notice that if a polygon is separable then the mo-
vability wedges of the remaining polygons will not
decrease as an effect of the separation of the poly-
gon. In particular, this implies that if at any stage
of the execution of the algorithm more than one
polygon can be separated, the order in which the
polygons are separated will have no effect on the
decision of whether or not the set is sequentially
separable, i.e., on the solution of the MDS detec-
tion problem. Our solution will employ the follow-
ing data structure:
With each polygon RelP={P, ..., B} we associate
a complementary segment tree with respect to the
set {Wp,(P)| BelP\{P}}, called the wedge-tree TF,.
In addition to this forest of M wedge trees
TP, ..., TR, we construct a balanced binary tree,
called result tree Ty, whose M leaves are the roots
of TP. Each internal node v of Ty is marked (i.e.,
mark (v) is set), if at least one of its sons is marked.
Actually, the M wedge trees and the result tree
together form a balanced binary tree, which we
call the MDS tree of IP. See Fig. 8 for an illustra-
tion.
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With Lemma 6 and Lemma 7 we observe the fol-
lowing:

Property 11

(a) Polygon P, is separable from P if and only if
the root of its wedge-tree TP, is marked.

(b) At least one polygon PP is separable from P
if and only if the root of Ty is marked.

(c) If the root of Ty is marked, then a separable
polygon PP and its direction of separation can
be found in time O (log M).

(d) The MDS-tree of P can be computed in time
O(M?(C4(n)+log M)).

With this, the MDS detection and MDS determi-
nation’ problems can be solved in the following
manner:

Initially, the MDS tree of IP is constructed at a
cost of O(M?(Cy(n)+log M)) and, if its root is not
marked, then IP is not multi-directionally separa-
ble. Otherwise, we find a separable polygon PelP
together with a separating direction d;e[0, 360) in
time O(log M). The set of all such directions d; can
be computed in time O(M log M) in essentially the
same way as described in Sect. 5.2.

After P, has been separated, the MDS tree needs
to be updated. This is done by first removing the
wedge-tree TP, and then removing the relative mov-
ability wedges Wy, (F) from each TPB, for j+i. This
takes time O(log M), each, (see Lemma 6) and, thus
an accumulated running time of O(M log M). Fi-
nally, Ty is updated in time O(M). This process
is iterated at most M times. If IP is multi-direction-
ally separable we obtain a translation ordering for
P together with the set of all translation directions
associated with each polygon.
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Theorem 12. Both the MDS detection as well as the
MDS determination problem for a set of M n-vertex
polygons can be solved in time O(M?> (Cs(n)
+log M)).

Proof. Follows from the above.

5.2 The maximally separable
Subset problem

In Toussaint (1985) the following problem was
posed: If a set of polygons is not sequentially sepa-
rable, how can a maximally separable subset be
determined ? The above algorithm solves this prob-
lem. This follows since at any time during the exe-
cution of the algorithm, all polygons (and only
those) whose associated wedge-trees have roots
representing non-empty wedges, are separable from
the remaining set of polygons. Removing any one
of these polygons can never shrink the movability
wedges of any other polygon. Thus for the problem
of finding the maximally separable subset problem
the order in which the polygons are removed is
irrelevant. The maximally separable subset is deter-
mined when the algorithm encounters a situation
in which no more polygons can be removed.

Corollary 13. The maximally separable subset of a
set of M n-vertex polygons can be computed in time
O(M?(C,(n)+1log M)).

6 Some open problems

The separability problems solved here involve ob-
jects in the Euclidean plane. The authors are pre-
sently investigating whether an approach similar
to the one presented here can be used for solving
efficiently separability problems involving objects
in 3-spaces.

In this paper separating motions via translations
have been studied. Further research is aimed at
studying other motions like rotations or screwing
motions. Work in this direction can be found in
Yap (1983, 1984), Chazelle et al. (1983), Ottmann
et al. (1983), Sharir et al. (1986), and Spirakis et
al. (1983a, b).
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