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Dehne (1986) presented an optimal O(V/n) time parallel algorithm for solving the ECDF searching problem for a set of n
points in two- and three-dimensional space on a mesh-of-processors of size n. However, it remained an open problem whether
such an optimal solution exists for the d-dimensional ECDF searching problem for d > 4.

In this paper we solve this problem by presenting an optimal O(®/n) time parallel solution to the d-dimensional ECDF
searching problem for arbitrary dimension d = O(1) on a mesh-of-processors of size n. The algorithm has several interesting
implications. Among others, the following problems can now be solved on a mesh-of-processors in (asymptotically optimal)
time 0(/; ) for arbitrary dimension d = O(1): the d-dimensional maximal element determination problem, the d-dimensional
hypercube containment counting problem, and the d-dimensional hypercube intersection counting problem. The latter two
problems can be mapped to the 2d-dimensional ECDF searching problem but require an efficient solution to this problem for

at least d > 4.
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1. Introduction

A set S={p;, Ps,---, P, } of n points in d-di-
mensional space is given. A point p; dominates a
point p; (denoted p, > p;) if and only if pilk]>
pilk] forall ke (1, 2,..., d} where p[k] denotes
the kth coordinate of a point p. The d-dimen-
sional ECDF searching problem consists of com-
puting for each p €S the number D(p, S) of
points of S dominated by p. (For more details
about this problem, consult, e.g., [7,8].)

An efficient solution to the ECDF searching
problem has several interesting applications [3,7,8].

* The research reported here was supported by the National
Science and Engineering Research Council under Grant No.
A9173.

One of these is the well-known transformation of
the rectangle containment counting problem to
the ECDF searching problem [3,8]. The rectangle
containment counting problem consists of count-
ing for each rectangle R of a set of iso-oriented
rectangles the number of rectangles which are
contained in R. If we map each rectangle R =
[x;, x,] X [¥1, ,] into the four-dimensional point
R’ =(—x;, x, —y;, »,), then a rectangle R, con-
tains a rectangle R, if and only if R} < Rj;
hence, the problem is easily transformed into a
four-dimensional ECDF searching problem.

In [2], an optimal O(\/; ) time parallel al-
gorithm was introduced for solving the two- and
three-dimensional ECDF searching problem on a
mesh-of-processors of size n, ie., a set of n
processing elements (PEs) arranged on a Vn xvn
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grid where each PE is connected to its direct
neighbors by bidirectional communication links.
(For a more detailed description of the mesh-of-
processors architecture and basic algorithm design
techniques on these machines, consult., e.g., [5,10].)

However, the algorithm in [2] did not solve, in
O(/n) time, the d-dimensional ECDF searching
problem for d > 4, and the existence of an optimal
solution for d > 4 remained an open problem [4].

In this paper we will solve this problem by
introducing an optimal O(Y/n ) time solution to the
d-dimensional ECDF searching problem for arbi-
trary dimension d = O(1). Miller and Stout [6]
have also considered this problem and, indepen-
dently, suggested the same solution based on Bent-
ley’s multidimensional divide-and-conquer tech-
nique [1].

2. Description and analysis of the proposed
algorithm

In order to obtain a convenient description of
‘the algorithm, we introduce the following defini-
tions:

(1) Let p, g be two points in d-space and let
1 <k <d; then g <, p if and only if ¢[2] <p[2],
..., q[k] < p[k].

(2) Let p be a point in d-space, S; be a subset
of S, and 1 <k <d; then M*(p, S,) denotes the
number of those g € S; such that g <, p.

(3) Let S;, S, be two subsets of S and let
1 < k<d; then k-dimensional dominance merge,
denoted MERGE(S,, ), consists of computing
the value M*(p, §;) for all p € S,.

N

2.1. Global structure of the algorithm

Initially, each processing element of the mesh
contains the d coordinates of one point of S. Each
PE is assumed to have a register D which will
contain the value D(p, S), where p is the point
stored in the respective PE, after the algorithm has
terminated.

68

INFORMATION PROCESSING LETTERS

24 June 1988

The global structure of the proposed algorithm
is a divide-and-conquer mechanism which solves
the problem as follows:

() Divide v
Partition S into two subsets S; and S, by
comparing the d'th coordinate of the points
with the median dth coordinate (points in
S, have larger dth coordinate). S; and S,
are stored in one half of the mesh-of-
processors, each. (This step is easily ob-
tained by sorting S with respect to the dth
coordinate (see, e.g., [9]). The mesh is split
into two submeshes of equal size by either
a vertical or a horizontal line to minimize
the diameter of the submeshes.)
() Recur
Solve the d-dimensional ECDF searching
problem for S, and S,, respectively, on
each half of the mesh-of-processors in
parallel.
(III) Merge
(a) Solve the (d— 1)-dimensional domi-
nance merge problem MERGE?™I(S,,
S1)-
(b) Update
Each PE updates its register D as fol-
lows:

D(F’ Sl) forpesla
D(P’ S):= D(p, S2)+Md_1(P’ Sl)
forpes,.

The following subsection shows how to solve
the k-dimensional dominance merge problem
MERGEX(S,, S;), 1 <k <d, as required for step
ITI(a).

2.2. k-dimensional dominance merge
MERGEX(S,, S;)

The structure of the k-dimensional dominance
merge algorithm is again a divide-and-conquer
mechanism. In each iteration, k decreases by one,
i.e., the merge step for k-dimensional dominance
merge involves the solution of a (k — 1)-
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dimensional dominance merge problem. This pro-
cess is iterated until k=1.

Each PE is assumed to have a register M which
will finally contain the value M*(p, S,) for p € S,
where p is the point stored in the respective PE.

Case k>2
(I) Divide
Partition S, into two subsets S;; and Su
and, simultaneously, S, into two subsets Sy,
and S,, by comparing the kth coordinate of
the points with the median kth coordinate of
S, U S, (points in S;, and S,, have larger
kth coordinate). Store S,; U S;; and S,, U S,
in one half of the current submesh, each.
(Again, split the current submesh into two
submeshes of equal size using either a verti-
cal or a horizontal split line to minimize the
diameter of the submeshes.)
(X) Recur
Solve the k-dimensional dominance merge
problems denoted MERGE*(S,, S;;) and
MERGEX(S,,, S,), respectively, on each half
of the mesh-of-processors in parallel.
(III) Merge
(a) Solve the (k — 1)-dimensional dominance
merge problem MERGE*(S,,, Sy;).
(b) Update
Each PE updates its register M as fol-
lows:

Mk(p’ Sl)
M*(p, Sy;) forpe sy,

=({ M*(p, Spp) +M*"'(p, Su1)
fOI‘pGSzz.

Case k=1

Sort S, U S, with respect to the first coordinate
in snake-like ordering [9]. For each p € S,, the
value M*( p, S,) is equal to the number of g € S,
with lower rank.

2.3. Time complexity of the proposed algorithm

Let Tgepp(n) and m,(n) denote respectively
the time complexity for solving the d-dimensional
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ECDF searching problem for a set of # points and
the k-dimensional dominance merge problem
MERGEX(S,, §;) for |S,U S, | =n, as described
above.

With these definitions, the following recurrence
relations are easily observed:

(1) TECDF(”) = TECDF(%”) + md—l(n)
+0(Vn),
Tecpr(n) =0(1).
@ m(n)= mk(%”) +m,_y(n) + O(‘/'T),
m,(n) =0(Vn).
From (2) it follows that
m;(n) =O(P‘k‘/;)>
__V2
® -1

Hence, m,_,(n)=0(p""Vn) and, therefore, it
follows from (1) that

Tecpr(n) = O(p?~'Vn).

For any d = O(1), i.e., any fixed dimension d, this
yields the following result.

+e=3.414213... +¢ (e>0).

Theorem. The d-dimensional ECDF searching prob-
lem, d = O(1), for a set of n points can be solved on
a mesh-of-processors of size n in O(\/_ ) time which
is asymptotically optimal.

3. Applications

The above algorithm has several interesting ap-
plications. Among other, the following problems,
for arbitrary dimension d= O(1), can now be
solved on a mesh-of-processors of linear size in
(asymptotically optimal) time oWn):

+ The d-dimensional maximal element determina-

tion problem: compute the set of points which

are not dominated by any other point.

» The d-dimensional hypercube containment
counting problem, i.e., the d-dimensional gener-
alization of the rectangle containment counting
problem described in Section 1 (mapping the
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d-dimensional problem into a 2d-dimensional
ECDF searching problem is straightforward).
The d-dimensional hypercube intersection
counting problem, i.e., the d-dimensional gener-
alization of the rectangle intersection counting
problem: given a set S of iso-oriented rectan-
gles, determine for each rectangle R the number
of rectangles that intersect R. Each rectangle
R =[x,, x;] X[y, »,] is mapped into the
four-dimensional points R’ =(—x;, X,, —;,
»,) and R” =(—x,, x;, —y,, y;). Two rectan-
gles R, and R, intersect if and only if R} < R;{
or, equivalently, R; < R} [3,8]. Hence, with
S’, S” denoting the set of all R’, respectively
R”, the rectangle intersection counting problem
is equivalent to four-dimensional dominance
merge MERGE*(S’, S”'). Analogously, the d-di-
mensional hypercube intersection counting
problem can be mapped into a 2d-dimensional
dominance merge problem.
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