Information Processing Letters 28 (1988) 67-70

24 June 1988

North-Holland

An O(Yn) TIME ALGORITHM FOR THE ECDF SEARCHING PROBLEM FOR ARBITRARY
DIMENSIONS ON A MESH-OF-PROCESSORS

Frank DEHNE*
School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

Ivan STOJMENOVIC
Institute of Mathematics, University of Novi Sad, 2100 Novi Sad, Yugoslavia

Communicated by E.C.R. Hehner
Received 16 November 1987
Revised 22 February 1988

Dehne (1986) presented an optimal O(V/n) time parallel algorithm for solving the ECDF searching problem for a set of n
points in two- and three-dimensional space on a mesh-of-processors of size n. However, it remained an open problem whether
such an optimal solution exists for the d-dimensional ECDF searching problem for d > 4.

In this paper we solve this problem by presenting an optimal O(®/n) time parallel solution to the d-dimensional ECDF
searching problem for arbitrary dimension d = O(1) on a mesh-of-processors of size n. The algorithm has several interesting
implications. Among others, the following problems can now be solved on a mesh-of-processors in (asymptotically optimal)
time 0(/;) for arbitrary dimension d = O(1): the d-dimensional maximal element determination problem, the d-dimensional
hypercube containment counting problem, and the d-dimensional hypercube intersection counting problem. The latter two
problems can be mapped to the 2d-dimensional ECDF searching problem but require an efficient solution to this problem for

at least d > 4.

Keywords: ECDF searching, mesh-of-processors, parallel computational geometry

1. Introduction

A set S={p;, Ps,---, P, } of n points in d-di-
mensional space is given. A point p; dominates a
point p; (denoted p, > p;) if and only if pilk]>
pilk] forall ke (1, 2,..., d} where p[k] denotes
the kth coordinate of a point p. The d-dimen-
sional ECDF searching problem consists of com-
puting for each p €S the number D(p, S) of
points of S dominated by p. (For more details
about this problem, consult, e.g., [7,8].)

An efficient solution to the ECDF searching
problem has several interesting applications [3,7,8].

* The research reported here was supported by the National
Science and Engineering Research Council under Grant No.
A9173.

One of these is the well-known transformation of
the rectangle containment counting problem to
the ECDF searching problem [3,8]. The rectangle
containment counting problem consists of count-
ing for each rectangle R of a set of iso-oriented
rectangles the number of rectangles which are
contained in R. If we map each rectangle R =
[x;, x,] X [¥1, ,] into the four-dimensional point
R’ =(—x;, x, —y;, »,), then a rectangle R, con-
tains a rectangle R, if and only if R} < Rj;
hence, the problem is easily transformed into a
four-dimensional ECDF searching problem.

In [2], an optimal O(\/;) time parallel al-
gorithm was introduced for solving the two- and
three-dimensional ECDF searching problem on a
mesh-of-processors of size n, ie., a set of n
processing elements (PEs) arranged on a Vn xvn

0020-0190,/88 /$3.50 © 1988, Elsevier Science Publishers B.V. (North-Holland) 67

Volume 28, Number 2

grid where each PE is connected to its direct
neighbors by bidirectional communication links.
(For a more detailed description of the mesh-of-
processors architecture and basic algorithm design
techniques on these machines, consult., e.g., [5,10].)

However, the algorithm in [2] did not solve, in
O(/n) time, the d-dimensional ECDF searching
problem for d > 4, and the existence of an optimal
solution for d > 4 remained an open problem [4].

In this paper we will solve this problem by
introducing an optimal O(Y/n) time solution to the
d-dimensional ECDF searching problem for arbi-
trary dimension d = O(1). Miller and Stout [6]
have also considered this problem and, indepen-
dently, suggested the same solution based on Bent-
ley’s multidimensional divide-and-conquer tech-
nique [1].

2. Description and analysis of the proposed
algorithm

In order to obtain a convenient description of
‘the algorithm, we introduce the following defini-
tions:

(1) Let p, g be two points in d-space and let
1 <k <d; then g <, p if and only if ¢[2] <p[2],
..., q[k] < p[k].

(2) Let p be a point in d-space, S; be a subset
of S, and 1 <k <d; then M*(p, S,) denotes the
number of those g € S; such that g <, p.

(3) Let S;, S, be two subsets of S and let
1 < k<d; then k-dimensional dominance merge,
denoted MERGE(S,,), consists of computing
the value M*(p, §;) for all p € S,.

N

2.1. Global structure of the algorithm

Initially, each processing element of the mesh
contains the d coordinates of one point of S. Each
PE is assumed to have a register D which will
contain the value D(p, S), where p is the point
stored in the respective PE, after the algorithm has
terminated.

68

INFORMATION PROCESSING LETTERS

24 June 1988

The global structure of the proposed algorithm
is a divide-and-conquer mechanism which solves
the problem as follows:

() Divide v
Partition S into two subsets S; and S, by
comparing the d'th coordinate of the points
with the median dth coordinate (points in
S, have larger dth coordinate). S; and S,
are stored in one half of the mesh-of-
processors, each. (This step is easily ob-
tained by sorting S with respect to the dth
coordinate (see, e.g., [9]). The mesh is split
into two submeshes of equal size by either
a vertical or a horizontal line to minimize
the diameter of the submeshes.)
() Recur
Solve the d-dimensional ECDF searching
problem for S, and S,, respectively, on
each half of the mesh-of-processors in
parallel.
(III) Merge
(a) Solve the (d— 1)-dimensional domi-
nance merge problem MERGE?™I(S,,
S1)-
(b) Update
Each PE updates its register D as fol-
lows:

D(F’ Sl) forpesla
D(P’ S):= D(p, S2)+Md_1(P’ Sl)
forpes,.

The following subsection shows how to solve
the k-dimensional dominance merge problem
MERGEX(S,, S;), 1 <k <d, as required for step
ITI(a).

2.2. k-dimensional dominance merge
MERGEX(S,, S;)

The structure of the k-dimensional dominance
merge algorithm is again a divide-and-conquer
mechanism. In each iteration, k decreases by one,
i.e., the merge step for k-dimensional dominance
merge involves the solution of a (k — 1)-

Volume 28, Number 2

dimensional dominance merge problem. This pro-
cess is iterated until k=1.

Each PE is assumed to have a register M which
will finally contain the value M*(p, S,) for p € S,
where p is the point stored in the respective PE.

Case k>2
(I) Divide
Partition S, into two subsets S;; and Su
and, simultaneously, S, into two subsets Sy,
and S,, by comparing the kth coordinate of
the points with the median kth coordinate of
S, U S, (points in S;, and S,, have larger
kth coordinate). Store S,; U S;; and S,, U S,
in one half of the current submesh, each.
(Again, split the current submesh into two
submeshes of equal size using either a verti-
cal or a horizontal split line to minimize the
diameter of the submeshes.)
(X) Recur
Solve the k-dimensional dominance merge
problems denoted MERGE*(S,, S;;) and
MERGEX(S,,, S,), respectively, on each half
of the mesh-of-processors in parallel.
(III) Merge
(a) Solve the (k — 1)-dimensional dominance
merge problem MERGE*(S,,, Sy;).
(b) Update
Each PE updates its register M as fol-
lows:

Mk(p’ Sl)
M*(p, Sy;) forpe sy,

=({ M*(p, Spp) +M*"'(p, Su1)
fOI‘pGSzz.

Case k=1

Sort S, U S, with respect to the first coordinate
in snake-like ordering [9]. For each p € S,, the
value M*(p, S,) is equal to the number of g € S,
with lower rank.

2.3. Time complexity of the proposed algorithm

Let Tgepp(n) and m,(n) denote respectively
the time complexity for solving the d-dimensional

INFORMATION PROCESSING LETTERS

24 June 1988

ECDF searching problem for a set of # points and
the k-dimensional dominance merge problem
MERGEX(S,, §;) for |S,U S, | =n, as described
above.

With these definitions, the following recurrence
relations are easily observed:

(1) TECDF(”) = TECDF(%”) + md—l(n)
+0(Vn),
Tecpr(n) =0(1).
@ m(n)= mk(%”) +m,_y(n) + O(‘/'T),
m,(n) =0(Vn).
From (2) it follows that
m;(n) =O(P‘k‘/;)>
__V2
® -1

Hence, m,_,(n)=0(p""Vn) and, therefore, it
follows from (1) that

Tecpr(n) = O(p?~'Vn).

For any d = O(1), i.e., any fixed dimension d, this
yields the following result.

+e=3.414213... +¢ (e>0).

Theorem. The d-dimensional ECDF searching prob-
lem, d = O(1), for a set of n points can be solved on
a mesh-of-processors of size n in O(\/_) time which
is asymptotically optimal.

3. Applications

The above algorithm has several interesting ap-
plications. Among other, the following problems,
for arbitrary dimension d= O(1), can now be
solved on a mesh-of-processors of linear size in
(asymptotically optimal) time oWn):

+ The d-dimensional maximal element determina-

tion problem: compute the set of points which

are not dominated by any other point.

» The d-dimensional hypercube containment
counting problem, i.e., the d-dimensional gener-
alization of the rectangle containment counting
problem described in Section 1 (mapping the

69

Volume 28, Number 2

70

d-dimensional problem into a 2d-dimensional
ECDF searching problem is straightforward).
The d-dimensional hypercube intersection
counting problem, i.e., the d-dimensional gener-
alization of the rectangle intersection counting
problem: given a set S of iso-oriented rectan-
gles, determine for each rectangle R the number
of rectangles that intersect R. Each rectangle
R =[x,, x;] X[y, »,] is mapped into the
four-dimensional points R’ =(—x;, X,, —;,
»,) and R” =(—x,, x;, —y,, y;). Two rectan-
gles R, and R, intersect if and only if R} < R;{
or, equivalently, R; < R} [3,8]. Hence, with
S’, S” denoting the set of all R’, respectively
R”, the rectangle intersection counting problem
is equivalent to four-dimensional dominance
merge MERGE*(S’, S”'). Analogously, the d-di-
mensional hypercube intersection counting
problem can be mapped into a 2d-dimensional
dominance merge problem.

INFORMATION PROCESSING LETTERS

24 June 1988

References

[1] JL. Bentley, Multidimensional divide-and-conquer,
Comm. ACM 23 (4) (1980) 214-229.

[2] F. Dehne, O(n!/?) algorithms for the maximal elements
and ECDF searching problem on a mesh-connected paral-
lel computer Inform. Process. Lett. 22 (6) (1986) 303-306.

[3] H. Edelsbrunner and M.H. Overmars, On the equivalence
of some rectangle problems, Inform. Process. Lett. 14 (3)
(1982) 124-127.

[4] S. Hambrusch, Private communication, September 1985.

[5] R. Miller and Q.F. Stout, Computational geometry on a
mesh-connected computer, Proc. IEEE Internat. Conf. on
Parallel Processing (1984) 66-73.

[6] R. Miller and Q.F. Stout, Mesh Computer Algorithms for
Computational Geometry, Tech. Rept. 86-18 (revised),
Dept. of Computer Science, State Univ. of New York,
Buffalo, NY, 1986.

[71 M.H. Overmars and J. Van Leeuwen, Maintenance of
configurations in the plane, J. Comput. System Sci. 23
(1981) 166-204.

[8] F.P. Preparata and M.I. Shamos, Computational Geome-
try — An Introduction (Springer, New York, NY, 1985).

[9] C.D. Thompson and H.T. Kung, Sorting on a mesh-con-
nected parallel computer, Comm. ACM 20 (4) (1977)
263-271.

[10] J.D. Ullman, Computational Aspects of VLSI (Computer
Science Press, Rockville, MD, 1984).

