i

— "Visual
Computer

Solving visibility
and separability
problems on a
Mesh-of-Processors

Frank Dehne*

School of Computer Science, Carleton University,
Ottawa, Canada K 1S 5B6

In this paper we study parallel algorithms
for the Mesh-of-Processors architecture to
solve visibility and related separability
problems for sets of simple polygons in
the plane.

In particular, we present the following al-
gorithms:

— An O(VIV time algorithm for computing
on a Mesh-of-Processors of size N the
visibility polygon from a point located
in an N-vertex polygon, possibly with
holes.

- O(I/N) time algorithms for computing
on a Mesh-of-Processors of size N the
set of all points on the boundary of an
N-vertex polygon IP which are visible
in a given direction d as well as the visi-
bility hull of IP for a given direction d.

— An O(I/N) time algorithm for detecting
on a Mesh-of-Processors of size 2N
whether two N-vertex polygons are sep-
arable in a given direction and an

O()/ MN) time algorithm for detecting

on a Mesh-of-Processors of size¢ MN

whether M N-vertex polygons are se-

quentially separable in a given direction.
All proposed algorithms are asymptoti-
cally optimal (for the Mesh-of-Processors)
with respect to time and number of proces-
sors.

Key words: Computational geometry —
Mesh-of-Processors — Parallel algorithms
— Separability-Visibility

* Research supported by NSERC grant No. A9173

356

1 Introduction

The notion of visibility in geometric objects is im-

portant for a large number of geometric applica-

tions; e.g. the hidden line problem in graphics [11],

the shortest path problem for points in a plane

with polygonal obstructions [1], and the separabil-

ity problem for planar polygonal objects [19, 18,

10, 7]. Due to their importance, visibility and relat-

ed problems have been thoroughly studied in the

standard sequential model of computation and sev-
eral efficient (in some cases asymptotically optimal)
algorithms have been presented.

In recent years several authors have started study-

ing geometric problems for parallel architectures;

see e.g. [4, 5, 6, 8,9, 14, 15, 16]. There are mainly
two reasons why parallel algorithms for geometric
problems have become of special importance:

— A steadily increasing number of parallel ma-
chines has become commercially available.

— Geometric algorithms are mainly used for online
applications (e.g. CAD workstations) where
short response times are a necessity. However,
these geometric applications often require large
amounts of data to be processed which makes
it hard to obtain reasonable response times on
standard sequential computers.

In this paper, we study methods for efficiently solv-

ing visibility and related separability problems on

a Mesh-of-Processors, i.e., a parallel computer

which consists of a set of processing elements ar-

ranged on a square grid where each PE is con-

nected to its direct neighbors only ([UL 84]

Chapt. 4.1, 4.2, and 4.4).

In the remainder of this section we will

— introduce the geometric problems studied in this
paper,

— describe the Mesh-of-Processors architecture,

— describe how to use divide-and-conquer for solv-
ing a problem on a Mesh-of-Processors, and

— give an overview of the results presented in the
subsequent sections.

1.1 Geometric problems

Consider an N-vertex simple polygon IP in the Eu-
clidean plane; a polygon IP is simple if there is no
pair of nonconsecutive edges which share a point
(see, e.g., [17] p. 18). For the remainder of this
paper all polygons considered are simple and plan-
ar. A polygon PP partitions the plane into three
regions: the interior, the boundary, and the exterior
of IP. A point p is contained in PP if p is contained
either in the interior or the boundary of IP.

The Visual Computer (1988) 3:356 370
© Springer-Verlag 1988

A polygon IP may have holes:
It contains other (pairwise disjoint) polygons
IP,, ..., B, (holes) in its interior; ie., all points
of the interior or boundary of IP,, ..., IB, are con-
tained in the interior of IP.
The interiors and boundaries of the holes are
subtracted from the interior of IP and added to
the exterior and boundary of IP, respectively.
For the remainder, when referring to an N-vertex
polygon with holes, N denotes the total number
of vertices of P, P, ..., I,.
Given a polygon P (with or without holes) and
a point p contained in IP, then another point g
in the Euclidean plane is called visible from p if
the open line segment from p to g, ie., the open
interval (q,q) of the line through p and g, does
not share a point with any edge of IP.
Obviously, any point g which is not contained in
IP is not visible from p.
The visibility polygon from a point p contained in
a polygon IP (with or without holes) is the polygon
containing all those points visible from p.
See Fig. 1 for an illustration of the above defini-
tions.
The problem of computing the visibility polygon
from a point has been studied extensively under
the standard sequential model of computation.
[12] and [13] introduced linear time sequential
algorithms for computing the visibility polygon
from a point inside an N-vertex polygon without
holes; [2] described an O (N log h) time sequential
algorithm for computing the visibility polygon
from a point contained in an N-vertex polygon
with h holes.

“Visual —
Computer

In contrast to the notion of visibility from a point
contained in a polygon, one can also consider the
model of parallel visibility from outside the poly-
gon:

Given a polygon PP and a direction d then a point
q on the boundary of PP is visible in direction d
if the ray starting at g in direction -d, i.e. the direc-
tion exactly opposite to direction d, does not share
a point, except ¢, with any edge of IP.

The visibility hull of IP for a direction d is the poly-
gon IP’ defined as follows: the union of boundary
and interior of IP’ is the set of all points contained
either in IP or any line segment [a, b] parallel to
d where a and b are contained in IP.

See Fig. 2 for an illustration of these definitions.

o] Polygon
s points visible in direction d

ooz visibility hull

Fig. 2. Parallel visibility, visibility hull

simple polygon
visibility polygon

holes

Fig. 1. Visibility polygon from a point

357

— "Visual
Computer

Fig. 3. Two polygons IP and @
where IP is separable from @ in
direction d, but not in direction d,

Fig. 4 [10]. P, is separable from
P,,...,Pg

Note, that in the standard sequential model of
computation the points visible in direction d, as
well as the visibility hull of an N-vertex polygon
can be computed in time O(N); see [12, 13, 19].
An application of visibility algorithms arises when
detecting separability of polygons [7, 10, 18, 19].
Consider two nonintersecting N-vertex polygons
IP and @. IP is called (translation) separable from
@ in a given direction d if IP can be translated
by an arbitrary distance in direction d without col-
liding with @; see Fig. 3.

The concept of separability can be further general-
ized to sets of polygons. A set of M non intersecting
polygons is called sequentially separable in a given
direction d if the set of polygons can be moved
to infinity by a sequence of M translations in direc-
tion d, one for each polygon, such that no collision
occurs.

358

Formally, this is defined as follows: A set
{IP, ..., P} of M nonintersecting N-vertex poly-
gons is sequentially separable in a given direction
d if there exists an ordering I, , ..., IP, of these
polygons such that every IP, is separable (in direc-
tion d) from I, , ..., B, (the set of polygons not
yet separated). For more details see e.g. [19] and
[10].

Figure 4 shows an example of a polygon which
is separable from a set of polygons.

For the standard sequential model of computation
[19] showed that the problem of detecting whether
two N-vertex polygons are separable and whether
M N-vertex polygons are sequentially separable in
a given direction d can be solved in time O(N)
and O(MN log(MN)), respectively.

Summarizing, the geometric problems we will
study in this paper are the following:

— computation of the visibility polygon from a
point contained in a polygon with holes,

— computation of the points on the boundary of
a polygon which are visible in a given direction

— computation of the visibility hull of a polygon
for a given direction d,

— detection of separability of two polygons in a
given direction d, and

— detection of sequential separability of a set of
polygons.

1.2 Mesh-of-Processors architecture

The parallel architecture considered in this paper
for solving the above problems is the Mesh-of-Pro-
cessors of size N; i.e.,, a set of N synchronized pro-
cessing elements (PEs) arranged on a]/IV X I/N
grid where each PE is connected to its direct neigh-
bors by bi-directional communication links (see
Fig. 5).
Each processor has a constant number of registers
and within one time unit it can simultaneously send
an output and receive an input through each of
its communication links.
A more detailed description of the Mesh-of-Proces-
sors can be found, e.g., in [UL 84] (Chapts. 4.1,
4.2, and 4.4).
Several standard techniques which will be used fre-
quently in the remainder of this paper have been
developed for designing algorithms on a Mesh-of-
Processors (see e.g. [20, 15, 21, 8];
— sending data from one PE to another (non-adja-
cent) PE,

Fig. 5. A Mesh-of-Processors

“Visual

Computer
1 2 3 4 1 2 3 4
8 7 6 5 5 6 7 8
910 11 12 910 11 12
16 15 14 13 1314 15 16
a b
Fig. 6. a Snake-line and b row-major ordering of a 4 x4
Mesh-of-Processors

— broadcasting information from one PE to all
other PEs,

— rotating data within rows or columns of PEs,

— sorting with respect to a register; i.e., permutat-
ing the data stored in the PEs such that they
are sorted with respect to the given register in
e.g. snake-like or row-major ordering (see Fig. 6).

All these operations can be performed in time

O(/N).

Note, that on a Mesh-of-Processors a worst-case

time complexity of O(VN) is optimal for solving

any nontrivial problem since for comparing the
contents of two PEs it is necessary to route the

data through the mesh which may take Q([/]T/')
steps (see [15]).

1.3 Divide-and-conquer
on a Mesh-of-Processor

Divide-and-conquer is a very important and fre-
quently used method for the design of efficient
mesh algorithms. The basic idea is the same as
for the standard sequential machine model: a prob-
lem is divided into two subproblems of equal size,
each subproblem is solved separately, and finally
the solutions of the subproblems are used to com-
pute the solution of the entire problem. For a
Mesh-of-Processors it is different in that, when the
problem is divided into two subproblems, the mesh
is split into two submeshes and the subproblems
are solved in parallel, one in each submesh.

(1) Split:

(a) The problem is divided into two subprob-
lems of equal size.

(b) The mesh is split into two submeshes of
equal size (by either a horizontal or vertical
split line to minimize the diameter of the sub-
meshes).

359

Visual

1
Computer
—»> > > > —»>
Split Split Split Split Solve
- - > ->
Merge Merge Merge Merge

Fig. 7. Trace of the submeshes involved in a divide-and-conquer algorithm

(c) The data for each subproblem is moved into
a submesh; ie., the registers of the PEs of
a submesh.
(2) IF the size of each submesh is smaller than a
given constant C
THEN
Solve:
All submeshes (in parallel) solve their sub-
problem.
ELSE
Recur:
All submeshes (in parallel) recursively solve
the subproblems for the data stored in the
submeshes.
(3) Merge:
The solutions of the subproblems computed by
the submeshes are used to compute the solution
of the entire problem.

A description of how to implement a recursive al-
gorithm on a Mesh-of-Processors can be found in
[21], Chapt. 4.4.

Note, that the total overhead for implementing a
divide and conquer algorithm on a Mesh-of-Pro-

cessors of size N is O(Vﬁ) time and linear space
(one additional register for each PE).
Thus, given that the split and merge phase can

be computed in time O(]/ITI), we get the following
recurrence for the time T(N) of the entire algo-
rithm:

T(C)=0(1)
T(N) =T(%)+0(]/]TI);

therefore, T(N)=0(]/]V).

It is easy to observe that the same result follows
if, instead of splitting a problem into two subprob-
lems of equal size, a problem of size N is split

360

into two subproblems of size «N and (1 —a)N, re-
spectively, for any O <a < 1.

1.4 Overview of results

The remainder of this paper is organized as fol-
lows:

— In Sect. 2 we will present an O(Vﬁ) time algo-
rithm for computing, on a Mesh-of-Processors
of size N, the visibility polygon from a point
contained in an N-vertex polygon with holes.

— In Sect. 3.1 we will describe how the above algo-

rithm can be modified to yield an O(Vﬁ) time
algorithm for computing, on a Mesh-of-Proces-
sors of size N, the set of all points on the bound-
ary of an N-vertex polygon which are visible
in a given direction d as well as the visibility
hull for direction d.

— The above algorithms will be utilized in Sect. 3.2
for detecting separability of polygons in a given

direction d. We will obtain an O(Vﬁ) time algo-
rithm for detecting on a Mesh-of-Processors of
size 2N whether two N-vertex polygons are sep-

arable, and an O(I/N) time algorithm for detect-

ing on a Mesh-of-Processors of size M N whether

M N-vertex polygons are sequentially separable.
All proposed algorithms are asymptotically opti-
mal with respect to time and number of processors.
Recently [5] presented an O(N) time parallel algo-
rithms for solving both of the above visibility prob-
lems on a linear processor array of size N; i.e.,
a linear arrangement of N PEs where each PE is
connected to its both neighbors (if they exist). Their
solutions are clearly asymptotically optimal for lin-
ear processor arrays. However, since these prob-
lems can be solved on the standard sequential ar-
chitecture in time O (N log h) and O (n), respectively,
these solutions do not provide a significant speed-

The

up, especially when taking into account the amount
of additional hardware necessary.

Their solutions are based on an exhaustive search
strategy which involves O(N?) comparisons. It is
easy to see that O(N?) comparisons can not be
executed on a Mesh-of-Processors of size N using
fewer than O(N) steps. Thus, such methods cannot

be generalized to yield O(I/N) time solutions on

a Mesh-of-Processors (Umeo, H., private commu-

nications).

Compared to the algorithms in [5] the solutions

presented in this paper have the following advan-

tages:

— They yield a significant speedup.

— From a VLSI point of view, the hardware com-
plexity (area) of a linear array and a mesh differ

only in a constant factor. Hence, our O(I/N) time
solutions for the Mesh-of-Processors also yield
a significant increase in efficiency.

— The solutions presented in this paper are more
general and include the solutions in [5]. Atallah

[3] has shown that any O(]/N) time algorithm
on a mesh can be simulated on a linear array
to run in linear time (but not vice versa).

2 Computing the visibility
polygon from a point

Consider a given polygon IP with holes IP, ..., I,
and a point p (from which to compute the visibility
polygon) contained in IP. Let N be the total number
of edges.

Assume further the polygon is given by the set
[E of edges of P, IP,, ..., B, where each edge e is
directed such that the interior or IP is to the left

Nisual —
Computer

of e. Edges of IP are directed in counterclockwise
order around the border of IP whereas the edges
of the holes are directed in clockwise order (see
Fig. 8 for an illustration).

For an edge e=xy we will refer to vertex x as
the start vertex and to vertex y as the end vertex
of e.

Description of the required input

The algorithm for computing the visibility polygon

from p assumes the following initial configuration:

— Each PE of the Mesh-of-Processors stores the
coordinates of the two vertices of one distinct
(arbitrary) edge ecE.

— Each PE also stores the coordinates of the point

p.

Description of the output

The visibility polygon will be reported as the set
of all visible intervals where a visible interval is
defined as a maximal interval of an edge e€lE that
is entirely visible from p; see Fig. 9. The same edge
may contain several different visible intervals.

In particular, when the algorithm terminates then
each of the visible intervals will be stored in one
(arbitrary) PE. Note, that the number of visible
intervals is at most O (N).

From the set of all visible intervals a list of the
edges of the visibility polygon in clockwise order-
ing (represented, e.g., as snake-like ordering in the

mesh) can be easily obtained in time O(I/N) by
sorting the visible intervals by the angle of the po-
lar coordinates (with respect to center p) of their

Fig. 8. Representation of a polygon with holes by a Set E
of directed edges

visible interval

Fig. 9. The set of all visible intervals

361

— "Visual —
Computer

start vertices; see [20] for an O(W) time sorting
algorithm.

2.1 Global structure of the algorithm

To compute the visible intervals, the algorithm will
consider polygon IP together with its holes as an
unordered set IE of directed edges and compute
for each edge in the visible intervals (if they exist).
A point g on an edge e€lE is visible from p if the
open line segment from p to g does not share a
point with any other edge ¢’ €lE.

Consider the two horizontal rays R, and R, eman-
ating from p to the left and right, respectively (see
Fig. 10). In the remainder we will describe how to

compute in time O(I/N) the visible intervals for
the set IE' of all edges e€lE below R; and R,; for
edges intersecting R, or R, only their part below
R, and R, will be considered (as shown in Fig. 10).
Note, that the number of edges eclE’ may be N
in the worst case. Hence, for simplicity, we will
also refer to N to denote the number of edges in
E.

The visible intervals for the set of edges above the
rays R, and R, can be computed in a second analo-
gous step.

Since the complete description of the algorithm is
quite involved we will first sketch the algorithm
omitting important details to be further explained
in the subsequent Sects. 2.2 and 2.3.

The basic idea for computing in parallel the visible
intervals for all edges ecIE’ is based on the follow-
ing observation:

Consider a ray R originating at p which splits IE’
into two sets IE; and [E, of edges to the left and

right of R (see Fig. 10); those edges intersecting
R are split into two edges, one for each subset.
For any point g on an edge e€IE,, g¢R, the straight
line segment from p to q cannot be intersected by
any edge ¢ €[E;, and vice versa.

Hence, the visible intervals for IE, and [E, can be
computed independently in parallel. The union of
both sets of visible intervals yields the set of visible
intervals of [E’ except that adjacent visible intervals,
on those edges eclE' which intersect R, have to
be merged to form one contiguous interval.

The global structure of the proposed algorithm for
computing the visible intervals for all edges below
R, and R, can therefore be expressed using the fol-
lowing divide-and-conquer approach:

(1) Split:

The ray R originating at p to the vertex with

median polar angle (with respect to center p)

of the vertices of all ecIE’ is computed

— R splits the area below R, and R, into two
sectors Sect, and Sect, to the left and right
of R, respectively.

— R splits [E' into two subsets IE; and IE], where
[E; and IE, are the sets of segments ecIE’ con-
tained in Sect, and Sect,, respectively; edges
(properly) intersecting R are split into two
parts, one for each sector.

The mesh is split into two submeshes.

Each subset of edges, [E; and [E;, is moved into

one submesh. (Each edge is stored in one arbi-

trary PE of the submesh)
(2) IF the maximum number of edges stored in a
submesh is smaller than some constant C
THEN
Solve:
Each submesh (in parallel) computes the visi-
ble intervals for the current set of edges.

A

£k

Sect
r

Fig. 10. Basic divide-and-conquer
mechanism

362

ELSE
Recur:
Each submesh which stores more than C
edges (in parallel) recursively computes the
visible intervals for its current set of edges.
(3) Merge:
All pairs of visible intervals which share the
same common point with R and are contained
in the same edge eclE are determined; each
such pair is merged to form one contiguous in-
terval.

2.2 A solution to the problem
of edges duplication

The major problem encountered by the above re-
cursive algorithm is that in the split phase all edges
intersecting the ray R are split into two edges, one
for each sector. If, e.g., all N edges intersect R then
the total number of edges doubles since each edge
is duplicated and the number of edges for each
subproblem is again N.

If this happens repeatedly then the mesh may over-
flow since it can only store O(N) edges and, further-
more, the recursion may not terminate since the
problem size does not decrease.

To overcome this problem we consider the follow-
ing classification of edges eclE’:

An edge e is called luff edge if p is on the left
side of e and lee edge if p is on the right side of
e; see Fig. 11a and b for an illustration.

With these definitions the following observations
are a straightforward consequence of the Jordan
Curve Theorem:

Observation 1:

(a) Lee edges cannot contain a visible interval.

(b) The edges in set [E represent a polygon with
holes; i.c., every edge is part of a closed curve
(see Figs. 9, 10). Thus, every point g contained
in IP which is invisible from p because of a lee
edge ecE (ie., the straight line segment be-
tween g and p is intersected by e) is also invisible
from p because of a luff edge ¢ clE (ie., the
straight line segment between g and p is inter-
sected ¢e).

(c) From (a) and (b) it follows that the deletion
of lee edges does not change the set of visible
intervals; i.e., after deletion of a lee edge e every
point is visible from p if and only if it is visible
from p for the complete set of edges including e.

“Visual
Computer

(d) The edges ecE intersecting the ray R form an

alternating sequence of luff and lee edges which
is starting and ending with a luff edge; see
Fig. 10 and 11c.
Two edges which are of the same type (luff or
lee) and are intersected by R at a common point
(see Fig. 11d) count as one edge (of type luff
or lee, respectively); two edges of different type
which are intersected by R at a common point
(see Fig. 11¢) count as two distinct edges.

Observation 1 leads to the basic idea on how to
overcome the duplication problem: After the ray
R has been selected to divide the problem into two
subproblems of equal size as described in Sect. 2.1
every luff edge intersecting R is split into two edges,
one for each sector, and every lee edge intersecting
R is deleted.

From observation 1d it follows that the number
of luff edges (intersected by R) exceeds the number
of lee edges (intersected by R) by one. Every luff
edge intersecting R except ey, the luff edge inter-
secting R furthest from p (see Fig. 11¢), has a subse-
quent lee edge intersecting R. Therefore, after elimi-
nating all lee edges and splitting all luff edges inter-
sected by R, the total total number of edges in-
creases only be one. The edge e, can be eliminated
by broadcasting e, to all edges in Sect; and Sect,,
reducing them to the part which is not invisible
from p because of e, and eliminating e, from
further consideration in subsequent split phases.
The visible intervals contained in e, can be easily
computed at the end of the merge phase.
Furthermore, it is obvious that the numbers of
edges added and deleted in Sect, and Sect,, respec-
tively, are the same.

Therefore (with the above modifications), after the
split phase terminates the total number of edges
remains (at most) constant and every sector con-

tains (at most) %edges.

However, when the algorithm continues to recursi-
vely compute the visible intervals in Sect, and Sect,
on one half of the mesh, each, Observation 1d may
no longer be valid:

Assume that Sect, is again split by another ray
into two subsectors then the edges intersecting this
ray may no longer be an alternating sequence of
luff and lee edges since some of the lee edges may
have already been deleted in a previous split
phase.

Consider, in general (for any stage of the algo-

363

—"Visual
Computer

€ Jast

Fig. 11a—e. Luff and lee edges.
a A luff edge. b A lee edge. ¢ Luff
and lee edges intersecting the ray R.
d Two luff edges intersected by R
at a common point. e A lee and

e luff edge intersected by R at a
common point

rithm), a ray R subdividing a sector between two
rays R, and R, into two subsectors Sect; and
Sect,, and the sequence of edges intersecting R
sorted in increasing order with respect to the dis-
tance of the point of intersection with R from p.
Assume that there are k> 1 luff edges intersecting
R which are not succeeded by a lee edge. Hence,
when all luff edges intersecting R are split into two
luff edges and all lee edges intersecting R are de-
leted then the total number of edges increases by
k. If k is large then this may lead to the same prob-
lems as described at the beginning of this section.
Consider the first luff edge e, intersecting R
which is not succeeded by a lee edge; see Fig. 12a,
(Note, that from all edges intersecting R and suc-
ceeding ey, only luff edges whose successor is also
a luff edge are depicted in Fig. 12.) The lee edge

€. Missing between e, and its successor has been
deleted in a previous split phase. Thus, e, must
also intersect either R, or R,. Assume, we know
that e, intersects R and R, then for all luff edges
intersecting R which are successors of e, the part
of these edges contained in Sect, is not visible from
p because of e,... Hence, these edges do not have
to be split into two parts (one for each sector).
Instead, they can simply be reduced to the part
contained in Sect, (see Fig. 12b). In fact, all other
active edges in Sect; which are not visible from
p because of e, can also be deleted without chang-
ing the result.

This yields the result that the total number of edges
increases by at most one. This additional edge can
again be avoided by eliminating e, as described
above. With this, the total number of edges does

Fig. 12. Active luff edges
intersecting R without a
subsequent intersecting
lee edge

364

not increase. However, Sect, may now contain
many more edges than Sect;. In the worst case
k=N and, hence, Sect, contains N edges while
Sect, contains one edge only. This difference in
the sizes of the subproblems may unbalance the
recursion scheme such that the algorithm may take

more than O(I/IT/') steps.

In the following Sect. 2.3 we will introduce an up-
per bound k, for k such that if k<k, for each
split phase then the divide-and-conquer mecha-
nism is sufficiently balanced to yield an optimal
time algorithm.

In case k>k a rebalancing step which selects an-
other “better” ray R’ to divide the problem is per-
formed as follows:

Consider the set IE* of all luff edges in Sect, which
share their start vertex with the ray R; see Fig. 13.
Note, that |IE*| > k.

For all ecE* the visible intervals for e, pretending
that except for the set [E* there was no other edge
contained in Sect,, are computed. Since all ecIE*
share their start vertex with R this can be per-
formed in time O(]/|IE*|) by applying some sorting
procedures (the details will be described in
Sect. 2.3).

Obviously, each eeIE* has at most one such visible
interval which also contains the end vertex of e.
If we shrink each ecIE* to its visible interval, if
if exists, and delete it otherwise then it is easy to
see that for the entire set of edges in Sect, the
visible intervals remain unchanged.

e
lee

Sect,

Fig. 13. Computing the Visible Intervals for the Set IE*

"Visual —

Lomputer

The new ray R’ is defined by the median of the
angles of the polar coordinates (with respect to
center p) of all vertices of the final set of edges
between R, and R,.

Compared to the initial set of edges in Sect, and
Sect,, all edges in Sect; which are not visible from
p because of e, have been deleted; in Sect,, edges
ecIE* have been shrunk such that the new end
vertex is now closer to R,.

Observation 2:
(a) R’ lies between R and R, and (b) R’ is inter-
sected by at most one (modified) edge ecE*.

It will be shown in Sect. 2.3 that from this observa-
tion it follows that the number of luff edges inter-
secting R’ which are not succeeded by a lee edge
is smaller then k.

Therefore, R’ splits the problem into two sufficient-
ly balanced subproblems.

In the following section, the implementation of the
split and merge phase of the algorithm will be ex-
plained in detail.

Note, that we assumed e, to intersect R and R;.
However, it is necessary to determine whether in
fact this is the case or whether the symmetric case,
ie. .. intersects R and R,, occurs. The problem
arising here is that e, has been deleted in previous
steps to limit the number of edges the Mesh-of-
Processors has to store. It turns out that we can
not simply delete lee edges intersecting a split ray
R but have to retain some data to determine in
subsequent split phases which of the above cases
occurs. On the other hand it must be ensured that
these data are not again duplicated during split
phases.

2.3 Complete description
of the algorithm

In this section we will describe the complete version

of the algorithm to compute in time O(Vﬁ) the
visible intervals for the set IE' of all edges eclE
below the two opposite horizontal rays R; and R,
starting at p (where edges e€lE intersecting R, or
R, are reduced to the part below the intersection
point); see Fig. 10. As shown in Sect. 2.1, this yields

an optimal O(VN) time algorithm for computing
the visibility polygon from a point contained in
a polygon with holes.

365

g e

— "Visual
Computer

In order to solve the problem of duplicate edges
as described in Sect. 2.2 each edge ecE’ will be
initially stored as follows:

— If e is a luff edge then one copy of e, which
will be referred to as active edge, is stored in
an arbitrary PE.

— If e is a lee edge then three copies of e, which
will be referred to as active edge, passive entering
edge, and passive leaving edge, respectively, are
stored in an arbitrary PE.

A lee edge which is either a passive entering edge
or a passive leaving edge will be referred to as
passive edge; the initial set of all active and passive
edge as described above will be referred to as 2.
The active edges represent the actual set IE. The
purpose of the passive edges is to retain informa-
tion about lee edges which have been deleted. The
major difference between active and passive edges
is that active edges are duplicated if they intersect
a ray R which is introduced to subdivide the prob-
lem (see Fig. 14a) whereas passive edges are not
duplicated in such a case. Instead, if a passive edge
e and ray R share a point u then e is modified
as follows:

— If e is an entering passive edge with end vertex
v then e is reduced to the edge with start vertex
u and end vertex v (see Fig. 14b).

_ If e is a leaving passive edge with start vertex
v then e is reduced to the edge with start vertex
v and end vertex u (see Fig. 14c¢).

Entering passive edges will always be stored in the

sector which contains their end vertex whereas

leaving passive edges will be stored in the sector

which contains their start vertex.

In the remainder of this section we will present

in detail the algorithm to compute in time O(]/N)

the visible intervals for the edge set IE'. In particu-

lar, we describe

— the initial configuration of the Mesh-of-Proces-
sors, (the output is, as before, the set of visible
intervals of IE' where each visible interval is
stored in one arbitrary PE)

— the split phase,

— the recur/solve phase, and

— the merge phase.

After all steps of the algorithm have been presented

it’s correctness and time complexity will be estab-

lished.

v

R

Fig. 14. Active (a), entering passive
(b), and leaving passive (c) edges
intersecting a split ray R

<

366

The

Initial configuration of the
Mesh-of-Processors

The Mesh-of-Processors is initialized as follows:

— Each PE of the Mesh-of-Processors stores the
coordinates of the vertices of at most three edges
e ezi.

— Each PE stores the coordinates of the point p
and the angle of the left and right boundary R,
and R, of the current sector.

The split phase

The split phase is the most complicated part of
the algorithm. The sequence of steps given below
describes the split phase for a set X of active and
passive edges in the sector between two rays R,
and R, (R, and R, are emanating downwards from
p and R, is to the left of R,). Initially, 2=2,
R, =R;,and R, =R,. :

Let vert(Z) denote the set of start and end vertices

of all active edges e€X, start vertices of all leaving
passive edges eeX, and end vertices of all entering
passive edges ee 2. Furthermore, let n:=|vert(Z)|.

Step S1:

A split ray R is selected such that the direction
of R is the median angle of the polar coordinates
(with respect to center p) of the vertices ve vert(X).
Let Sect, and Sect, denote the subsector between
R, and R, and the subsector between R and R,,
respectively.

Step S 2:

(a) All active edges eeX intersecting R are sorted
by increasing distance of their intersection with
R from p.

(b) k, €1ast» €rirst» and ey, (if exist) as defined in
Sect. 2.2 are determined.

Step S3: >

(a) All active luff edges intersecting R (except e;,q)
are split into two active luff edges, one for each
subsector Sect; and Sect,, respectively, and ac-
tive lee edges intersecting R are deleted. All en-
tering and leaving passive edges which intersect
R are reduced to the part contained in Sect,
and Sect,, respectively, as described at the be-
ginning of this section.

(b) All active edges are reduced to the portion
which is not invisible from p because of e,;

“Visual —
Jomputer

e.s 15 deleted as an active edge. (However, infor-
mation about ey, will be retained for the merge
phase; see Step S 6).

Step S4:

If k> 1 then the following is executed.
If ¢, is a leaving passive edge then all active
edges in Sect, which are not visible from p be-
cause of e, are deleted (see Fig. 12). If ¢, is
an entering passive edge then all active edges
in Sect, which are not visible from p because
of e, are deleted.
Note, that every passive edge whose active copy
(active lee edge) was deleted in a previous split
phase is contained in a sector only as either en-
tering or leaving passive edge (see Step S3a).

Step S5:
Ifk>k r=3n then the following Steps (a) and (b)

are executed.

(a) A new split ray R’ is determined as follows:
Assume, e, is a leaving passive edge; otherwise
replace Sect, by Sect; and ‘clockwise’ by ‘coun-
terclockwise’.

The set IE* of all active luff edges in Sect, which
share their start vertex with R (see Fig. 13) is
determined. For all eeIE* the visible intervals,
pretending that except for the set IE* there was
no other edge in Sect,, are computed as follows:
All eeIE* are sorted in clockwise ordering
with respect to the angle of the polar coordi-
nates (with respect to center p) of their end
points. This ordering will be referred to as
polar ordering.
All ecE* are sorted in increasing order with
respect to the distance of their start points
(all start points lie on R) from p. This ordering
will be referred to as R ordering.
For each eclE*, from all those edges in IE*
that have lower rank with respect to R order-
ing, the edge ¢’ with maximum rank with re-
spect to polar ordering is computed as de-
scribed in [9] pp. 305-306. If the line through
p and the end vertex of ¢ has a common
point u with e then the visible interval of e
(with respect to IE*) is the interval from u
to the end vertex of e, otherwise it does not
exist.
Each eclE* is reduced to the visible interval
(with respect to IE*) if exists; otherwise, e is de-
leted. Let X’ denote the set of all remaining ac-
tive and passive edges in Sect; and Sect,.

367

— " Visual
Computer

The new split ray R’, whose direction is the me-
dian angle of the vertices ve vert(X'), is comput-
ed.

(b) The split phase is started again at Step S2 with
R’ and X' instead of R and X, respectively.
(We will show that for R’ and X' the above
condition for the execution of Steps S5a and
S5b does not hold and, therefore, in the second
execution of the split phase the algorithm will
proceed with Step S6.)

Let ¥, and ¥, denote the sets of all remaining
active and passive edges in Sect; and Sect,, respec-
tively. Let e, and ¢',, denote the edge e, of
Step S3b with respect to R and R’ (if k>k/), re-
spectively.

Step S6:

The Mesh-of-Processor is split into two submeshes
M, and M, (by either a horizontal or vertical split
line to minimize the diameter of the submeshes)
such that the ratio of number of PEs in M, to
number of PEs in M, is :—EL:

2

The edges in ¥; and X, are moved to the PEs
in M, and M,, respectively (at most three edges
per PE). Furthermore, each PE updates its current
sector (all PEs in M, belong to the sector between
R, and R; all PEs in M, belong to the sector be-
tween R and R,). A PE located at the border be-
tween M, and M, stores the edges ey, and €',
(if exist).

The recur/solve phase

Let n, :=|vert(X,)| and n,:=|vert(X,)|.

If max{n,,n,} <7 then M; and M, (in parallel)
directly compute the visible intervals for 2; and
X,, respectively. Otherwise, each submesh M;
(i=1, 2) with n;>7 recursively computes (in paral-
lel) the visible intervals for its set X; of edges.

The Merge phase

All pairs of visible intervals which share the same
common point with R and are contained in the
same edge eeX are determined; each such pair
is merged to form one contiguous interval.

Furthermore, ey, and €', (if k>k,) are broad-
casted through M, and M,, and the visible inter-
vals contained in e, and €', determined.

368

Correctness and time complexity
of the algorithm

We will now prove the correctness of the algorithm.
In particular, we will prove for the above algorithm
that the total problem size does not increase and
that the sizes of the subproblems are sufficiently
balanced. To simplify exposition we will prove this
not in terms of the total number of edges and
number of edges of the subproblems, respectively,
but in terms of number of vertices of these edges
which is equivalent. (For passive entering and leav-
ing edges only their and and start vertices, respec-
tively, are counted.)

Lemma 3. Let X, X%,,%,,n,n,,n,, e, and k be de-
fined as in the algorithm and let k' denote the value
of k for the second execution of Steps S2 to S5 (if
k>k;).

(@ ny+n,<n

(b) Ifkskf=§n then n; <an and n, <an for some
O<a<l.

() If k>k f=% n then, for the second execution of

Steps S2to S5, k’skf=§n.

Proof.
(a) Follows from Sect. 2.2 and the fact that passive
edges are not duplicated.

(b) Assume that k<k f=% n and that ¢, is a leav-

ing passive edge as shown in Fig. 12 (otherwise
exchange for the remainder n, and Sect, with
n, and Sect,, respectively). From Steps S3 and
S4 of the algorithm, and Sect. 2.2, it follows that
the number of vertices in Sect. 1 decreases by
at least k whereas the number of vertices in
Sect, increases by k.

n 1 n 9
H <——k<— <—+k<—n.
ence,nl_2 k_2nandn2_2+k_10n

Therefore, (b) holds for a= i

10
(c) Let k>k ,=% n. From Step S5 of the algorithm
and Observation 2b it follows that k'<

m—|[E*| + 2, where [E* is defined as in the algo-
rithm and m is the number of active edges at
the end of Step S5 a (when R’ is determined).

g Yo

Since m<2 and |E*|>k >§ n (see Sect. 2.2) it

follows that k' S%—% n+2$% n, for n>7.
Since for n < 7 the visible intervals are computed
directly (see recur/solve phase), part (c) follows.

O

Lemma 3a shows that the total number of vertices,
and therefore also the total number of edges, does
not increase. From Lemma 3b it follows that the

selection of the upper bound k, =% n for k provides

that the sizes of the subproblems are in the worst
case balanced with a ratio of 9 to 1 (with respect
to number of vertices). Furthermore, Lemma 3¢
shows that in case k>k, the modification of the
edge set and selection of the new split ray R’
(Step S5) ensures that in the second execution of
Step S2 to S5 of the split phase k'<k,.

Note that the selection of k f=§n is not the only

possible one. In fact, it is easy to see that every

k;=pBn for 1</3<%, provided that nzL is

possible. 4 :

py

Theorem 4. The visibility polygon from a point p
contained in an N-vertex polygon (possibly with
holes) can be computed on a Mesh-of-Processors of

size N in asymptotically optimal time O(I/N).

Proof. The correctness of the algorithm follows
from Sects. 2.1, 2.2, and Lemma 3. Furthermore,
it is easy to see that the split and merge phase
can be performed in time O(]/;)=O(]/N) since
they can both be implemented by a constant

number of the standard O(I/ITI) time operations
listed in Sect. 2.1 and the technique described in

[9] which also has a time complexity of O(VITI).
Therefore, it follows from Sect. 1.3 and Lemma 3b
that the time complexity of the algorithm is
O()/N).

From Lemma 3 it also follows that, in addition
to p and its current sector, every PE has to store
at most 3 active or passive edges. Furthermore,
each PE which is located at the boarder of a sub-
mesh may have to store the edges e, and €',
(if exist) created in the respective split phase. Since
every PE can be located at no more than 4 borders,
it follows that for each PE the total space require-
ment is a constant number of registers. []

“Visual —
Computer

3 Extensions and applications
3.1 Parallel visbility, the visibility hull

The parallel visibility problem for direction d can
be seen as a special case of the visibility from a
point p located at infinity in direction —d.

In fact, the algorithm in Sect. 2 for computing the
visible intervals from a point p can be easily modi-
fied to compute the visible intervals with respect
to parallel visibilty in direction d by (1) introducing
perpendicular x- and y-coordinate axes where the
x-axis is parallel to d and all vertices of IP have
positive x-coordinate and (2) replacing for every
vertex with coordinates (x, y), the angle and dis-
tance of the polar coordinates (with respect to
center p) by y and x, respectively.

Theorem 5. The visible intervals and the visibility
hull of an N-vertex polygon IP with respect to paral-
lel visibility in a given direction d can be computed
on a Mesh-of-Processors of size N in asymptotically

optimal time O(I/N).

3.2 Separability of polygons

An application of visibility hulls arises when de-
tecting separability of polygons. Consider two N-
vertex polygons IP and @. Toussaint [19] has
shown that IP is separable from @ in a given direc-
tion d if and only if the visibility hulls of IP and
@Q with respect to direction d do not intersect.
Hence, the separability of two N-vertex polygons
in a given direction d can be detected on a Mesh-of-
Processors of size 2 N (where each polygon is stored
on one half of the mesh) by computing for each
polygon its visibility hull and, then, determining
whether both visibility hulls intersect. Since inter-
section of two N-vertex polygons can be detected

in time O(]/IT/') as described in [16], we get the
following

Theorem 6. On a Mesh-of-Processors of size 2N it
can be decided in asymptotically optimal time

O(I/N) whether an N-vertex polygon is separable
from another N-vertex polygon in a given direction
d.

Toissaint [19] has also proved that a set of poly-
gons is sequentially separable in a direction d if

369

— " Visual
Computer

and only if for each pair of polygons their visibility
hulls with respect to direction d do not intersect.
Furthermore, Miller and Stout [16] showed that
for M N-vertex polygons it can be decided on a

Mesh-of-Processors of size M N in time O(]/ MN)
whether any of these polygons intersect. This yields

Theorem 8. On a Mesh-of-Processors of size M N
it can be decided in asymptotically optimal time

O()/M N) whether M N-vertex polygons are se-
quentially separable in a given direction d.

References

—

. Asano T, Asano T, Guibas L, Hersberger J, Imai H (1985) Visi-
bility polygon search and Euclidean shortest paths. Proc IEEE
Symp FOCS, pp 154-164
2. Asano T (1985) An efficient algorithm for finding the visibility
polygon for a polygonal region with holes. Trans IECE Jpn,
vol E-68, no 9, pp 557-559

3. Atallah MJ (1985) Simulations between mesh-connected proces-
sor arrays. Proc 20th Ann Allerton Conf Commun Control
Comput, Monticello, III, (October 1985), pp 268-269

4. Aggarval A, Chazelle B, Guibas L, O’Dunlaing C, Yap C (1985)
Parallel computational geometry. Proc 26th IEEE Symp FOCS,
Portland Oregon (October 1985), pp 468477

5. Asano T, Umeo H (1987) Systolic algorithms for computing
the visibility polygon and triangulation of a polygonal region.
Proc Int Workshop Parallel Algorithm Architect, Suhl, GDR
(May 1987), pp 77-85

6. Chazelle B (1984) Computational geometry on a systolic chip.
IEEE Trans Comput, C-33 (9):774-785

7. Chazelle B, Ottmann T, Soisalon-Soinen E, Wood D (1983) The

370

complexity and decidability of Separation™. Tech Rep CS-83-
34, Data Structuring Group, Univ Waterloo
8. Dehne F (1986) Parallel computational geometry and clustering
methods. Tech Rep SCS-TR-104, School Comput Sci, Carleton
Univ, Ottawa
9. Dehne F O(n'/?) Algorithms for the maximal elements and

ECDF searching problem on a mesh-connected parallel com-
puter. Inf Proc Lett 22:303-306

10. Dehne F, Sack J-R (1987) Translation separability of sets of
polygons. The Visual Computer 3 (4):225-233

11. Freeman H, Loutrel PP (1967) An algorithm for the two-dimen-
sional “hidden line” problem. IEEE Trans Electron Comput
EC-16 (6):784-790

12. El Gindy H, Avis D (1981) A linear algorithm for computing
the visibility polygon from a point. J Algorithms 2:186-197

13. Lee DT (1983) Visibility of a simple polygon. Comput Vision
Graph Image Proc 22:207-221

14. Lodi E, Pagli L (1986) A VLSI solution to the vertical segment
visibility problem. IEEE Trans Comput C-35 (10):923-928

15. Miller R, Stout QF (1984) Computational geometry on a mesh-
connected computer. Proc IEEE Int Conf Parallel Proc, pp 66—
73

16. Miller R, Stout QF (1987) Mesh computer algorithms for line
segments and simple polygons. Proc IEEE Int Conf Parallel
Proc, pp 282-285

17. Preparata FP, Shamos MI (1985) Computational geometry.
Springer, Tokyo Berlin Heidelberg New York

18. Sack J-R, Toussaint GT (1985) Translating polygons in the
plane. Proc STACS ’85, Saarbriicken, Federal Republic of Ger-
many, pp 310-321

19. Toussaint GT (1985) Movable separability of sets. In: Toussaint
GT (ed) Computational Geometry. North Holland, Amsterdam
New York Oxford Tokyo, pp 335-376

20. Thompson CD, Kung HT (1977) Sorting on a mesh-connected
parallel computer. Commun ACM 20 (4):263-271

21. Ullman JD (1984) Computational aspects of VLSI. Principles
of Computer Science Series, Computer Science Press, Rockville,
MD

