Parallel Computing 12 (1989) 221-231 221
North-Holland

Computing the configuration space
for a robot on a mesh-of-processors *

Frank DEHNE, Anne-Lise HASSENKLOVER and Jorg-Riidiger SACK

Center for Parallel and Distributed Computing, School of Computer Science, Carleton University, Ottawa,
Canada K1S 5B6

Received June 1988

Abstract. In this paper, we present a systolic algorithm for computing the configuration space of an arrangement
of arbitrary obstacles in the plane for a rectilinearly convex robot. The obstacles and the robot are assumed to
be represented in digitized form by a v X/n binary image. The algorithm is designed for a Mesh-of-Processors
architecture with n processors (using the canonical representation of an image on a processor array) and has an
execution time of O(yn) which is asymptotically optimal.

Keywords. Computational geometry, robotics, image processing, systolic algorithms.

1. Introduction
1.1. Problen description

Recently, a growing interest in motion planning problems has been observed. This is due to
the variety of application areas in which such problems arise: e.g., robotics and computer
graphics.

The classical path planning problem is to find a shortest path for a robot, R, located at some
initial position to some final position in the presence of a collection of polygonal obstacles.
During the entire motion, no collision may occur between the robot and any of the obstacles.

The problem is easily solved if the robot is representable by a single point, p. In this case,
the solution reduces to finding a shortest path in a graph, for which any of the known
shortest-path graph algorithms can be employed. To construct this graph, first compute the
visibility graph from p with respect to the vertices of all obstacles and the final robot position;
then, this visibility graph is repeatedly augmented by computing those new vertices that are
visible from a vertex reached previously.

While it is simple to solve the problem for point-robots, this does not seem to be a very
realistic assumption. A more realistic view was taken by Lozano-Perez who assumed the robot
to be representable by a convex polygon. In [7], he developed a technique known as the
configuration space approach useful to solve these more general robot problems.

The idea is to shrink the robot, R, to a single point, r, which is referred to as the reference
point of R. Then, the obstacles are grown in such a way that a shortest path for r in the
presence of the grown obstacles is a shortest path for R in the presence of the original

* The first and third author’s research was supported by the Natural Sciences and Engineering Research Council of
Canada.

0167-8191,/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland)

222 F. Dehne et al. / Computing the configuration space for a robot

Fig. 1. The configuration space of polygo-
nal figures.

obstacles. The growing operation can be visualized by placing a pen at the reference point of
the robot and sliding the robot around the obstacles while keeping the same orientation. The
lines traced by the pen determine the grown obstacles. See Fig. 1.

Formally, the configuration space of a set = {0,...,0,,} of m obstacles for a robot R
with reference point r € R is the set

c(0,R)= U c(0; R);
1<ism
i.e., the union of the grown obstacles C(O;, R) defined as follows: Let R':={x—r|x € R}
denote the inverted robot R (with respect to r), then

c(0, R)= U C(p, R’), where C(p, R')={p+q|qER’}.
PEO;

In addition to the above-mentioned path finding problem, the configuration space has
proved to be a valuable tool for a number of other related motion problems (see, e.g., [13]).

For robotics applications, real-time constraints frequently apply. Using standard sequential
computers it may be impossible to meet these time constraints. This motivated our research in
computing the configuration space on a parallel computer architecture.

The parallel machine we selected is the Mesh-of-Processors architecture which will be briefly
reviewed in the following Section 1.2. The architecture has been built and is already used in
many applications such as image processing and computer graphics. (For a survey on
computational geometry algorithms on this and other parallel machines the reader is referred to
the survey article [4].)

As we will show in the remainder of this paper, our approach via the Mesh-of-Processors has
two advantages:

(a) it yields a significant speedup of the computation time for constructing the configuration
space, and

(b) it allows the configuration space to be computed directly from the image of the
arrangement of obstacles (and the robot); e.g., a photograph or sensor data. The algorithm in
[7] mentioned above assumes the obstacles to be approximated by polygons; for image data
(which is the usual form of input in practice) the polygonal approximation would have to be
computed in an additional preprocessing step.

1.2. The Mesh-of-Processors architecture

Two-dimensional arrays of processors have long been proposed for image processing because
Vn X Vn binary images can be naturally mapped onto,4 Mesh-of-Processors of size n which is
an arrangement of n processing elements PE(i, j) arfanged on a square grid. Each PE(j, j) is
connected by bi-directional unit-time communication links to each of its four direct neighbors

F. Dehne et al. / Computing the configuration space for a robot 223

+

+
o

]
i

+

!
i
| +l

g gy

+
+
i

i
+
e

+
i

+
i
it
o+

+
+

Fig. 2. A Mesh-of-Processors of size 100.

(if these exist) as shown in Fig. 2. Furthermore, it is usually assumed that every PE has only a
constant amount of memory cells referred to as registers.

In image processing, processor arrays are mostly used for low-level local operations such as
image restoration, noise removal, computation of connected components, and edge detection
(cf. [2,6,11,12,15]). Recently, they have also been proposed as a machine model for Computa-
tional Geometry. Miller and Stout [8,10] have presented O(Yn) time algorithms for computing
the distance between two images, determining extremal points, diameter, and smallest enclosing
circle of an image, as well as for testing convexity and separability of digitized images. Dehne et
al. [5] have proposed O(y/n) algorithms for computing the contours of an image, and all kth
rectilinear convex hulls of an image stored on a mesh. In [3], Dehne et al. presented an optimal
algorithm for computing parallel visibility for an image stored on a mesh.

1.3. Computing the configuration space on a Mesh-of-Processors

In the following Sections 2 and 3, we will study the problem of computing the configuration
space of an arrangement O of arbitrary polygonal obstacles for a rectilinearly convex robot R.
A polygon is rectilinearly convex if the intersection of the robot with any horizontal or vertical
line consists of at most one interval. The obstacles and the robot are represented as a digitized
Vn X Vn image on a Mesh-of-Processors of size n using the canonical representation; see Fig. 3
for an illustration. Each pixel contained in an obstacle will be called a black pixel while all
other pixels will be called white.

In the remainder, we will refer to an obstacle (or robot) in image representation as digitized
obstacle (or robot, respectively). For images, the same definition of the configuration space
C(0, R) as given in Section 1.1 applies with @ and R being sets of integer lattice points instead
of arbitrary planar point sets.

1L
|+¢|+

i
l+l+l
+

I
-+

-+
T
= b

-
et DI
S

10
B4
T
o
P
e

TR
B

L
!

Ky robot pixel Fig. 3. Representing the robot and the
Il obstacle pixel obstacles on a Mesh-of-Processors.

224 F. Dehne et al. / Computing the configuration space for a robot

The configuration space C(0, R) will be reported by the Mesh-of-Processors by coloring all
pixels (i.e., lattice points) in C(0, R) black.

Assume, for a moment, that the robot has a boundary description which requires only a
constant amount of space. In this case, the configuration space C(@, R) can be computed in a
straightforward manner: a description of R’ is broadcast to all pixels of the obstacles; every PE
representing a black pixel p will then trace the robot boundary and subsequently set all pixels
in C(p, R’) to black. This solution would require O(vn) time.

In general, the description of the robot is not of constant size but may be as large as oWn)
[using an optimal representation of rectilinearly convex robots; if we store the individual pixels
the size may even be £2(n)]. Therefore, two problems arise: each processor cannot store a
complete description of the robot, and, if each processor representing a black pixel p attempts
to send a message to all pixels in C(p, R") to color those pixels black, congestion of
communication lines may occur for neighboring black pixels due to the massive amount of
messages generated.

Storage size and congestion are the main problems to be solved in the remainder of this
paper. We will present an O(/n) time algorithm for computing, for a rectilinearly convex
digitized robot, the configuration space of an arbitrary arrangement of digitized obstacles. The
running time of the algorithm is O(/n) and is, therefore, asymptotically optimal for the
Mesh-of-Processors of size n. Furthermore, we will show that our algorithm also performs
correctly and with the same time complexity for a more general type of robot.

Note that, from this algorithm an optimal parallel solution to the problem of finding a
shortest path follows by applying the O(v/n) time closest internal distance algorithm presented
in [9].

The first step of our algorithm is to encode the robot appropriately. Then we will show how
the configuration space can be computed in optimal time. We use a particular pipelining
technique to communicate R’ to all black pixels and combine this with concurrent pipelining
processes (one for each black pixel) that color for each black pixel p all pixels in C(p, R’). It
must be ensured that during the entire process no pixel receives more than a constant number
of messages and that the amount of storage needed by each processing element is bounded by a
constant.

2. The robot encoding

To communicate the shape of the robot to all obstacles, the shape needs to be properly
encoded. The encoding is done as a preprocessing step to the actual algorithm and will be
discussed in this section. For the remainder we will assume w.Lo.g., that the robot’s reference
point, r, is the leftmost pixel in the bottom-most column of R’ (as defined above).

First, the inverted robot, R’, of robot R is computed as follows:

— The coordinates of the reference point r are broadcast to all pixels of R.

— Each pixel of R computes the coordinates of the corresponding pixel in R’.

— Using a RAW (Random Access Write) procedure, as described in [8], all pixels of R are
moved to the coordinates of the corresponding pixel in R’. (An appropriate translation of R
will ensure that R’ is completely contained in the Vn X yn image.)

We define the left boundary chain of R’ as follows: Consider the reference point r and the
rightmost pixel ¢ in the topmost column of pixels of R’; a pixel p of R’ is called a left
boundary pixel of R’ if and only if the lower-left, left, upper-left, or upper-right neighbor of p
is not contained in R’. The left boundary chain of R’ is the shortest path from r to ¢ among all
paths visiting all left boundary pixels of R’ and connecting two pixels only if they are

F. Dehne et al. / Computing the configuration space for a robot 225

N I ¥
NN

N

NWNN\53%
NN

'

B
DHNIN

4
. P

Fig. 4. The left boundary chain (pixel 1
through 15) of a rectilinearly robot’s in-
r verted image R’.

four-neighbors; see Fig. 4. Notice that some pixels may be visited twice, in Fig. 4 these are the
pixels labelled 6 (10) and 7 (9).

R’ is encoded by a sequence of left boundary records, one record for each occurrence of a left
boundary pixel in the left boundary chain. Each left boundary record is a triple

(RecordNo, NoOfPixelsToTheRight, DirectionOfNextPixel)

where RecordNo denotes the rank of a respective left boundary pixel in the left boundary
chain, NoOfPixelsToTheRight is the number of pixels in R’ to the right of the respective pixel,
and DirectionOfNextPixel is the direction (given as left, up, or right) from the respective pixel
to its immediate successor in the left boundary chain.

An example illustrating this encoding scheme is given in Fig. 5. Notice that the reference
point r is always represented by the first boundary record. The entire left boundary chain can
be traced by starting at the first boundary record and following, at each step, the direction
specified by the DirectionOfNextPixel-field. Since a given left boundary pixel may occur twice
in the left boundary chain it will, in this case, also be represented by two different left
boundary records.

The encoding of R’ can be computed in time O(/n) as follows:

- Each pixel of R’, in parallel, determines whether it is a left boundary pixel and whether it
will appear in one or two left boundary records.

— In parallel, each left boundary pixel determines its left boundary records (at most two). For
each such record, the pixel’s successor in the left boundary chain as well as the number of
pixels to its right is determined.

£t
N k@ <15,0,done>
<13,1,right> <14,0,up>

7
85

\iz’ 7/ // <11,3,right> <12,2,up>
) :%::%% VA | <64eft> <1,5eft> <8,6,1ight> <9,5,right> <10,4,up>
NN N] <5.5.up>
NV <4,3,up>
&: :ﬂﬁ VA///, <2,2 left> <3,3,up>
/) <1,1,up>

Fig. 5. Encoding of a rectilinearly convex robot’s inverted image R’.

226 F. Dehne et al. / Computing the configuration space for a robot

— For each record, the value of the field RecordNo is the rank of the record in the left
boundary chain. Using the list ranking algorithm described in [1], all values RecordNo can
be computed in O(Yn) steps.

The time complexity of each step, and thus the total preprocessing time, is O(Vn).

3. The pipelining algorithm

We assume that the encoding of R’ has been determined as described in Section 2. We now
turn our attention to the actual computation of the configuration space of the digitized
obstacles stored on the Mesh-of-Processors. The basic idea is to send a description of R’ to
every black pixel p. Then, each such p colors black all pixels contained in C(p, R).

When implementing this approach on a mesh, the following problems have to be solved:

— Each PE is limited to a constant amount of memory. Therefore, it cannot store the entire
description of R’ at any point in time.

~ To color all pixels in C(p, R’) black, each black pixel p has to send a message to the pixels
in C(p, R’). This may create congestion problems between messages of neighboring black
pixels. In addition to the coloring messages, messages are sent to each black pixel to
communicate the encoding of R’. These messages must not interfere with the coloring
messages.

The solution. to these problems is to pipeline the encoding of the robot in a particular
fashion. As soon as a black pixel receives the first left boundary record of R’, it starts a
boundary-tracing process which colors all pixels in C(p, R’). These coloring processes also
operate in a pipelined fashion; proper sequencing ensures that no congestion occurs.

Consider a leftmost pixel / of R’; clearly, / is a left boundary pixel. Its corresponding left
boundary record, with field RecordNo = k;, splits the sequence of left boundary records into
two subsequences, called L; and L,, of those records whose RecordNo-fields are smaller (or
equal) and larger than k,, respectively.

L, and L, are determined in time O(Yn) by broadcasting k; to all boundary p1xels Then,
each subsequence is sorted in snake-like ordering as indicated in Fig. 6 using, e.g., the sorting
technique described in [14].

The configuration space is then computed in three phases:

(1) The sequence L, of boundary records is pipelined through the entire mesh.

(2) The sequence L, of boundary records is pipelined through the entire mesh.

(3) All pixels contained in C(0, R) (contained in the image) are colored black.

19[18] 17 36[37| 38

10]11] 12 13[14[15[16 35| 34| 33| 32| 31| 30| 29] 28]

7 e]s [4a]a]2]1] 20| 21| 22| 23] 24] 25] 26 27
(a) (b)

Fig. 6. Storage schemes for L, (a) and L, (b). The numbers represent the field RecordNo of the left boundary records;
ky=19.

F. Dehne et al. / Computing the configuration space for a robot 227

514 133213110 9 101112 13 14 15

- N W A e N®

(a) (b)

Fig. 7. Pipelining schemes for L, (a) and L, (b). The numbers represent the sequencing for the pipelining of each left
boundary record through the diagonals of pixels.

These three phases will now be described in detail. We assume that each processor PE(i, j)
has three additional registers (which are initialized to zero):

RN1, RN2: Integer registers for storing the RecordNo-value of the next two boundary records
to be processed.

PR: An integer register for storing the number of pixels to the right of pixel (i, j)
which will be subsequently colored black in Phase 3.

Let /b,,..., b, and b ,,,..., b, be the sequences L, and L, of left boundary records,
respectively, stored in snake-like ordering as described above. The idea of Phase 1 and Phase 2
is to pipeline L, and L, through all processors in the fashion indicated in Fig. 7(a), (b),
respectively. During these processes each PE computes its value PR. Each line indicates those
processors that are reached by a common boundary record at one point in time. More
precisely: first, /b, is sent to the processor on line 1; then, /b; advances from line 1 to line 2,
and, simultaneously, /b, is sent to the processor on line 1; then, /b, advances to line 3, /b,
advances to line 2, and /b, is sent to line 1; etc.

The motion of these lines corresponds to a motion of waves. The directions in which the
waves propagate for the sequences L, and L, are different. This is crucial to ensure that the
pipelining process of the robot encoding does not interfere with the messages created to color,
for each black pixel p, all pixels in C(p, R’).

Each time a black pixel is reached in Phase 1 by /b;, a message will be sent in the direction
(left or up) indicated by the field DirectionOfNextPixel at /b, to trace the left boundary of R’
with its reference point r located at the particular pixel. Subsequent left bqundary records
Ib,,.... will be forwarded on this path such that each pixel on the left boundary of C(p, R’) will
receive the respective left boundary record and the value NoOfPixelsToTheRight. Obviously, it
may receive several such values from several neighboring black pixels in which case it stores the
maximum, only.

The following is the detailed description of Phase 1. Note that the algorithm assumes the
execution of all PEs to be synchronized; i.e., all processors are always in the same stage of the
algorithm.

FOR i=1TO k, +Vn DO
(@ IFi<k,
THEN /b, is sent to PE(Yn, Vn). (In fact, b, is always stored at PE(/n,Vn).) All
subsequent other left boundary records of L, advance one position in the snake
like ordering described above.

228 F. Dehne et al. / Computing the configuration space for a robot

(b) Each processor PE(i, j) that receives a left boundary record
(RecordNo, NoOfPixelsToTheRight, DirectionOfNextPixel)
performs: ‘
Condition] := (RecordNo = 1) AND (PE(i, j) represents a black pixel);
Condition2 := (RN1 = RecordNo) OR (RN2 = RecordNo);
IF Conditionl OR Condition2
THEN set PR := max{PR,NoOfPixelsToTheRight} and send a record number Re-
cordNo + 1 to the processor indicated by DirectionOfNextPixel (if exists).
(c) Each processor PE(i, j) that receives a record number RN, sets RN1 := RN2 and RN2 :=
RN.
Note that, if a processor receives more than one record number, then these record numbers
are identical; see Lemma 2 in Section 4.
(d) Each processor PE(i, j) that received, in Step b, a left boundary record forwards this
record to processors PE(i, j — 1) and PE(i — 1, j), if exist.

Phase 2 is analogous to Phase 1; the only differences are that the FOR loop is iterated from
k,+1 to k,+vVn and, in Step (d), the received boundary record is forwarded to PE(i, j+ 1)
and PE(i — 1, j). In step (b), Conditionl will never be true during Phase 2 and may, therefore,
be removed.

In the following Section 4, we will show that upon completion of Phase 2, each processor
will have stored in its register PR the number of pixels to its right which need to be colored
black in order to compute the configuration space C(@, R).

The implementation of the final Phase 3 is now quite straightforward:

- Every processor whose PR register is not equal to 0 changes the color of the pixel it
represents to black and sends a message (l"/li} to its right neighbor.
— Then, the following process is iterated vVn times: each processor receiving a message

(SomeNumber) from its left neighbor sets the color of its pixel to black. If SomeNumber is

greater than 1, its sends the message (SomeNumber — 1) to its right neighbor (if exists).

4. Correctness and time complexity of the algorithm

In this section, we will establish the correctness of the above algorithm. The interesting part
is to show that after Phase 1 and Phase 2 have been completed, the PR registers of all pixels
contain the correct values. More specifically, each pixel contains in its PR register the number
of black pixels located to its right that have to be colored black in order to obtain the
configuration space.

For any black pixel p, let L(p):=(p=p;, P2> P3s---, Pk,) denote the left boundary chain
of R’ when translated such that r coincides with p; L,(p):= (P1> P2s P3s---> Pr,) and
Ly(p)=(Pi,+1> P2s P3s---> Py,) denote the translated boundary records of L; and L,,
respectively.

For the remainder, one time unit will refer to the time necessary for one execution of the
loop body.

If, during Phase 1, a black pixel p receives /b, (i.e., Conditionl = true), it updates its register
PR and initiates a sequence of record numbers to trace L(p). That is, in Phase 1, p sends a
record number ‘2’ to its successor p, in L,(p). Pixel p, will store this record number for two
time units using its registers RN1 and RN2 (simulating a queue of length 2). During this time,
it will be ‘sensitive’ (not only to receiving /b;, but also) to receiving a left boundary record with
RecordNo = 2; that is, when receiving such a record, Condition2 will be true. The processor
will update its register PR and send a record number ‘3’ to p,, etc.

F. Dehne et al. / Computing the configuration space for a robot 229

Lemma 1. If during Phase 1 a black pixel p receives Ib, at time t,, then every p; € L\(p), i 22,
receives record number ‘i’ at time t,=t, + 2(i — 2) and Ib; at time t/ =t, +2(i — 1).

Proof. By induction on i € {2,..., k; }. When p, receives /b,, it sends a record number ‘2’ to p,
which receives this message during the same time unit; i.e., at time ¢, =¢,. In the pipelining
process for boundary records, /b, will be received by p, two time units later, i.e., at time
t} =1, + 2. Assume that Lemma 1 holds for all p,,..., p; for some 2 <i <k,. Hence, at time
t,=t,+2(i — 2), p; receives a record number ‘i’ and p;_, receives Ib,_,. Since p;_;, p;, and
Pi+1 are subsequent pixels in L,(p), it follows from the definition of the left boundary chain of
R’ that p, is either an upper or a left neighbor of p,_;, and p,,, is either an upper or a left
neighbor of p,. Therefore, p,_,, p;, and p,,; belong to subsequent lines of processors with
respect to the pipelining scheme for boundary records (recall Fig. 7(a)). Hence, p;_, receives lb;
at time 7, + 1 and then, at time #; + 2, it receives /b, ,. Subsequently, /b, ; is received by p; at
time ¢, + 3 and, therefore, by p;+1 at time ¢, +4=1t, +2i=t,,,.. Furthermore, since p,_,
receives /b; at time ¢;+ 1, p; receives Ib, at time ¢, + 2. Since, by assumption, p; has received
record number ‘i’ at time ¢,, it follows for the execution of Step (b) during time unit ¢, + 2, that
p;’s register RN2 contains the value i. Summarizing, at time ¢;+ 2, p; receives /b, and has
Condition2 = true; hence, p, sends a record number “i + 1” to p,,, which will receive it during
the same time unit, i.e., at time t,+2=1¢+2(i—1)=¢,,,. O

Analogously, it can be shown that in Phase 2, the pixels py .1,..., P, receive and process
the record numbers k; + 1,..., k, and the boundary records /by . 1,..., by, respectively, in the
same manner.

Summarizing, for every black pixel that receives /b;, a trace of L(p) is initiated where every
pixel p, receives /b, and updates its register PR such that upon completion of this process, each
p: € L(p) contains in its register PR the number of black pixels to its right in C(p, R").

The pipelining process for the boundary records ensures that every pixel receives a left
boundary record /b,. Hence, the above tracing process is started for each black pixel p. Every
pixel stores in its register PR the maximum PR-value for all tracing processes in which it is
involved (see Step (b) of the loop body).

In order to prove the correctness of the algorithm, it remains to be shown that these tracing
processes do not interfere with each other or with the pipelining process for the left boundary
records.

Interference between tracing processes can only occur if two such processes attempt to send
two different record numbers to the same pixel at the same time. However, this can not happen
because of the following lemma.

Lemma 2. If a processor receives two record numbers at the same time, then these record numbers
are identical.

Proof. During Phase 1, all record numbers are either sent upwards or to the left. Therefore, if a
processor receives two record numbers, these must have originated from the right and from
below, respectively. These two neighboring processors, however, are on the same line with
respect to the pipelining process for boundary records (see Fig. 7(a)). Hence, they must have
received the same boundary record, and, therefore, they must have sent the same record
number. A similar argument holds for Phase 2. O

Obviously, there is no interference between tracing processes and the pipelining process for
boundary records since, for each execution of the loop body, record numbers are sent in Step
(b) and boundary records in Steps (a) and (d), only.

We therefore obtain,

F. Dehne et al. / Computing the configuration space for a robot 229

Lemma 1. If during Phase 1 a black pixel p receives Ib, at time t,, then every p; € L\(p), i >2,
receives record number ‘i’ at time t,=t, + 2(i — 2) and Ib; at time t/ = t; + 2(i — 1).

Proof. By induction on i € {2,..., k;}. When p, receives /b,, it sends a record number ‘2’ to p,
which receives this message during the same time unit; i.e., at time t, =¢,. In the pipelining
process for boundary records, /b, will be received by p, two time units later, ie., at time
t; =1, +2. Assume that Lemma 1 holds for all p,,..., p; for some 2 <i < k;. Hence, at time
t,=1t, +2(i—2), p; receives a record number ‘i’ and p,_, receives /b;,_;. Since p;_,, p;, and
Pi+1 are subsequent pixels in L,(p), it follows from the definition of the left boundary chain of
R’ that p, is either an upper or a left neighbor of p,_;, and p,,, is either an upper or a left
neighbor of p,. Therefore, p,_,, p;, and p,,; belong to subsequent lines of processors with
respect to the pipelining scheme for boundary records (recall Fig. 7(a)). Hence, p,_, receives Ib,
at time ¢, + 1 and then, at time ¢, + 2, it receives /b, ;. Subsequently, /b, is received by p; at
time ¢, + 3 and, therefore, by p;,+1 at time ¢, +4 =1t + 2i =t;, .. Furthermore, since p,_,
receives /b; at time ¢, + 1, p; receives Ib, at time ¢, + 2. Since, by assumption, p; has received
record number ‘i’ at time ¢,, it follows for the execution of Step (b) during time unit #; + 2, that
p;’s register RN2 contains the value i. Summarizing, at time ¢;+ 2, p; receives /b, and has
Condition2 = true; hence, p, sends a record number “i + 1” to p,,, which will receive it during
the same time unit, i.e., at time t,+2=1¢,+2(i—1)=¢,,;. O

Analogously, it can be shown that in Phase 2, the pixels p, .1,..., P, receive and process
the record numbers k; + 1,..., k, and the boundary records /by ..1,..., by, respectively, in the
same manner.

Summarizing, for every black pixel that receives /b,, a trace of L(p) is initiated where every
pixel p, receives Ib; and updates its register PR such that upon completion of this process, each
p; € L(p) contains in its register PR the number of black pixels to its right in C(p, R’).

The pipelining process for the boundary records ensures that every pixel receives a left
boundary record /b,. Hence, the above tracing process is started for each black pixel p. Every
pixel stores in its register PR the maximum PR-value for all tracing processes in which it is
involved (see Step (b) of the loop body).

In order to prove the correctness of the algorithm, it remains to be shown that these tracmg
processes do not interfere with each other or with the pipelining process for the left boundary
records.

Interference between tracing processes can only occur if two such processes attempt to send
two different record numbers to the same pixel at the same time. However, this can not happen
because of the following lemma.

Lemma 2. If a processor receives two record numbers at the same time, then these record numbers
are identical.

Proof. During Phase 1, all record numbers are either sent upwards or to the left. Therefore, if a
processor receives two record numbers, these must have originated from the right and from
below, respectively. These two neighboring processors, however, are on the same line with
respect to the pipelining process for boundary records (see Fig. 7(a)). Hence, they must have
received the same boundary record, and, therefore, they must have sent the same record
number. A similar argument holds for Phase 2. O

Obviously, there is no interference between tracing processes and the pipelining process for
boundary records since, for each execution of the loop body, record numbers are sent in Step
(b) and boundary records in Steps (a) and (d), only.

We therefore obtain,

230 F. Dehne et al. / Computing the configuration space for a robot

Lemma 3. After Phases 1 and 2 have been completed, for each pixel p; the registers PR contaim
the number of pixels to right of p; which, if colored black, correctly produce C(0, R).

Phase 3 of the algorithm simply performs this coloring of black pixels and thus the algorithm
correctly determines C(@, R).

In order to determine the time complexity of the algorithm, we observe that all preprocessing
steps can be executed in time O(Yn). The number, k,, of left boundary records of R’ is
bounded by the sum of the number of rows and the number of columns of R’. Thus it follows
that k, = O(Yn) implying that Phases 1 and 2 of the algorithm execute the body of the FOR
loop at most O(y/n) times. Each execution of the loop body takes O(1) time; hence, Phase 1 and
2 have a time complexity of O(Yn). It is easy to see that Phase 3 takes O(vn) time. Therefore,
the total time complexity of the algorithm is O(Vn). Furthermore, only three additional
registers are required by each processor.

Summarizing, we obtain

Theorem 1. The configuration space C(0, R) of an arbitrary set O of digitized obstacles for a
rectilinearly convex digitized robot can be computed on a Mesh-of-Processors of size n in time oWn)
which is asymptotically optimal.

5. Extensions and open problems

The type of robot considered in the previous sections, the rectilinearly convex robot, is
already slightly more general than the convex robot type studied by Lozano-Perez [7] in the
sequential model of computation. However, a further minor generalization is easily obtained.
Let R be a horizontally convex robot (i.e., the intersection with every horizontal line consists of
at most one line segment) which can be partitioned (by horizontal lines) into a constant number
of rectilinearly convex pieces. By partitioning R into these pieces and applying Phases 1 and 2
of the algorithm to the sequence of left boundary records for each piece, one after the other in
bottom up order, an optimal algorithm for computing the digitized configuration space is
obtained.

Whether it is possible to further generalize the type of robot while maintaining the
algorithm’s optimal time performance is posed as an open problem.

References

[1] Attallah, M.J. and S.E. Hambrusch, Solving tree problems on a mesh-connected processor array, in: Proc. 26th
Symp. on Found. of Comput. Sci (1985) 222-231.

[2] P.E. Danielson and S. Levialdi, Computer architecture for pictorial information systems, IEEE Comput. (Novem-
ber 1981).

[3] F. Dehne, A.-L. Hassenklover, J.-R. Sack and N. Santoro, Parallel visibility on a mesh-connected parallel
computer, in: Proc. Int. Conference on Parallel Processing and Applications, L’ Aquila, Italy (1987) 173-180.

[4] F. Dehne and J.-R. Sack, A survey of parallel computational geometry algorithms, in: Proc. 5th Int. Workshop on
Parallel Processing by Cellular Automata and Arrays, Berlin, GDR (1988).

[5] F. Dehne, J.-R. Sack and N. Santoro, Computing on a systolic screen: hulls, contours and applications, in: Proc.
Conf. Parallel Architectures and Languages, Eindhoven, The Netherlands (1987) 121-133.

[6] R.A. Klette, Parallel computer for image processing, Elektron. Inform. Kyber. 15 (5/6) (1979) 237-263.

[7] T. Lozano-Perez, Spatial planning: A configuration space approach, JEEE Trans. Comput. 32 (2) (1983) 108-120.

[8] R. Miller and Q.F. Stout, Computational geometry on a mesh-connected computer, in: Proc. Int. Conf. on Parallel
Processing (1984) 66-73.

F. Dehne et al. / Computing the configuration space for a robot 231

[9] R. Miller and Q.F. Stout, Mesh computer algorithms for line segments and simple polygons, in: Proc. Int. Conf. on

Parallel Processing (1987) 282-285.

[10] Q.F. Stout and R. Miller, Mesh-connected computer algorithms for determining geometric properties of figures,
in: Proc. 7th Int. Conf. on Pattern Recognition, Montréal, Canada (1984).

{11] D. Nassimi and S. Sahni, Finding connected components and connected ones on a mesh-connected parallel
computer, SIAM J. Comput. 9 (4) (1980).

[12] A.P. Reeves, Survey, parallel computer architectures for image processing, Comput. Vision Graph. Image Process.
25 (1984).

[13] M Sharir, R. Cole, K. Kedem, D. Leven, R. Pollack and S. Sifrony, Geometric applications of Davenport—Schinzel
sequences, in: Proc. 27th Symp. on Found. of Comput. Sci., Toronto, Canada (1986) 77-86.

[14] C.D. Thompson and H.T. Kung, Sorting on a mesh-connected parallel computer, Comm. ACM 20 (4) (1977).

[15] S.H. Unger, A computer oriented towards spatial interaction, Proc. IRE 46 (1958) 1744-1750.

