JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 9, 63-68 (1990)

Computing the Largest Empty Rectangle on One- and
Two-Dimensional Processor Arrays

FRANK DEHNE

Center for Parallel and Distributed Computing, School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

Given a rectangle R (with its edges parallel to the coordinate
axes) containing aset S = {s,,. .., s, } of n points in the Euclid-
ean plane, consider the problem of finding the largest area sub-
rectangle r in R with sides parallel to the coordinate axes that
contains no point of S. We present optimal parallel algorithms
for solving this problem on one- and two-dimensional arrays of
Processors. © 1990 Academic Press, Inc.

1. INTRODUCTION

Consider a rectangle R with its edges parallel to the coor-
dinate axes that containsa set S = {s, ..., s,} of n points
in the Euclidean plane. In this paper, we consider the prob-
lem of finding the largest area subrectangle r in R, with its
sides parallel to the coordinate axes, that contains no point
of S'(see Fig. 1).

An efficient solution to this problem is of considerable
interest, e.g., in VLSI manufacturing. If a rectangular sili-
con wafer with several points of impurity is represented by a
rectangle R and a point set .S, then the largest (isooriented)
rectangular area on the wafer which is free of impurities is
the largest empty rectangle r described above.

In [1, 3], sequential algorithms have been presented to
solve this problem in time O(m + n log?n), m = O(n?),
and time O(n log>n), respectively.

In this paper we present O(n) and O(V;) time parallel
algorithms for solving this problem on one- and two-dimen-
sional processor arrays of sizes n and Vn X V;, respectively.

A one-dimensional processor array is a linear arrange-

‘ment of n processing elements (PEs) where each PE is con-

nected to its at most two direct neighbors by bidirectional
communication links (see, e.g., [2]). A two-dimensional
processor array is a set of #n PEs arranged on a Vn xVn grid,
where each PE is connected to its at most four neighbors
(see, e.g., [8]). For both models, each PE is assumed to
have a constant number of memory cells available.

On one- and two-dimensional processor arrays, compar-
ing two arbitrary data items takes at least time O(»n) and
time O(V;), respectively, in the worst case; therefore the
algorithms presented in this paper are asymptotically opti-
mal.

The remainder of the paper is organized as follows: in
Section 2, we present the basic structure of our algorithm,
which is commonly applied to both machine models. In
Sections 3 and 4 we then describe the implementation of
this method on one- and two-dimensional processor arrays,
respectively.

2. BASIC STRUCTURE OF THE ALGORITHM

A basic property of the largest empty rectangle r is that
each edge of r is supported by either an edge of the bounding
rectangle R or at least one point of .S; otherwise it would be
contained in a larger empty rectangle (cf. [3]). We shall call
these edges or points supporting elements with respect to S
(and R). An empty rectangle is called a candidate, if each
of its sides has at least one supporting element. To simplify
exposition we shall assume for the remainder that all points
of S have distinct x,- and distinct x,-coordinates and, thus,
the largest empty rectangle has exactly four supporting ele-
ments. The existence of more supporting elements will not
change our algorithms significantly.

For both machine models we assume that initially each
PE contains the coordinates of one arbitrary point of .S, and
that every PE stores the coordinates of the lower left and
upper right corner of R. Upon termination of our algo-
rithm, one arbitrary PE will report the largest empty rectan-
gler.

In the remainder of this section, we describe a general
parallel method for solving the largest empty rectangle
problem. In Sections 3 and 4, we then apply the method
to one- and two-dimensional processor arrays and obtain
optimal algorithms for these architectures. For ease of de-
scription, we split our method into three parts, which will
be presented individually.

Part1

In order to compute the largest empty rectangle r of a
point set S with bounding rectangle R, S is first sorted by
x;-coordinate, and the point set S is split by a vertical line
I, into two subsets S and Sygn, equal in size (i.e., | | Sienl
— | Stigne| | < 1); see Fig. 2a. The subproblems for S, and
Shignt (and the two respective subrectangles of R induced by

0743-7315/90 $3.00
Copyright © 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

64 FRANK DEHNE

X
2
R
e O L} [) Y
° o r r o °
[] Y ° [] o
>
X4

FIG. 1. Definition of the largest empty rectangle.

1,) are then recursively solved in parallel on the left and right
halves, respectively, of the processor array.

Part 11

Given the largest empty rectangles with respect to Sieq
and Siignt, respectively, the maximum area one of these both
needs to be compared with the largest empty rectangle r*
which has at least one supporting element of S, and one
supporting element of Sz, €ach. We apply a second divide
and conquer procedure:

S is sorted by x,-coordinate and then split by an addi-
tional horizontal line , into four disjoint subsets S;, S,, S,
S, as indicated in Fig. 2b such that

St = S1 U S3,
Sright=S3US4,and
[1SUS] — |Si1US,| | <1

Recursively, the following two subproblems are solved in
parallel on one-half of the processor array, each:

(1) Compute the largest empty rectangle having at least
one supporting element with respect to .S, and S3, each, and
none with respect to S, or S;,.

(2) Compute the largest empty rectangle having at least
one supporting element with respect to S, and .S, each, and
none with respect to S, or Ss.

Part 111

In order to compute the rectangle r*, the two rectangles
obtained in Part II need to be compared with the maximum
area empty rectangle r* having the following property
(which will be referred to as Property *):

Let B,, B,, B;, B, be the sets of supporting elements of
r* with respect to S, S,, S3, S4, respectively; then

|Bi| + | B:| + | Bs| + | Bs| =4
| Bi| + | B2| >0
| B;| + | B4l >0
| B,| + | B3| >0
| By| + | B4| > 0.

In the remainder of this section, we discuss how to deter-
mine the rectangle r*.

Let po, . . . , Ps denote the intersection points of /, and /,
with the bounding rectangle R as indicated in Fig. 2b, and

let R;(i =1,...,4)be the rectangle with opposite vertices
Di—1and Dimoda-
LEMMA 1. Ifr' is an empty rectangle with Property *

and e is an edge of V' which ispart of R;(i=1, ..., 4), then

e is supported by p;_; O Dimod 4-

Proof. From Property #* it follows that both vertical
(horizontal) edges of r' cross , (,, respectively). Thus,
Lemma 1 follows immediately. ®

A consequence of Lemma 1 is that, in order to determine
r*, we do not have to consider the bounding rectangles if
we add instead the points p; (i =0, . . ., 3) and consider all
empty rectangles with exactly four supporting points
and Property * with respect to 24, . .., 24, where Z; := §;
U {Pi-1, Dimoa 4 } - Note that, at each stage of the recursion,
the current number of subproblems is O(n) and therefore
we add at most O(n) points simultaneously.

In [4] we presented an optimal O(\/_) time algorithm for
computing, on a two-dimensional processor array, all maxi-
mal elements of a set S of n points in the Euclidean plane.
(On a one-dimensional processor array, an O(n) solution
to this problem is obvious). These results are easily general-
ized to the computation of the maximal elements with re-
spect to the northeast (NE), northwest (NW), southwest
(SW), and southeast (SE) directions as depicted in Fig. 3.
M,, M,, M5, M, will refer to the NE, SE, SW, NW maximal
elements of 2,, Z,, 23, Z4, respectively.

LEMMA 2. Ifr' is a maximum area empty rectangle sup-
ported by four points {t,, ..., t4} € Z;U Z,U 23U Z, with
Property %, then {t,, ..., 1.} € M; UM, UM;UM,.

v A\
R P2 R
S S
2 3 Py
le't srlght P1 'h
S, S,
Po

FIG. 2. Recursive splitting of the largest empty rectangle problem.

(a)

(b)

M M
/ 2 3 NE,
4 ° °
o® ® ° o
°
* °
° °
e o o ©°
M M SE
1 4

FIG.3. The maximal elementsof Z,, Z,, 23, and Z,, respectively.

LARGEST EMPTY RECTANGLE ON PROCESSOR ARRAYS

Proof. From Property = it follows that both vertical and
horizontal edges of r' cross /, and /,, respectively, Further-
more, r' has to be empty. Thus, Lemma 2 follows from the
definition of maximality. - W

Summarizing Lemmas 1 and 2, we obtain:

THEOREM 1. The rectangle r* described above can be
computed by finding the maximum area rectangle of all
empty rectangles which are supported by four pointst,, . . .,
t4€B| U32UB3UB4WlthB,EM(l, e ,4), |B|| + Ile
+ |Bs| + |Bs| =4, |By| + |B;| >0, |B;| + |Bs] >0,
|B2| + |B3| >0,and |B|| + IB4' >0.

All possible (16) cases that match these requirements are
listed in Fig. 4. All combinations of cardinalities of B,, B,,
B;, B, are derived from Theorem 1. There are essentially
three types of empty rectangles which need to be consid-
ered:

A type A rectangle is supported by two points of M, [M,]
and M; [M,, respectively], each. A type B rectangle is sup-
ported by two points of one quadrant (M, M,, M, or M,)
and one point each of two other quadrants, while a type C
rectangle is supported by one point of each quadrant.

The directions of support indicated in Fig. 4 are derived
as follows:

—For type A rectangles (Cases 3 and 4), the two possible
combinations of directions of support are obvious.

—For type B rectangles consider, e.g., Case 5. There is
only one supporting point in the left half (i.e., M, U M,),
which must be a left support since, if any of the other three
points were a left support, this point could not be a support-
ing element at all. Furthermore, since there is only one sup-
porting point in the upper half (i.e., M, U M3) this must be
an upper support. Hence, the two points of B, are lower and
right supporting elements, respectively.

For all other cases of type B, a similar argument holds.

—For exactly one supporting point in each quadrant
(type C) there are two possible cases. The supporting point
in the lower left quadrant M, is a left or lower support; oth-
erwise there could be no supporting point in M,, M5, or M.
Assuming that it is a left [lower] support, the other three
directions of support are uniquely determined.

65

Our strategy for determining the rectangle r* is to com-
pute the largest empty rectangle for each case (if it exists)
separately, and then determine the maximum area one of
these.

Before we proceed with describing the implementation of
the above method on one- and two-dimensional processor
arrays, it is necessary to state the following definitions and
observations:

The x;- and x,-coordinates of a point x are denoted by
x[1] and x[2], respectively. Two points a, b € M, (i = 1,
..., 4) with a[1] < b[1] are called close neighbors of M; if
and only if there is no other c € M; with a[1] < ¢[1] < b[1].

LEMMA 3. Ifr' is an empty rectangle for which the condi-
tions of Theorem 1 hold, and {t,, t,} = B; < M, is a set of
two supporting points of r' in the same quadrant M; (i = 1,
..., 4), thent, and t, are close neighbors in M;.

Proof. Leti= 1, and let r be an empty rectangle as de-
scribed above (see Fig. 5). Assume there is a ¢’ € M, with
4[1] < ¢'[1] < t,[1]; then ¢’ lies inside r' since it is NE-
maximal with respect to Z,, which is a contradiction. ®

Hence, if two supporting elements are in the same quad-
rant then the respective corners of the empty rectangle r*
are defined by a pair of close neighbors of maximal ele-
ments. Therefore, we define the sets

€(M,) := {(min{p[1], ¢[1]}, min{p[2], q[2]1})|p, q
close neighbors in M, },

C(M>) := {(min{p[1], q[1]}, max{p[2], q[2]})|p, q
close neighbors in M, },

@(M;):= {(max{p[l], q[1]}, max{p[2], q[21})|p,q
close neighbors in M3}, and

C(M,) := {(max{p[l], q[1]}, min{p[2], q[2]})|p, q
close neighbors in M, },

where @ (M,) is referred to as the sets of corner elements
of M,, i.e., the set of possible vertices of empty rectangles
induced by pairs of close neighbors of M;. For each p
€ @(M,) we define (see Fig. 6):

—x,(p) := min{q[1]|gE€ M,and q[2] > p[2]};

—X(p):= min{q[2]|q € M;and q[1] > p[1]};

— Py [p1]is the point in @ (M3) with maximum x,-coordi-
nate smaller than x,(p) [maximum x,;-coordinate smaller
than x,(p), respectively];

CASE: 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16
-l E=l= EEEEHEEE
B2:
B3:
B4:
TYPE: B B A B B B B [oF C B B B B A B B

Supportimg Elements: none I:l left

E upper I:I right E lower

FIG. 4. The possible cases following from Theorem 1.

66 FRANK DEHNE

FIG.5. Two supporting points in the same quadrant.

—@(p) is the set of all points of @ (M3) with x;-coordi-
nate smaller than x;(p) and x,-coordinate smaller than
x2(p), i.e., the set of all ¢ € @ (M3) such that the rectangle
with lower left corner p and upper right corner g does not
contain any point of M, U M,.

For each p € M, [p € M5, p € My, respectively], x;(p),
x2(p), Pu, D1, and C(p) are defined corresponding to the
above.

3. AN OPTIMAL SOLUTION FOR THE ONE-
DIMENSIONAL PROCESSOR ARRAY

We now turn to the implementation of the above algo-
rithm on a one-dimensional processor array. Part I of the
algorithm consists of an O(#n) time sorting procedure (see,
e.g., [2]) and parallel recursive calls for two largest empty
rectangle problems of size n/2 on processor arrays of size
n/2, each. Thus, if we let T((n) refer to the time complexity
of the entire computation, we obtain

T(1)=0(1)
T(n)=T(n/2)+ g(n)+cn,

with g(n) denoting the time complexity of Part II. With the
same arguments, we obtain the same recurrence equation
for g(n), i.e.,

g(l)=0(1)
g(n)=g(n/2)+ h(n) + cn,

with h(n) denoting the time complexity of Part IIL

In order to implement Part III, we compute the sets M,
M,, M5, and M, of maximal elements, and then for each
case listed in Fig. 4 we compute the largest empty rectangle

4
X,

FIG. 6.

Illustration of x,(p), X2(P), Pu, 1, and C(p).

separately. The rectangle r* as described in Theorem 1 is
the largest of these at most 16 rectangles (for some cases
listed in Fig. 4, there may not exist a corresponding
rectangle). The following is a description of how for each
type of these 16 cases the largest empty rectangle can be
computed in linear time (see Fig. 7 for an illustration).

Cases of Type A. Consider, e.g., Case 3. From Lemma
3 we know that all pairs of supporting elements of M; [M|]
are close neighbors. After M, M,, M3, and M, are sorted
by x;-coordinate, each p € @ (M;) is first shifted through
M, and M, to compute x;(p) and x,(p) and then through
@(M,) to determine the corresponding largest empty rec-
tangle containing no point of M, or M. Pipelining the shift
processes yields linear running time.

Cases of Type B. Consider, e.g., Case 2. M, M,, M,
and M, are sorted by x;-coordinate, and then each p
€ @ (M) is shifted through M, and M, to compute the re-
spective supporting left point I, € M, and supporting lower
point I, € M, (I, [1,] is the rightmost [uppermost] point
of M, [M,] with smaller x,-coordinate [x;-coordinate]).
Pipelining the shift processes yields linear running time,
too.

Cases of Type C. Computing the largest empty rectan-
gle for a case of type C is essentially the same, since for each

Type A
(Case 14)
Type B —
(Case 2)
M (M
Type C] [
(Case 9)
= o | . |
FIG.7. Illustration of the determination of the largest empty rectangle
for each case.

LARGEST EMPTY RECTANGLE ON PROCESSOR ARRAYS 67

left [lower] supporting point in M, the three other support-
ing points are determined similarly.

Summarizing, we can also implement Part III with linear
time complexity, i.e., A(n) = O(n). Hence g(n) = O(n)
and, finally, T(n) = O(n). Thus, we obtain

THEOREM 2. The largest empty rectangle problem can
be solved on a one-dimensional array of n processors in time
O(n) which is asymptotically optimal.

4. AN OPTIMAL SOLUTION FOR THE TWO-
DIMENSIONAL PROCESSOR ARRAY

On a two-dimensional processor array, sorting # points
requires O(V;z_) steps (see, e.g., [8]). Thus, using the same
notation as that in Section 2, we obtain

T(1)=0(1)
T(n)=T(n/2)+gn)+c Vn

and

g(1)=0(1)
g(n) = g(n/2)+ h(n) + c;Vn,

with 4(n) denoting the time complexity of Part III.

In order to implement Part III, we compute the sets M|,
M,, M5, and M, of maximal elements as described in [4]
and then sort them by x,-coordinate in time O(V;) (see,
e.g., [10]). Then, for each case listed in Fig. 4, we again
compute the largest empty rectangle separately. However,
it is not possible to implement each of these steps by a se-
quence of shift operations as described in Section 3; this
would not result in an O(Vn) time algorithm. For cases of
type A, one more divide and conquer step is necessary.

Let us again consider Case 14 as an example of a type A
case. For each point p € @ (M) let p’ denote the point of
C(p) such that the rectangle with upper right corner p and
lower left corner p’ is larger than all other empty rectangles
with upper right corner p and lower left corner p” € C(p).
(To simplify exposition we assume that for each p € @ (M3)
there are no two p’, p” € C(p) such that the empty rectangle
with upper right corner p and lower left corner p’ and p”,
respectively, have the same area. The existence of such
points does not change the remaining significantly.)

LEMMA 4. Letp, q€ C(Ms)andp', g € C(p)NC(q),
thenp[1]<q[1]="p'[1]1<q[1].

Proof [6,7]. Assume that p’ has smaller x;-coordinate
than ¢’ and consider the areas a, b, ¢, d, e, f, g of the rectan-
gles depicted in Fig. 8. Weobtainc+d+e>d+e+f+g
andb+d+f>a+b+c+d=c>f+gand f>a+c=
¢ — g>f > c+ a. This is a contradiction, since a, b, ¢, d,
e, f are all positive. H

Lemma 4 leads to an efficient O(V;) time algorithm for
solving cases of type A. Before we proceed with describing
the final solution, we first introduce a procedure MAXBE-
LOW which will be used in the remainder.

Assume that on a Vn X Vn processor array each proces-
sor has three registers X, Y, and Z (for positive numbers)
and that all processors are divided into two sets P’ and P”.
Procedure MAXBELOW (P, P", X, Y, Z) computes (and
stores into register X) for each p’ € P’ the maximum con-
tents of the registers Y of all processors p” € P” whose regis-
ter Z is smaller than the register Z of processor p’ (or zero
if no such processor p” exists).

The MAXBELOW procedure can be performed in time
O(V;) as follows:

—Sort with respect to the contents of the Z register, and
in snake-like ordering as described in [10].

—Each row of PEs performs a cyclic shift of Vn steps and
computes for each processor the maximum Y register of all
processors in the row, as well as the maximum Y register of
all processors in the row with smaller Z register.

—Each column of PEs performs a cyclic shift of Vn steps
and computes for each processor the maximum Y register
of all rows with smaller Z register.

We are now able to compute the largest empty rectangle
for each case of types A, B, and C in time O(Vr_z) as follows:

Cases of Type A. Again consider Case 14 (see Fig. 7)
and assume that |@(M3)|=|@(M,)|; otherwise exchange
M, and M, for the remainder.

Choose a point p € @(M;) with median x,-coordinate,
ie., |A|—|B| <1,where 4:= {g€ C(M3) | q[1] <p[1]}
and B:= {g€ @(M;) | q[1]> p[1]}. The point p, the sets
A and B, as well as the corresponding points p,, p, € C (M)
and the range C(p) as defined in Section 2, are depicted in
Fig. 9.

Consider the point p’' € @(M,) inducing a maximum
area empty rectangle with lower left corner p’ € € (M,) and
upper right corner p € € (M;).

With C, D, E, and F denoting the subsets of @ (M) de-
picted in Fig. 9, we observe that forecachg€ 4, C(¢) = T
U UU V,and foreachge B, C(q) = SU TU U. However,
from Lemma 4 it follows that for each g € 4 [g € B] it is
impossible that ¢’ € U[q’ € T, respectively]. Thus, for each
gEA[geE Blwehavege TU V[g€ SU U]. Hence,
the largest empty rectangle with respect to Case 14 can be
computed as follows:

Py Y
a od
c d e
¢ f
q ® 9
p'
FIG. 8. Illustration of the proof of Lemma 4.

68 FRANK DEHNE

FIG.9.
for Case 14.

Illustration of the determination of the largest empty rectangle

—For all p € @(M,) the points p,, py € €(M,) are
determined in time O(V;) using the MAXBELOW proce-
dure described above.

—A point p € € (M;) with median x, -coordinate and its
corresponding point p’ € @(M,) is computed in time
O(V;) by sorting @(M;) and broadcasting p through
C(M,).

—The problem is recursively solved for A, T, ¥ and for
B, S, Uin parallel.

—The largest empty rectangles computed for these sub-
problems are compared with the rectangle induced by p and
p’; the largest one is chosen as the final result.

Let ¢(n) denote the time complexity for computing the
largest empty rectangle with respect to Case 14 as described
above. Then

1(1)=0(1)
t(n)=t(3n/4) + ¢ Vn;
hence,

t(n) = 0(Vn).

Cases of TypeB. Consider, e.g., Case 2 (see Fig. 7). For
each p € @ (M) the respective supporting left point I, € M,
and supporting lower point I,.€ M, is the rightmost
[uppermost] point of M, [M,] with smaller x,-coordinate
[x,-coordinate]. Using the MAXBELOW procedure, in
O(V;) time both these points can be computed in parallel
for all p € @ (M;) and the rectangles induced by these points
can be tested to determine whether they contain points of
M, . Hence, the maximum area of these rectangles can be
determined in time O(Vn).

Cases of Type C. Computing the largest empty rectan-
gle for a case of type C is essentially the same.

Received March 12, 1987; revised February 2, 1989

Summarizing, we obtain that Part III can be imple-
mented on a two-dimensional processor array with a time
complexity of

h(n) = O(Vn).
Hence, g(n) = O(Vn) and, finally, T(n) = O(Vn).

THEOREM 3. The largest empty rectangle problem can
be solved on a two-dimensional array of Vn X Vn processors
in time O(V;) which is asymptotically optimal.

5. CONCLUSION

In this paper we have presented O(n) and O(V;) time,
respectively, parallel algorithms for solving the largest
empty rectangle problem for a set of n points on one- and
two-dimensional processor arrays of size n. Since, on these
architectures, comparing two arbitrary data items takes (in
the worst case) at least time O(#) and time O(VZ) , respec-
tively, the algorithms described are asymptotically optimal.

REFERENCES

1. Atallah, M. J., and Fredrickson, G. N. A note on finding a maximum
empty rectangle. Discrete Appl. Math. 10 (1986).

2. Chazelle, B. Computational geometry on a systolic chip. IEEE Trans.
Comput. 33,9 (1984), 774-78S5.

3. Chazelle, B., Drysdale, R. L., and Lee, D. T. Computing the largest
empty rectangle. Proc. Symposium on Theoretical Aspects of Com-
puter Science, 1984, pp. 43-54.

4. Dehne, F. O(n'/?) algorithms for the maximal elements and ECDF
searching problem on a mesh-connected parallel computer. Inform.
Process. Lett. 22 (1986), 303-306.

5. Dehne, F. Parallel computational geometry and clustering methods.
Ph.D. thesis, University of Wiirzburg (West Germany), 1986; also
available as Tech. Rep. No. 104, School of Computer Science, Carle-
ton University, Ottawa, Ontario, Canada K 1S 5B6.

6. McKenna, M., O’Rourke, J., and Suri, S. Finding the largest rectangle
in an orthogonal polygon. Report JHU /EECS-85/09, Johns Hopkins
University, Baltimore, MD, 1985.

7. McKenna, M., and Suri, S. Private communication.

8. Miller, R., and Stout, Q. F. Computational geometry on a mesh-con-
nected computer. Proc. International Conference on Parallel Process-
ing, 1984, pp. 66-73.

9. Naamad, A. W., Hsu, W. L., and Lee, D. T. On the maximum empty
rectangle problem. Discrete Appl. Math. 8 (1984).

10. Thompson, C. D., and Kung, H. T. Sorting on a mesh-connected par-
allel computer. Comm. ACM 20,4 (1977), 263-271.

FRANK DEHNE was born in Hannover, West Germany, in 1960. He
received the M.C.S. degree (Dipl. Inform.) from the Technical University
of Aachen (West Germany) in 1983 and the Ph.D. degree (Dr. rer. nat.)
from the University of Wiirzburg (West Germany) in 1986. Since July
1986 he has been an assistant professor at the School of Computer Science
of Carleton University, Ottawa, Canada. His research interests include
computational geometry, data structures, and parallel algorithms and
VLSL

