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Computational Geometry Algorithms for the
Systolic Screen’

F. Dehne,? A.-L. Hassenklover,? J.-R. Sack,? and N. Santoro?

Abstract. A digitized plane I1 of size M is a rectangular /M x /M array of integer lattice points

called pixels. A fﬁ X \/h—{ mesh-of-processors in which each processor P;; represents pixel (i, j) is a
natural architecture to store and manipulate images in IT; such a parallel architecture is called
a systolic screen. In this paper we consider a variety of computational-geometry problems on images
in a digitized plane, and present optimal algorithms for solving these problems on a systolic screen.

In particular, we present O(\/A_l )-time algorithms for determining all contours of an image; constructing
all rectilinear convex hulls of an image (peeling); solving the parallel and perspective visibility problem
for n disjoint digitized images; and constructing the Voronoi diagram of n planar objects represented
by disjoint images, for a large class of object types (e.g., points, line segments, circles, ellipses, and
polygons of constant size) and distance functions (e.g., all L, metrics). These algorithms imply

O(,/ M)-time solutions to a number of other geometric problems: e.g., rectangular visibility, separability,
detection of pseudo-star-shapedness, and optical clustering. One of the proposed techniques also leads
to a new parallel algorithm for determining all longest common subsequences of two words.

Key Words. Computational geometry, Clustering, Convex hull, Digitized pictures, Hulls, Maxima,
Mesh-of-processors, Parallel computing, Separability, Systolic array, Visibility, Voronoi diagram.

1. Introduction. A mesh-of-processors of size M is a set of M processors P;;
Geft,..., \/ﬁ }?) positioned on a \/ﬁ X \/ﬁ grid where each processor is
connected to its four neighbors (if they exist) via communication links. Such an
architecture is ideal for representing a digitized plane I1 of size M, i.e., a rectangular
array of M lattice points (or pixels) with integer coordinates (i, j) € {1, ..., \/ﬁ 32
On a mesh-of-processors, a set of n disjoint images I, ..., I, (where each image
I; is defined as a subset of IT) can naturally be stored as follows (see Figure 1):
Each processor P;; has a color-register C-Reg(i, j) with value

. k if (G,pel, 1<k<n),
-Reg(i, j) = .
C-Regli.)) {O otherwise.

A mesh-of-processors_which stores and manipulates images is referred to as a
systolic screen.
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(a) (b)

Fig. 1. (a) Two images in II. (b) Systolic screen representation of these two images.

Over the last three decades, a number of systolic screens have been constructed
[R3], [U}, e.g., the ILLIAC III [M1], the MPP (designed by NASA for analyzing
LANDSAT satellite data) [R1], the CLIP architecture [D5], and more recently
the Connection Machine (with its frame buffer) [H1].

While most of the early applications of the systolic screen focused on low-level
operations (such as, e.g., edge detection, filtering, or component labeling), recent
research has started considering high-level geometric problems as studied in the
rapidly growing field of computational geometry. This development is similar to
that of parallel computational geometry in object space, where geometric objects
are represented in analytical form (e.g., via boundary representations) rather than
as images. In practice, however, geometric data is often obtained from sensors or
photographs; hence, parallel computational-geometry algorithms in image-space
can be directly applied to images and do not need costly conversions of images
into object-space representation.

Miller and Stout [SM], [MS2] have presented O(ﬁ)-time algorithms for
computing, e.g., the distance between two images as well as the diameter, convex
hull, and smallest enclosing circle of an image, and for testing convexity and linear
separability of images.

In this paper we consider a variety of other computational-geometry problems
on images in the digitized plane of size M, and present 0(\/A7)-time algorithms
for their resolution on a systolic screen; since any nontrivial routing operation on
a \/M X \/]\_/I mesh-of-processors requires /M steps, these algorithms are
optimal for the systolic screen. We present O(,/ M)-time algorithms for determining
all contours and all rectilinear convex hulls (peeling) of an image (Section 2);
solving the parallel and perspective visibility problem for N disjoint images, and
related separability problems (Section 3); constructing the Voronoi diagram of N
planar digitized objects for a large class of object types (e.g., points, line segments,
circles, ellipses, and polygons of constant size) and distance functions (e.g, all L,
metrics), and optical clustering (Section 4). Incidentally, one of the proposed
techniques also leads to a new parallel algorithm for determining all longest
common subsequences (Section 2). These results have been obtained as part of the
ongoing investigation by the authors in the field of parallel computational
geometry, and preliminary descriptions of some of these results have been
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presented at conferences [DHSS], [DSS]; related results can also be found in
[D2]-[D4], [DHS], [DP], and [DS2].

Many of the algorithms described in this paper are based on a particular scheme
for systematically passing messages to each processor of the systolic screen, referred
to as systolic-screen sweep. A sweep is specified by a function f: {T;,..., T} -

P{1,..., \/ﬂ}z), where P({1,..., \/ﬁ}z) denotes the powerset of {1,..., \/ﬁ}z,
satisfying the condition that for each pair (i, j) e {1, ..., \/ﬁ }? there exists exactly
one t€{T,,..., T} such that (i, j) € f(t). The argument t corresponds to a step
number, or “time”; a systolic-screen sweep for such a function f is a message-
passing mechanism where at time ¢, every processor P;; with (i, j) € f(t) receives a
message. Unless otherwise stated, we assume that T, =1and T = \/M

Assuming that, at time ¢ = 1, all P;; with (i, j) € f(1) contain such a message, a
systolic-screen sweep can be efficiently executed in time O(\/ﬁ) (and, hence,
T= O(ﬁ) if the function f has the property that for every P;; with (i, j) € f(t)
there exists a processor P;; with (7, j') € f(t) such that the processor distance of
P;;and Py is O(1); the processor distance of two processors P;; and P;.; is defined
as their Manhattan distance |i — i'| + |j — j'|.

We utilize three principal systolic-screen sweeps:

e vertical, where f(t) = {(1,¢t), (2,¢),..., (\/ﬁ, t)} (or horizontal, where f(t) =
{&D,2),...,t, /M),
e diagonal, where T, =2, T = 2\/]\_4, and f(t)={G,)li+j=¢t and 1<,

js\/ﬁ}, and

e layered from (i,, j,), where
f(&) = {G,)Ilmax{|i, —i|, |j, —jl} =t —1land 1 <i,j < /M}.

Vertical, horizontal, and diagonal sweeps will also be applied in the direction
opposite to that defined above (e.g., for a vertical sweep we can define f(t) =
{{, \/M —1), (2, \/ﬂ —t)..n, (\/M, \/ﬁ — 1)}); particular applications also re-
quire the sweep direction to be parallel to some direction other than parallel to
the screen coordinates axes (see, e.g., Section 3.1 on parallel visibility).

Before we start presenting the algorithms, we introduce some definitions which
are used in the remainder of this paper [R2], [K]:

e The eight neighbors (for short called neighbors) of a pixel (x, y) e IT are the
eight pixels (x + 1, y),(x, y + 1),(x + 1, y + 1), and (x — 1, y + 1), if they exist.
The four neighbors of (x, y) are the four pixels (x + 1, y) and (x, y + 1), if they
exist. The border Bord(I) of an image I < IT is the set of all pixel of I which
have an eight neighbor in IT — I. The interior of I, I — Bord(l), is denoted by
Int(]).

o A path [4-path] from p € I1 to g € I is a sequence of point p = p,,...,p, = ¢
such that p; is a neighbor [4-neighbor] of p;_,, 1 <i <r. An image I =TI
is connected if for every p, q €1 there exists a path from p to g consisting
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entirely of pixels of I. An image I which is connected is referred to as a (digital)
object.
e With each pixel p = (i, j) € IT we associate its cell

p):==[i—05,i+05] x[j—05,j+ 0.5] < R?
and with each image I < I its region

K= <p>-

pel

e Conversely, we define for a set R = R? of points in the real plane its image
Im(R):= {p e I1|<p> N R # }.

e Given a point s € R? and radius r € R, then disc(s, r):= {x € R*|d(s, x) < r}
denotes the disc with center s and radius r, where d is a distance function to
be specified.

2. Contours, Layers, and Applications. We first examine two well-known and
extensively studied problems: given an image S = {s{,...,s,}, determine all its
contours and construct all its (rectilinear) convex hulls. The former problem and
its systolic-screen solution is presented in Section 2.1; the algorithm presented here
also leads to a new parallel solution for the (nongeometric) problem of determining
all longest common subsequences of two words (see Section 2.3). An algorithm for
the latter problem, which is often referred to as peeling, is discussed in Section 2.2.

2.1. Dominance and Contours. Consider an image S < II containing two pixels
s=(,j)eMand s’ = (i, j) eI, s # s". Then pixel s dominates pixel s' (denoted by
s>¢)ifi>i and j > j; pixel s € Il is called maximal in S if no other pixel s’ € §
dominates s. The set CONTOUR(S) of all maximal pixels of S, sorted by
x-coordinate, is called the contour of S. (We define CONTOUR():= (¥.) The
notion of the contour of S can be generalized to define the k-contour of S, denoted
by CONTOURCSS, k), k € N, as follows:

CONTOUR(S, 1):= CONTOUR(S),

CONTOUR(S, k + 1):= CONTOUR(S — [CONTOUR(S, 1) u -+ U
CONTOURC(S, k)]).

Since in a digitized plane different pixels may have the same x- or y-coordinate,
the following restricted definition of dominance is also useful: given two pixels
s=(i,j))and s’ = (', j'), s # &, then s strictly dominates s’ (denoted by s > §)if i > i’
and j > j'. The k-contour with respect to the strict dominance relation is denoted
by CONTOURX(S, k).
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Sequential algorithms for determining the maximal elements as well as all
contours of a set of points have been extensively studied in the literature (see, e.g.,
[PS]); for a set of n points, both problems can be solved in time O(n log n).

For the mesh-of-processors of size n, where each processor stores the coordinates
of one point, O(ﬁ)-time algorithms for determining the maximal elements (and
for solving the related ECDF searching problem) have been presented in [D2].
In the following we present an 0(\/1l7)-time systolic-screen algorithm for comput-
ing all nonempty k-contours of an image. For ease of description, we first present
(and prove the correctness of) an algorithm for the standard dominance relation;
we then extend this algorithm to determine all k-contours for the strict dominance
relation. '

Assume that an image S = {s,, ..., s,} < ITis stored on a systolic screen of size
M. In addition to the register C-Reg(i, j) used to store the image, each P;; contains
a second register called K-Reg(i,j). Upon termination of the algorithm, the
K-Registers will contain the final result, i.e., all k-contours, as follows:

for all P;; for which (i, j) e S: (K-Regi,) =k) <= ((,j)e CONTOURC(S, k)).
The following algorithm computes all k-contours in one diagonal sweep.

ALGORITHM 1: COMPUTING ALL SETS CONTOUR(S, k).

(1) Every processor P,; initializes its K-Register as follows:
K-Reg(i, j) + C-Reg(i, j).

(2) Every processor with K-Reg = 1 sends the content of its K-Register to its
lower and left neighbors, if they exist.

(3) Every processor P;;, upon receiving value v, and/or v, from its upper and/or
right neighbor, respectively, updates its K-Register

K-Reg(i, j) < max{K-Reg(i, j), max{v,, v,} + C-Reg(i, )}

and sends the new content of its K-Register to its lower and left neighbors, if
they exist. By definition, v, and v, are set to 0 if no value is received.
(4) Step 3 is iterated until there are no more messages transmitted.

THEOREM 1.  For any image S < TII, Algorithm 1 computes all nonempty sets
CONTOURCS, k) in time O(,/M).

Proor.  Each processor representing a pixel of S originates a message, and every
processor forwards a received message (possibly with modified content) to its lower
and left neighbors, if they exist. Hence, in the worst case, these messages will
proceed from the upper right to the lower left corner of the screen taking time
O(JM). The correctness of Algorithm 1 is proved by induction on |S|: For |§| = 1,
the algorithm obviously provides the correct result. Assume |S]>1 and let




Computational Geometry Algorithms for the Systolic Screen 739

k4

Max{ky k2 }

Fig. 2. Update process for nested and overlapping dominance regions.

s’€ CONTOUR(S, 1) be a maximal element of S. Observe that, after execution of
the algorithm, the final register contents of a processor is independent of the order
of arrival of the messages which originated at other elements. Thus, the execution
of the algorithm is equivalent to its execution with respect to § — {s'} (which is
assumed to be correct), with a subsequent propagation of the message originating
at s". We observe that this final message propagates to all processors which are
dominated by s’ and correctly updates the solution obtained for S — {s'}; see
Figure 2. O

The algorithm for computing all CONTOURX(S, k) is essentially identical to
Algorithm 1 with the addition of taking into account that a pixel does not
dominate pixels with the same x- or y-coordinate. Thus, when a processor receives
a message, it needs to determine whether this message has been passed on a
horizontal (vertical) path, i.., a path in which each consecutive pair of pixels are
horizontal (vertical) neighbors. To provide the necessary information, an
additional bit b is added to each message; by convention, a bit value 0 indicates
that this message is traveling on a horizontal or vertical path.

ALGORITHM 2: COMPUTING ALL SETs CONTOURX(S, k).
(1) Every processor P;; initializes its K-Register as follows:

K-Reg(i, j) « C-Reg(i, j).

(2) Every processor with K-Reg = 1 sends a message (K-Reg, 0) to its lower and
left neighbors, if they exist.

(3) Every processor, upon receiving message (v,, b,) and/or (v,, b,) from its upper
and/or right neighbor, respectively, updates its K-Reg and sends a message
(v, by) and (v, by to its lower and left neighbor, respectively; see Figure 3(a).
The update of the register K-Reg and determination of the bits b, and b, is
described in Figure 3(b). The values of v; and v, are set to the updated value
of register K-Reg.

(4) Step 3 is iterated until there are no more message transmissions.

THEOREM 2. For any image S < I, Algorithm 2 computes all nonempty sets
CONTOURX(S, k) in time O(,/ M).
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(v,.b)

|
(v,,b)) <= | C-Reg I K-Re; [¢— (v,,b )
'

(v,,b,)
(2
byb{ vy>v, vu=v, lvu<v,
* 0 [K-Reg]<-max{K-Reg], v}; bj=0; bp=1-[C-Reg]
0" [K-Reg]<-max{K-Reg], v,}; bj=1-[C-Reg]; b,=0
* 1 [K-Reg]<-max{K-Reg], v +[C-Reg]}; bi=bp=1-[C-Reg]
1 [K-Reg]<-max{K-Reg], vy +[C-Reg]}; b'|=bb=1-[C-Reg]
00 [K-Reg]<-max{K-Reg], Vr, Vy}
b)=1-[C-Reg]; by,=0 bj=bp=0 [b=0;bp,=1-[C-Reg]
0 1] [K-Reg]<-max{K-Reg], v} [K-Reg]<-max{K-Reg], v,+[C-Reg]}
bj=1-[C-Reg]; b,=0 bj=by,=1-[C-Reg]
1 0| [K-Reg]<-max{K-Reg], vy+[C-Reg]} [K-Reg]<-
max{K-Reg], v;}
bj=bp=1-[C-Reg] b|=0; bp=1-[C-Reg]
11 [K-Reg]<-max{K-Reg],max{vu,vr}+[C-Reg]}; bj=bp=1-[C-Reg]
()

Fig. 3. (a) Messages sent to/from every processor. (b) Update of register K-Reg and determination of
b, and b, performed by each processor. :

ProoF. The proof follows along the same lines as that of Theorem 1. O

The points of each k-contour define a 4-path of pixels connecting these points,
which we refer to as the k-chain of S. The set of all pixels which lie on or below
the k-chain and above the (k + 1)-chain are referred to as the k-strip of S. We
observe that, upon termination of Algorithm 2, the register K-Reg of the processors
corresponding to pixels in the k-strip have value k; the processors corresponding
to pixels in the k-chain have the additional property that either the upper or the
right neighbor has K-Reg = k — 1.

COROLLARY 1.  On a systolic streen of size M, all k-chains and k-strips of an image
S < II can be computed in time O(,/M).

2.2. Rectilinear Convex Hulls (Peeling). A classical problem in computational
geometry, directly related to the maxima determination problem, is the convex
hull construction problem which has been extensively studied both for sequential
(see, e.g., [PS]) and parallel environments (see, e.g, [ACGOY], [MS1], and

[MS2]). A useful representation of a set S is the set of its convex layers; this
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representation has also been used to obtain an efficient solution for the half-plane
range query problem [CGL]. For sets S < E? in the Euclidean plane, a commonly
used technique for determining this representation is peeling; that is, the iterative
process of computing the convex hull of S and removing its vertices from . Peeling
is the two-dimensional analogue to the concept of the alpha-trimmed mean used in
robust statistics (see, e.g., pp. 83ff of [S4] and [H3]). Several sequential algorithms
for peeling have been proposed by Shamos [S4], Overmars and van Leeuwen
[OvL], and Chazelle [C]; an Q(n log n) (sequential) lower bound for this problem
has been proved by Shamos [S4].

In a digitized plane, a type of hull of particular interest is the rectilinear convex
hull, whose sequential determination has been studied, i.e., in [MF], [S1], [S2],
and [W]. An image S = {s,,...,s,} is said to be rectilinearly convex if the
intersection of its region {S) and an arbitrary horizontal or vertical line in IT)
consists of at most one line segment. The intersection of all rectilinearly convex
images S’ = IT which contain § is called the rectilinear convex hull of S and is
denoted by HULL(S). In a digitized plane, peeling an image S = {s4,...,s,} refers
to the following iterative process: compute the rectilinear convex hull of S and
remove its vertices from S, until S contains no more points.

The kth rectilinear convex hull HULL(S, k) of S (k € N) is therefore defined as
follows (see Figure 4):

HULL(S, 0):= II,
HULL(S, 1):= HULL(S),
HULL(S, k + 1):= HULL(Int(HULL(S, k) n S).

%
Hull(S,1)-Hull(S,2) Hull(S,2)-Huli(S,3) Huli(S,3)-Hull(S, 4) Hull(S,4)

Fig. 4. All hulls Hull(S, k) of an image S (enclosed by the bold line).
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Considerable attention has also been given to finding estimators which identify
the center of a set S and the depth of points with respect to § (see [S4], [OvL],
and [LP]). The depth of S, denoted by DEPTHY(S), is the largest k such that
HULL(S, k) # &. For each pixel s e IT we define its depth DEPTH(s, S) in S:

DEPTH(s, S):= k if and only if se Hull(S, k) — Huil(S, k+1).

Obviously, DEPTH(S) = max{DEPTH(s, S)|s e IT}.

Peeling an image and computing the depth of each pixel can be reduced to four
executions of the algorithm for computing all k-strips with respect to the strict
dominance relation. Given a pixel se I, we define kyg(s, S):= k (kgg(s, S):=k,
ksw(s, 8):=k, kyw(s, S):=k) if s is an element of a k-strip of S for the strict
dominance relation with respect to the NE direction (SE direction, SW direction,
NW direction, respectively); see F igure 5 for an illustration. We observe that, for
every pixel s € I, Depth(s, §) = k if and only if min{kyw(s, S), ksw(s, S), kng(s, S),
kse(s, S)} = k. Hence, an image can be peeled by executing Algorithm 2 four times,
once for each direction; at each processor the depth of the corresponding pixel is
simply the minimum of the four values of its register K-Reg at the end of each
iteration.

We obtain

THEOREM 3. For any image S < 11 all kth rectilinear convex hulls, the depth of
each pixel and the depth of the image can be computed on a systolic screen of size

M in time O(/ M).

og ! lgw 1 11 1q ! 1q ! 1q 1 lgm 1 g o
1 5 2| s 3 4 4 4 3 4 2 s| 2 51
1 2 0

op 2 1k 2 2gm 2 2 2g! 2g ! 2 O
1 4 2] 4 3] 4 4 4 3 4 2 4] 2 4 1
lgw 3 1} 2 2k 2 2 I 2 ig ! ] 3 1
il 4 2 3 3| 3 3 4 3 4 2 4 2 4] 1
' 1

1 3 2gm 3 2 3 2 2 3k 2 dom 2 ‘g ! 4

1| 3 2| 3 33 2 3 2 3] 2 31 3| 1
1}y 4 20y 4 20 3 2 2 3 2 dh 2 ! 41
if 3 2 3 2] 2 2 2 2 3 2 301 3| 1
1k 5 2gm 4 3 3 3 g 3 4 2 Sm? Sha 1
1 2 1l 2 2 2 2 2| 1 21 2 1 2 1
1

g s 2 4 3 3 3 3 s 3 4 2 5o 2 Sg
0 1 11 11 11 11 1 o 1 o0 1 0
2 S 1

g s 2 ¢ g3 3g 3 4p 3 ‘g 2 SO O
0 0 0 0 0 o0 0 o0 0 0 0 0 0 0 0 0

Knw kng [ O
D PE with C-Reg-1 PE with C-Reg=0
Ksw ks

Fig. 5. Peeling an image.
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2.3. Longest Common Subsequences. The proposed technique for computing all
k-contours (Section 2.1) also yields a new efficient parallel algorithm for finding
all longest common subsequences of two given strings. _

Given two strings 4 = A(1)--- A(n) and B = B(1)--- B(m), n > m, over some
finite alphabet X, a substring C of A is defined to be any string C = C(1)--- C(r)
for which there exists a monotone strictly increasing function f: {1,...,r} >
{1,...,n} with C(i) = A(f(i)) for all 1 <i<r. The longest common subsequence
problem is to find a string of maximum length which is 4 substring of both 4 and
B. This problem has been extensively studied in sequential environments (e.g., see
[HS], [H2], and [NKY]). Recently, Robert and Tchuente [RT] introduced a
parallel algorithm which computes a longest common subsequence in time O(n)
using a one-dimensional systolic array of size m with an additional systolic stack
of size n associated with each processor.

We present an algorithm for the more general problem of determining all longest
common subsequences in time O(n) on a systolic screen of size n x m. All processors
are of the same type and thus our solution uses a more homogeneous architecture
than that in [RT]; this answers the question posed in [RT]. The central idea
which leads to this method is a transformation of the longest common subsequence
problem to the k-contour determination; the same reduction was used by Hirsch-
berg in [H2].

LEMMA 1.

(@) A(G,) - AG,) = B(j,) - - B(j,) is a common subsequence of A and B if and only if

(15 J1) < (iz,2) < < iy, j).
(b) The length r of a longest common subsequence is

r = max{k € NJCONTOURX(S ,,, k) I},

where SA33= {(i,j)lA(i) = B(j)}'

Proor. See [H2]. |

As a consequence of Lemma 1, the problem of computing all longest
common subsequences can be reduced to the problem of computing a k-contour
CONTOURX(S ,z). Every longest common subsequence corresponds to a sequence
S1,..., S, of points of S5, where

r = max{k € NJCONTOURX(S ,;, k) # &},
5, € CONTOURX(S ;5,7 — k + 1), and s5; <5, <*** <5,; See Figure 6. Note that
there may be an exponential number of longest common subsequences which
obviously cannot be reported explicitly in time O(n). Instead, we report for every
(i, /)) e CONTOURX(S , 3, k) the set

Next(i, j):= {(¥, /) e CONTOURX(S 5, k — 1)|i' > i and j' > j}.




744 F. Dehne, A.-L. Hassenklover, J.-R. Sack, and N. Santoro
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Fig. 6. All k-contours for the set S 5.

With this, the set of all longest common subsequences corresponds to the set
of all sequences sy,...,s, of points S,z such that s; e CONTOURX(S 45, r) and
Se+1 € Next(s,), 1 < k <r — 1. We observe that Next(j, j) is a sequence of consecu-
tive points (i',j) of CONTOURX*(S ,p, k — 1), sorted by y-coordinate, with
i’ > Next,(i,j) and j > Next,(i, j) where

Next, (i, j):= min{i” > i|(i", j") € CONTOURX(S 45, k — 1)}
and
Next,(i, j) := min{j” > j|(i", j") € CONTOURX(S 45, k — 1)}.

Thus, after computing S 5 and all its contours with respect to the strict dominance

relation, an implicit description of all longest common sub-sequences follows from

the two values Next,(i, j) and Next,(i, j) associated with every point (i, j) € S 4.
All values Next,(i, j) can be obtained as follows:

(1) For each (i,j)e CONTOURX(S 45, k) create two records (k,i,j,0) and
(k - la i,j’ 1)

(2) Sort these records in snake-like ordering [TK] using their first field as the
major and their second field as the minor key.
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(3) Determine for all records (k, i, j, 0) the next record (k, i, j, 1) with respect to
the snake-like ordering (using one row and one column rotation) and send '
back to processor P;; (using a random access write as described in [MS1]).

Since all operations can be performed in O(n) time, we obtain:

THEOREM 4. All longest common subsequences of two strings A = A(1),..., A(n)
and B = B(1),...,B(m), n > m, can be computed on a mesh-of-processors of size
n x m in time O(n).

3. Visibility Problems. We now examine problems relating to the visibility of
digitzed objects. Visibility problems have been studied extensively in the fields of
computer graphics, robotic, and computational geometry. We study these pro-
blems in two common models of visibility: the parallel and the perspective model.

Consider a digitized plane IT of size M and a set I,, ..., I, of n disjoint images
in IT stored on a systolic screen of size M. A pixel (i, j) € I1 is called black, if it is
contained in some image I; (1 <i <n).

In the parallel visibility model it is assumed that a light source is located at
infinity, emitting rays parallel to a specified direction d. A point x € {IT} is called
visible in direction d if the ray emanating from x in direction —d (i.e., the direction
opposite to d) is not intersected by the region {(i, j)> of any black pixel (i, j) (i.e.,
x is not obstructed by any black pixel). In the perspective visibility model a light
source is located at some point p € I, emitting rays in every direction. A point
x e {IT) is called visible from p if the line segment from p to x is not intersected
by the region {(i, j)> of any black pixel (i, j).

On a systolic screen, the visibility problem, formulated in either the parallel or
the perspective model, consists of determining for every pixel (i, j) € IT the set of
all visible points on the boundary of {(i, j).

In Sections 3.1 and 3.2, we present O(ﬁ)-time algorithms to solve the parallel
and perspective visibility problem for a set of n disjoint images stored on a systolic
screen of size M. These algorithms imply efficient solutions to a variety of other
geometric problems on a systolic screen. Some of these applications are presented
in Section 3.3. We obtain O(ﬁ)-time solutions for, e.g., determining the visibility
hull of each image and deciding whether a set of images is translation separable
(in the sense of [T]), or deciding for each image whether it is pseudo-star-shaped
with respect to a point p (in the sense of [DLS]).

3.1. Parallel Visibility. In this section we solve the parallel visibility problem for
a set of n disjoint images on a systolic screen of size M and a given direction d.
We assume that the angle § between direction d and the horizontal axis is between
0° and 90°; all other cases, are handled symmetrically.

We split (IT) into m strips STy, ..., ST,,, parallel to direction d; each strip ST,
is bounded by two bounding lines b, and b, ; ,, and every strip has the same width
w (see Figure 7 for an illustration). A processor P;; belongs to ST, if {(i, j)) intersects
ST,.
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Fig. 7. A strip ST, of width w.

The visibility in a strip is affected only by the pixels whose region is intersecting
that strip. Thus, we can solve the parallel visibility problem independently, and
in parallel, for each strip. In geometric terms, for every strip a sweep is performed
in direction d which determines for any point of the strip whether it is visible in
direction d.

The basic idea for performing such a sweep on a systolic screen is to pass a
visibility interval VI,, which represents the current part of the cross-section of strip
ST, currently visible in direction d, along the processors belonging to ST, (see
Figure 8). Every such processor P;; representing a black pixel (i, j) creates a
visibility interval VI, equal to the entire cross-section of § T, minus the part of the
cross-section obstructed by (i, J)>, and sends VI, to its successor in ST, with
respect to direction d. Every processor P, belonging to ST, that receives a
visibility interval VI, updates it (ie., subtracts the part of the cross-section
obstructed by {(#,)), and sends the updated VI, to its successor in ST, with
respect to direction d (see Figure 8). For every processor P;; belonging to ST;, the
visible part of the cross-section of the strip at {(i, ) is the intersection of all
visibility intervals received (or the entire cross-section if no visibility interval was
received).

In order to implement the above idea on a systolic screen, a number of issues
have to be resolved which are discussed in the following.

One issue is the correct ordering of the processors belonging to ST;, in which
the visibility intervals are passed along the strip. For a correct execution of the
algorithm we need a linear ordering of those processors satisfying the following
property: if P;; precedes P, 7> then no point of {(i, j)> is obstructed by (@, j)).

Such an ordering, which is referred to as Oy, is obtained by projecting the pixel
(i, j) represented by every processor P;; belonging to ST, onto the border s, of the
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strip and then sorting these projections in increasing order with respect to direction
d.

When a processor P;; receives VI, from its predecessor in O,, it has to determine
the address of its successor in O,, and forward the updated visibility interval. In
order to obtain the desired time complexity, these two steps must be executed in
constant time.

ProPERTY 1. The processor distance between P;; and its successor in Oy is at most
three.

From Property 1 it follows that the successor of P;; in O, can be computed in
constant time. Furthermore, VI, can be forwarded in constant time provided that
it can be encoded into a message of constant length.

This requirement leads to another issue, the choice of the width w of every strip.
Notice that, if w is chosen to be too large, a visibility interval VI, being shifted
through strip ST, may consist of several fragments. A large number of fragments
will result in too long messages being sent between the processors belonging to a
strip.

Notice, on the other hand, that if w is chosen too small, a processor may belong
to more than a constant number of strips. Such a situation must not occur since
every processor has to execute one process for each strip to which it belongs.

In order to meet the above requirements, we select the following width w:

w = ./2cos(45° — p).
This selection of w has the following properties:

ProPErTY 2.  Every visibility interval consists of at most two contiguous parts.
PrOPERTY 3. Every processor belongs to at most two strips.

We can now present the algorithm for solving the parallel visibility problem,
in the parallel visibility model, for a given direction d on a systolic screen which
stores a set of N disjoint images.

We assume that the direction of d of visibility has been entered and broadcast
to all processors. Upon termination of the algorithm, every processor P;; will store
the set of visible points on the border of {(i, j)).

ALGORITHM 3: PARALLEL VISIBILITY

(1) Every processor P;; computes the following initial steps for its local variables
w, ST, ST, ., succy, succ, . ¢, VI, and VI, ;:
(a) Calculate the width w.
(b) Compute the strips ST, and ST, ., (if it exists) to which P;; belongs.
(c) Compute the addresses succ,, succ,,, for the successor of P; in O,
and O, ,, respectively.
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(d) Initialize VI, and VI,,, to the entire cross-section of ST, and STt 15
respectively.

(2) Every processor P;; representing a black pixel (i, j) removes from VI, and A\
the portion obstructed by <(i, j)) and sends the updated VI, and VI, ., to Py,
and P, ., respectively.

(3) Every processor P;; executes the following steps 3\/M times:

(a) If a visibility interval VI for strip ST, is received from the predecessor of
Py;;in Oy, he {k, k + 1}, then VI, is set to the intersection of VI, and VI, and
the updated VI, is sent to the successor of P; in O,.

(b) If a received interval VI has a destination other than Py; it is forwarded
toward its destination processor.

THEOREM 5. For a set of digitzed images stored on a systolic screen of size M,
Algorithm 3 solves the visibility problem for the parallel visibility model in time

0/ M).

ProOF. The correctness of the algorithm follows from the above discussion and
the observation that every sweeping process in a strip is completed after at most

3{/M steps. The time complexity follows from the fact that Steps 1, 2, 3(a) and 3(b)
can each be executed in time O(1). O

3.2. Perspective Visibility. We now present a systolic-screen algorithm for
solving the visibility problem in the perspective visibility model. Given a point
p = (ip, j,) € IT emitting rays (radially) in every direction, the task is to determine
for every pixel (i, j) € IT the set of all points q on the boundary of (i, j)> that are
visible from p (i, the line segment from p to g is not intersected by the region
{(#,J)> of any black pixel (i, j') € IT); see Figure 9 for an illustration. Point pis
called the viewpoint.

For any q eI, let W(g) be the wedge created by the two rays emanating from
p and supporting {g), i, each ray of W(q) is a tangent of (g, and W(q) is
contained in the closed half-plane defined by each ray (see Figure 10). A subwedge
of W(g) is a wedge created by two rays emanating from p which is contained in

Wi(q).
The pixel obstruction wedge POW(q) is the portion of the plane obstructed by

Fig. 9. Perspective visibility from a point p.
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Fig. 10. The wedge W(qg) of a pixel q.

a pixel g € IT; if g is black, then POW(qg) is the portion of W(qg) obstructed by (g,
if g is white, then POW(g) is the empty set.

The algorithm for perspective visibility uses a layered systolic-screen sweep,
ie., a systolic-screen sweep with f(t) = {(i, j)|max{|i, — il, |j, — j|} =t — 1}, see
Section 1. During this sweep, every processor representing a pixel g accumulates
the pixel obstruction wedges of all pixels ¢’ for which {q’) obstructs at least one
point of {g); the portion of this set that is contained in W(q) describes exactly the
portion of the boundary of {g) which is not visible from p and is referred to as
its invisible set INVIS(q). The obstruction set OS(q) of a pixel g € IT is the union of
INVIS(g) and POW(g).

We assume that the coordinates of the viewpoint p have been broadcast to all
processors. The following is the basic structure of the algorithm for solving the
perspective visibility problem. Upon termination of the algorithm, every processor
representing a pixel g stores its invisible set INVIS(g).

ALGORITHM 4: PERSPECTIVE VISIBILITY.

(1) Every processor P;; representing a pixel g computes the following initial steps
on its local variables INVIS and OS which represent the invisible set INVIS(q)
and the obstruction set OS(g), respectively:

INVIS « &,
OS « POW(q).

(2) The following steps are iterated fort =1,..., \/ﬁ —1:
(@) Every processar representing a pixel in f(t) sends a description of its
obstruction set OS to all those processors P;; with (i, j) € f(t + 1) for which
{(i,j)) intersects OS.
(b) Every processor representing a pixel g € f(t + 1) sets

INVIS « (W(q) n ),
OS « INVIS U POW(g),

where X is the union of all obstruction sets received.
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L(3)
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Fig. 11. A maximum number of obstructions sets of a previous layer that intersect a pixel.

In order to implement this algorithm efficiently, it must be ensured that all
messages describing obstruction sets are of constant length, and that at each stage
of the algorithm every processor representing a pixel g S(t + 1) receives only a
constant number of such messages from the processors representing a pixel f7(z).

PrOPERTY 4. For every (i,j) € f(¢), there are at most three pixels g e f t —v),
1 < v <t, whose obstruction sets intersect {(i, j)). (See Figure 11.)

PROPERTY 5. Every invisible set INVIS(q) and obstruction set OS(g) consists of
at most two subwedges of W(q).

We also observe that the L, (Manhattan) distance between a pixel g € f(t) and
every pe f(t + 1) for which OS(q) intersects (p> is at most 2. Therefore, in order
to implement Step 2(a) of Algorithm 4, it is sufficient that every processor
representing a pixel ge f(¢) first sends its obstruction set only to its direct
neighbor(s) representing a pixel pe f(r + 1) (growth step), and then all those
processors rotate the received obstruction sets by two positions in clockwise and
counterclockwise direction (exchange step); see Figure 12.

Summarizing, we obtain

THEOREM 6. For any set of digitized images stored on a systolic screen of size M,
Algorithm 4 solves the visibility problem for the Perspective model in time O(,/M).

$§x N
N N N
NE_ NS ‘

ESREE)

b

Fig. 12. The (a) growth step and (b) exchange step in the perspective visibility algorithm.
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PROOF. The correctness and time complexity of Algorithm 4 follows from the
above observations and the fact that the layered systolic-screen sweep guarantees
that every processor representing a pixel g accumulates, in its register INVIS, the
pixel obstruction wedges of all pixels g’ for which {q'> obstructs at least one point

of {(g). O

3.3. Applications of Digitized Visibility

3.3.1. Rectangular Visibility. Let S be a planar point set of cardinality n. Two
points p, g € S are said to be rectangularly visible if the orthogonal rectangle with
the two points as diagonally opposite vertices contains no other point of §.
O(nlog n + k)-time (sequential) algorithms to find all pairs of points that are
rectangularly visible (where k is the number of pairs to be reported) have been
presented by Giiting et al. [GNO], as well as Munro et al. [MOW]. On a systolic

screen, this problem can be easily solved in O(,/M) time by using a sweep
technique similar to that described in Section 3.1 performed in a direction parallel
to the screen axes.

3.3.2. Separability. The technique of partitioning the systolic screen into a set
of parallel strips developed in Section 3.1 can be employed to solve related
problems in motion planning. One motion-planning problem is that of separability
of objects (see, e.g., [DS1], [NS2], and [T]). Given a set of objects {0, ..., Oy}
and a direction d of translation, does there exist a translation ordering
(Ox1)s - - Opyy) among the objects, where = is a permutation of the index set
{1,..., N}, such that, for all i = ,...,N—1, O, can be separated, i.e., translated
by an arbitrary amount in d without colliding with any of the objects
Oy +» Opy—1), O.) not yet translated (Problem I)? This problem has been
studied in robotics and computer graphics. A subproblem arising in this context
is to determine for every object O; whether it can be separated from the object
set {0y, ...,0y} — O; or not (Problem II). We sketch the ideas of the algorithms
for solving these problems on the systolic screen.

The idea to solve Problem I is to construct the visibility hull of each object with
respect to direction d; the visibility hull of a planar object O, with respect to
direction d is the union of all line segments that are parallel to direction d and
whose endpoints are both contained in 0;. It has been shown in [T] that there
exists a translation ordering for a set of objects with respect to direction d if and
only if the visibility hulls (with respect to direction d) of no two objects intersect.
Thus, it remains to be shown how to detect on a systolic screen whether any two
visibility hulls of N_objects Oy, ..., Oy intersect. This can be accomplished by
essentially two executions of a sweep similar to the one described in Section 3.1,
one in direction d and one in the opposite direction. During these sweeps, every
obstruction interval initiated by a black pixel of object O; considers all pixels
except those of O; as white pixels. In the first sweep, every black pixel of 0,
determines whether it is obstructed by another black pixel of 0;. In the second
sweep, only the obstructed pixels of O; initiate an obstruction interval; during this
sweep, the cross-section of all encountered black pixels of O, are subtracted from
(rather than added to) these obstruction intervals. All black pixels of 0; and those
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“obstructed” by O, in the second sweep are in the visibility hull of O, and are
colored as such. The objects are separable in direction d, if no two objects attempt
to color the same pixel as part of its visibility hull (collision). Note that the visibility
hulls may not be computed correctly if collisions occur.

In order to solve Problem II, we observe that an object O, is separable from
the object set {0,,..., 0y} — 0, if and only if none of the obstruction intervals
originated by a black pixel of O, encountered a collision and none of its black
pixels was the location of a collision. Obviously, the information about all
collisions can also be routed back (by another sweep in direction d) to the black
pixels at which the respective obstruction intervals orginated. Then, it remains to
be determined for each object 0;, whether any of its pixels found a collision. This

can be accomplished in time 0(\/1\—/1) by using the connected component algorithm
described in [NS1] (where each pixel is labeled with “0” if it found a collision
and “1” otherwise) and routing the minimum label of the pixels in each object to
all its pixels. Thus, all objects O, entirely labeled with “1” are separable from
{04,...,04} —0,.

3.3.3. Pseudo-Star-Shapedness. The perspective visibility algorithm of Section
3.2 can be used to solve a variant of visibility in which a point p in a polygon P
is k-visible from another point g if the line segment pg does not intersect the
boundary of P more than k times (for fixed k). A polygon P is called pseudo-
star-shaped from p if it is k-visible from p for k =1 (see [DLS]). Pseudo-star-
shaped polygons are more general than convex, star-shaped or monotone polygons
and exact characterizations of these properties via pseudo-star-shapedness have
been given [DLS]. The above perspective visibility algorithm (for a view point D)
can be generalized to decide whether a polygon is pseudo-star-shaped from a
point p by considering only boundary pixels of a polygon (represented as an image
on the systolic screen) as black pixels and introducing for each pixel an “inter-
mediate obstruction set” to store wedges obstructed by only one boundary pixel.
Thus, on a systolic screen of size M, pseudo-star-shapedness can be detected, and

in general the k-visibility problem (for fixed k) can be solved, in time O(,/M).

4. Digitized Voronoi Diagrams. In this section we present an 0(\/_1\7)-time
solution to the problem of computing the (digitized) Voronoi diagram of a set of
n disjoint objects taken from a large class of object types which includes points,
line segments, circles, ellipses, and polygons of constant size. The algorithm can
be used to compute the (digitized) Voronoi diagram for a large class of distance
functions which include, e.g., all L, metrics. The parallel computation of digitized
Voronoi diagrams for point sets in the Manhattan (L,) and Euclidean (L,) metric
has also been studied in [S3].

Since Voronoi diagrams are used in many geometric applications, our result
has numerous consequences for the design of efficient image-processing algorithms
on a systolic screen.

Consider a set S = {s,,...,s,} of n geometric objects in R? (i.e., objects which
are connected point sets), e.g., points, line segments, polygons, circles, ellipses. Let
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d:R? x R* > R* be a distance function. The well-known Voronoi diagram V(S)
(discussed, e.g., in [SH]) partitions R? into n Voronoi regions:
V(s):= {x € R?|d(x, 5;) < d(x, s;) for all j # i}.

See Figure 13 for an illustration. Every Voronoi region V(s;) consists of two disjoint
parts, the interior

IV(s):= {x € R?|d(x, 5;) < d(x, 5;) for all j 5 i}

, s======mms |jne Segment
1 aeemeee. Voronoi Edge
= Delaunay Edge

Fig. 13. Voronoi diagram for a set of line segments.
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and the border
BV(s):= V(s;) — IV(s)).

BV(S):= (J; <i<n BV(s), the union of all borders, is usually referred to as the
set of Voronoi points of V(S).

We show how the definition of a Voronoi diagram in R? can be translated to
the digitized environment (see also [S3]). The digitized Voronoi diagram V ,(S) can
be defined as follows:

Consider a set § = {s,,...,s,} of n geometric objects s; = <IT) such that their
image representations in IT do not intersect (ie., {s;> N (s;9 = & for i #j), and
let d: R? x R? > R* be a distance function.

As described above, the standard Voronoi diagram V(S) induces a Voronoi
region V(s;) for each object which consists of an interior I'V(s;) and a border BV(s)).

The digitized Voronoi diagram V 4(S) partitions I into n digitized Voronoi regions
V4(s;), one for each object s;. Each digitized Voronoi region consists of an interior
IV4(s;) and a border BV (s;) defined as follows:

o BV (s;):= Im(BV(s,)).
o IV,(s):= Im(V(s)) — BV (s).

That is, the border of a digitized Voronoi region is the image of the border of the
respective standard Voronoi region; the interior of a digitized Voronoi region
consists of the remaining pixels in the image of the respective standard Voronoi
region (see Figure 14). Consequently, the set BV4(S) of all Voronoi pixels of the
digitized Voronoi diagram is defined as BV(S):= Ul <i<n Ba(sy); i.e., the Voronoi
pixels of V4(S) are obtained by computing the image of the Voronoi points of V(S).

Note that Voronoi points which do not intersect {IT) are not represented in
the digitized Voronoi diagram V(S) and that all Voronoi points which are
contained in a cell {p), p € I1, are represented by one Voronoi pixel only (see also
M2]).

In Sections 4.1 and 4.2 we describe how to compute digitized Voronoi diagrams
on a systolic screen. To simplify the exposition we first consider the basic case of
a set of points and Euclidean metric, and we then generalize our result to more
general sets of objects and distance functions.

4.1. Computing Digitized Voronoi Diagrams for Point Sets and Euclidean Metric.
Let S = {s;,...,s,} be a set of n points in (IT) (Im(s) N Im(s) = & for i # j),
and let d be the Euclidean metric. We present an 0(\/ M)-time algorithm for
computing the digitized Voronoi diagram V4(S) on a systolic screen of size M.
(See Figure 15). The algorithm assumes as input that Im(s,),...,Im(s,) are
represented on a systolic screen as described in Section 1. The digitized Voronoi
diagram of S is reported by the systolic screen as follows:

Every processor P;; has a Voronoi register, V-Reg(i, j), and upon termination of
the algorithm their values are

L[k i G)elVis) (1<ksn),
V-Reg(i, j) = {* if (i, j) e BV(S).
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Fig. 14. Digitized Voronoi diagram for the set of line segments of Figure 13. (The black pixels represent
the Voronoi pixels).

L1

Fig. 15. Digitized Voronoi diagram for a set of points.
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The basic idea of the algorithm is to “grow” circles emanating from the objects
(recall the layered sweep introduced in Section 1); a similar geometric idea for
sequential Voronoi diagram construction can also be found in [CD]. The algo-
rithm has O(ﬂ) rounds, in each round the radii of all circles are incremented
by a distance u, where u is chosen such that, for all we S,te N,

Bord(disc(w, tp)) = disc(w, tu) — disc(w, (t — 1)u);

for point sets, and Euclidean Metric, we chose u = 1. The algorithm determines
the Voronoi pixels by examining the areas of “colliding” circles.

ALGORITHM 5: COMPUTING THE DIGITIZED VORONOI DIAGRAM.
(1) All P;; initialize their V-Register: V-Reg(i, j) < C-Reg(i, j).
(2) For t:= 1 to \/M/u do.

(@) All P;; with V-Reg(i,j) = k > 0 send a message “k” to all P;; within a
constant processor distance A for which V-Reg(i’,j) =0 and {(/,j)) n
(disc(sy, tp) — disc(sy, (¢ — 1p) # .

(b) All P;; with V-Reg(i,j) = 0 which receive only messages “k” set V-
Reg(i, j) < k.

(c) All P; with V-Reg(i, j) = 0 which receive at least two different messages
“k,” and “k,” set V-Reg(i, j) « *.

(d) All P;; with V-Reg(i, j) = k; which receive a message “k,” such that

(disc(sy,, tu) — disc(sy,, (¢ — Du) 0 <G> # &

and
(disc(sy,, tp) — disc(sy,, (t — Dw) N <G, 1)) # &

set V-Reg(i, j) « *.

THEOREM 7. Algorithm S computes, on a systolic screen of size M, the digitized
Voronoi diagram of a set S of n points in {(I1), for the Euclidean metric, in time

0/ M).

Proor. We refer to the loop index ¢t as time. The minimum distance between
a pixel (7, j') € disc(s;, t + 1) and some pixel (i, j) € disc(s, ) is at most a constant,
say A. Thus, to send a message “k” from all pixels in disc(s;, t) to the pixels in
disc(sy, t +.1) — disc(sy, t), it suffices that each P;; with {(i, )} N disk(sy, ) # J
sends a message “k” to all processors within distance 1. Hence, at time ¢, a
processor P;; with <(i, j)> N disc(sy, t) # & either receives a message “k” or has
received some other message earlier.

Consider a processor P;; for which all points in {(i, j)> are closer to s, than to
any other s,.. Upon termination of the algorithm the value of the processor’s
V-register must be k. For this processor P;;, there exists some earliest time

t*e{1,...,/M} such that {(i, )> < disc(s,, t*) but <(i, )> N disc(sy, t*) = & for
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all k' # k. Hence, prior to time t*, processors P;; did not receive any messages
and, at time t*, P;; receives messages, all of which have value “k.” Thus, at time
t* in Step 2(b), P; correctly sets its Voronoi register V-Reg(i,j) to k and
subsequently this value is not altered.

Consider a processor P;; for which at least one point x € {(i,j)> is equidistant
to two objects s, and s,.. Upon termination of the algorithm the value of the
processors V-register must be *. For such a P;;, there exists some earliest time
t*ef{l,..., \/Xfl‘ } at which it receives a message “k,” and, either at this time or
one time step later, it receives a message “k,.” In either case, V-register(i, j) will
eventually be set to *. In the former case, this is done at time t* as per Step 2(b).
In the latter case, V-Reg(i, j) is first set to k; and subsequently, at time t* + 1, this
value changes to * as per Step 2(d). Since a register value * can never be altered,
V-Reg(i, j) will, upon termination of the algorithm, correctly contain the value *.
Thus, the correctness of Algorithm 5 follows.

Since the execution of Step 1 and parts (a){(d) of Step 3 each take time O(1),

the running time of Algorithm 5 is O(,/M) O

4.2. Computing Digitized Voronoi Diagrams for Sets of Objects and Convex
Distance Functions. After having solved the problem of constructing the digitized
Voronoi diagram for point sets using the Euclidean metric, we now generalize our
result to other classes of objects and to convex distance functions. Algorithm 5
can be modified to solve these more general problems.

THEOREM 8. The digitized Voronoi diagram of a set S = {w, ..., w,} of n objects
w; < (I for any convex distance function can be computed on a systolic screen

of size M in time O(/ M) provided that the following conditions hold:

(i) For any two objects w, w' € S, Im(w) n Im(w') = .
(i) There exists a constant pu such that, for all we S,te N,

Bord(disc(w, tp)) = disc(w, tu) — disc(w, (t — 1)p).

(iii) For any object w € S there exists an O(1) space description such that from this
description it can be decided for every pe Il and te {1,..., \/ﬁ)} in O(1) time
whether {p) n (disc(w, tp) — disc(w, (t — 1p)) = .

(iv) There exists a constant A such that, for everywe S, te{l,..., \/1—\4_ },and pe Il
with {p> n disc(w, tu) # &,

min{d,(p, p)|p € T, <p'> A disclw, (¢ — D) # B} < 4,
where d, refers to the L, metric (i.e., the processor distance).
ProOF. Algorithm 5 needs only minor modifications to handle the generalized

case: disc(s, r) is generalized to the given type of object and the given distance
function. Furthermore, the values of A and u are adjusted to the particular case.
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While, similar to Section 4.1, condition (i) ensures that the images of two objects
do not intersect, condition (i) ensures that a proper constant y as required by
Algorithm 5 exists. Two more conditions are required to show that Algorithm 5

performs correctly and terminates after O(ﬂ) steps.

In Steps 2(a) and 2(d) of the algorithm, intersection tests between a disc and a
rectangle are performed. While such a test can clearly be executed in O(1) time
for point objects using the Euclidean metric, this is no longer the case for arbitrary
objects using arbitrary distance functions. In fact, the processor performing this
test needs not only the number of objects, but also information about the objects
in order to perform the intersection test. Therefore, an O(1) space description of
this information must be available, and the test must be executable in O(1) time,
i.e., condition (iii) must hold (and this also suffices).

For Step 2(a) of the algorithm, the processor distance A within which each Py
scans all its neighbors and sends them a message k is modified according to the
type of object and the given metric. Condition (iv) ensures that A is a constant,
which may not be the case in general, but is sufficient for the algorithm to
work correctly.

Under these conditions, the correctness of Algorithm 5 so generalized follows
in the same way as in the proof of Theorem 7, and its asymptotic running time
does not change. Thus, the correctness of Theorem 8 is established. O

The class of objects for which the conditions in Theorem 8 hold is fairly
general. It contains, e.g., all “simple” geometric objects (i.e., those ones that have
an O(1) description) and most of the standard distance function including all L,
metrics.

COROLLARY 2. On a systolic screen of size M, the digitized Voronoi diagram of a
set of points, line segments, circles, ellipses, and polygons of constant size can be

computed, for any L, metric, in time O(,/M) provided that their images do not
intersect.

4.3. Applications to Optical Clustering. One of the most useful and most thor-
oughly studied methods in image analysis is clustering, see, e.g, [DJ]. In [D1]
a clustering method called “optical clustering” has been presented, which groups
objects in a manner similar to human perception. For a given clustering radius r,
the clusters are the connected component of the graph connecting two objects if
and only if there exists a circle with radius r intersecting both of them.

The sequential method presented in [D1] which solves this problem for n points
(and L, metric) or line segments (and Euclidean Metric) is based on the Voronoi
diagram for these objects.

The same type of clustering can be obtained on a systolic screen of size M in

time O(,/ M) for any set of digitized objects and distance function for which the
conditions of Theorem 8 hold. First, the digitized Voronoi diagram is computed
as described in Sections 4.1 and 4.2, but with the following addition:

(i) Each processor P;; has an additional register D-Reg(i, j).
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(ii) For each P;;, when V-Reg(i, j) is set to k (or to *, respectively), then D-Reg(i, j)
is set to the distance of (i, j) to the corresponding object (the two corresponding
objects, respectively).

For any given clustering radius r, the radius is simply broadcast to all processors,
and all pixels (i,j) with D-Reg(i,j) < r are considered as black pixels of a new
image I, (r). The clustering is then obtained by applying the connected compo-
nent algorithm described in [NS1] to I ,/(r).
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