JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 8, 367-375 (1990)

Implementing Data Structures on a Hypercube Multiprocessor, and
Applications in Parallel Computational Geometry

FRANK DEHNE* AND ANDREW RAU-CHAPLINT

Center for Parallel and Distributed Computing, School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

In this paper, we study the problem of implementing standard
data structures on a hypercube multiprocessor. We present a
technique for efficiently executing multiple independent search
processes on a class of graphs called ordered A-level graphs. We
show how this technique can be utilized to implement a segment
tree on a hypercube, thereby obtaining O(log2n) time algo-
rithms for solving the next element search problem, the trape-
zoidal composition problem, and the triangulation problem.
© 1990 Academic Press, Inc.

1. INTRODUCTION

One of the main differences, besides the difference in
communication delay, between the parallel random access
machine (PRAM) and the hypercube processor network is
that the PRAM has one large (shared) memory similar to
that of a standard sequential computer, whereas the hyper-
cube has its memory divided into pieces of constant size
and distributed over the network.

The fact that the PRAM memory resembles the structure
of the standard sequential machine memory has been ex-
tensively used for the design of efficient PRAM algorithms.
It allows the implementation, on a PRAM, of well-estab-
lished data structures like, e.g., segment trees [1, 2, 6] or
subdivision hierarchies [5]. Once such a data structure has
been built, each processor can search in it, independently
of the others, in the standard manner.

For processor networks, the parallel execution of inde-
pendent queries on one joint data structure is obviously not
as straightforward. Most algorithms designed for processor
networks are mainly concerned with solving the routing
and collision avoidance problem and use only very simple
data structures, if any. Another (more elegant) approach is
to simulate PRAM algorithms on processor networks; the
obtained results are however in most cases less efficient than
algorithms designed directly for specific networks.

* Research partially supported by the Natural Sciences and Engineering
Research Council of Canada under Grant A9173.

+ Research partially supported by the Bell-Northern Research Graduate
Award Program.

367

In this paper we show that for hypercube multiprocessors
it is also possible to design elegant yet efficient algorithms
based on parallel implementations of advanced data struc-
tures.

We define a class of graphs called ordered h-level graphs
which includes most of the standard data structures (in par-
ticular, all k-nary search trees for k = O(1)) and show that
for such a graph with n nodes stored on a hypercube multi-
processor, O(n) search processes can be efficiently executed
independently and in parallel. Our solution, which we call
m-way search, allows an arbitrary number of search queries
to access the same node at the same time (this cannot be
achieved by, e.g., embedding graphs into hypercubes).

We propose m-way search as a general tool for designing
hypercube algorithms. It allows elegant high-level algo-
rithm design, using data structures in a way similar to that
of PRAM algorithm design. As long as the underlying
graphs are ordered A-level graphs, the obtained methods are
only an O(log n) factor slower than the respective PRAM
method.

To demonstrate an application of m-way search, we im-
plement a segment tree [4, 7, 9] and solve the next element
search problem on a hypercube. Since the total length of all
lists attached to the nodes of a segment tree (for # segments)
is O(n log n), a segment tree construction algorithm re-
quires O(n log n) memory space. On the PRAM, Atallah,
Cole, and Goodrich [1, 6] construct a segment tree (and
solve the next element search problem) in O(log n) time
using O(n) processors and O(# log n) memory space (in an
earlier paper, Aggarwal et al. [2] solve the same problems
in O(log?n) time). On a hypercube multiprocessor,
O(n log n) processors are necessary to obtain O(n log n)
memory space; simulating the PRAM method by Atallah,
Cole, and Goodrich on a hypercube would therefore require
O(n log n) processors and O(log*n) time. Applying our m-
way search method, we obtain an O(log?n) time algorithm
for a hypercube of size O(nlog n). This approach also pro-
vides O(log?n) time hypercube algorithms for the trapezoi-
dal map construction problem and the triangulation prob-
lem (for simple polygons).

The paper is organized as follows: In Section 2, we define
ordered h-level graphs and the associated m-way search

0743-7315/90 $3.00
Copyright © 1990 by Academic Press, Inc.
All rights of reproduction in any form reserved.

368

problem and also review some standard data movement op-
erations. In Section 3, we present an efficient hypercube al-
gorithm for m-way search on ordered A-level graphs and, in
Section 4, we show how to use this method to implement a
segment tree for next element search on a hypercube. Fi-
nally, in Section 5, we note that this algorithm also implies
O(log?n) time solutions for the trapezoidal decomposition
and the triangulation problem.

2. DEFINITIONS AND BASIC
HYPERCUBE OPERATIONS

In this section, we will first define ordered A-level graphs
and the associated m-way search problem. Then, some ba-
sic standard hypercube data movement operations are re-
viewed, as these operations will be used in the remainder of
this paper.

2.1. Ordered h-Level Graphs

Assume we are given a directed graph G = (V, E) with
vertex set ¥ and edge set E. An ordered h-partitioning of G
is a partitioning of V into an ordered sequence of 4 disjoint
setsL,, . .., L,together with an ordering of the elements in
each subset L; (1 <i<h).

For every ordered h-partitioning of G we define, for every
v € V, three numbers Level(v), Levelindex(v), and
Index(v) as follows:

e Level(v) =iifand onlyifveE L;,

e Levelindex (v)is the rank of v with respect to the order-
ing of the vertices in Ly cvei(v), and

e Index(v) = (Z<icLevelw)—1 | Lil) + Levelindex(v).

A directed acyclic graph G = (V, E) is called an ordered
h-level graph if it has the following properties (see Fig. 1 for
an illustration):

(1) There exists a constant k = O(1) such that every
node of G has an out-degree of at most k.
(2) There exists an ordered A-partitioning L, .
G such that
(a) every source of G is contained in L,,
(b) if (v, w) is an edge of G then Level(w) = Level(v)
+1,and N
(c) if(v, w), (v', w') are two edges of G with Index(v)
< Index(v'), then Index(w) < Index(w').

..,LhOf

We observe that ordered A-level graphs are acyclic and
planar and that any k-nary tree (k = O(1)) is an ordered /-
level graph.

2.2. The m-Way Search Problem for Ordered h-Level
Graphs

LetG=(V=L,U-..UL,, E)be an ordered h-level
graph (with maximum out-degree k), and let U be a uni-
verse of possible search queries on G.

DEHNE AND RAU-CHAPLIN

s

o=
~a

~——
h

FIG.1. Anordered h-level graph.

A search path for a query g € U is a sequence path(q)
= (v,,...,v,)of hvertices of G defined by a successor func-
tion f: (V' U {start}) X U= N (i.e., a function with the
property that f(start, g) € L, and for every vertex v E V, (v,
f(v, q)) € E) as follows:

e Index(v,) = f(start, q)
e Index(vyy,) +f(vi,q), 1<i<h.

We also define an associated successor rank function g: (V/
U {start}) X U= {1, ..., k} as follows:

e g(start, g) is the rank of f(start, g) in the set
{Index(v)|v€E L,}, and

e g(v;, q)is the rank of f(v;, ¢) in the set { Index(w)|(v;,
w)EEY}, 1<i<k.

For example, if G is a binary search tree then, for every
query g, f(start, q) is the root of the tree; for every node v,
g(v, g) € {1, 2} indicates whether the left or right child is
to be visited next and f(v, q) is the index of (or pointer to)
that child.

Given an ordered A-level graph G with n nodes stored
in a hypercube multiprocessor such that the node v with
Index(v) = iis stored in processor PE(i), then a search pro-
cess for a query g with search path (v,, . . ., v,) is a process
divided into A time steps f; < f, < --- < I, such that at
time ¢;, | < i < h, there exists a processor which contains
a description of both, the query g and the node v;. Note,
however, that we do not assume that the search path is given
in advance; we assume that it is constructed during the
search by successive applications of the functions f and g.

Given an ordered A-level graph G with n nodes and a set
0={aq,...,qm} < Uof maqueries, m = O(n), then the
m-way search problem consists of executing (in parallel) all
m search processes induced by the m queries.

" 2.3. Basic Hypercube Operations

The m-way search algorithm described in the next section
uses slightly generalized versions of eight well-defined hy-
percube data movement operations; in addition to those
registers listed below, their implementation requires a con-
stant number of auxiliary registers. In the following, for ev-
ery register A available at every processor, A (i) refers to reg-
ister A at processor PE (7).

Rank(Reg(i), Cond(i)): Compute, in time O(log N), in

DATA STRUCTURES ON HYPERCUBE MULTIPROCESSORS

register Reg(7) of every processor PE (i) the number of pro-
cessors PE(j) such that j < i and Cond () is true [8].

Number(Reg(i), Cond(i)): Compute, in time O(log N),
in register Reg(i) of every processor PE(i) the number of
processors PE(j) such that Cond () is true.

Concentrate([Reg, (i), . . ., Reg,(i)], Cond(i)): This op-
eration includes an initial Rank (R (i), Cond(i)) operation.
Then for each PE (i) with Cond (i) = true, registers Reg, (i),
..., Reg,(i) are copied to PE(R(i)), z= O(1). The time
complexity of this operation is also O(log N) [8].

Route([Reg(i), ..., Reg,(i)], Dest(i), Cond(i)): Ev-
ery processor PE(i) has z = O(1) data registers Reg, (i),
..., Reg,(i), a destination register Dest(i), and a Boolean
condition register Cond(i). It is assumed that the destina-
tions Dest(i) are monotonic; i.e., if i < j then Dest(i)
< Dest(j). This operation routes, for every processor PE (i)
with Cond (i) = true, all registers Reg, (i), ..., Reg,(i) to
processor PE(Dest(i)); it can be implemented with an
O(log N) time complexity by using a Concentrate opera-
tion followed by a Distribute operation described in [8].

RouteAndCopy([Reg (i), ..., Reg,(i)], Dest(i),
Cond(i)): Under the same assumptions as those for the
Route operation, this operation routes, for every processor
PE (i) with Cond (i) = true, a copy of registers Reg, (i), . . .,
Reg,(i) to processors PE(Dest(i — 1) + 1), ...,
PE(Dest(i)), each; it can be implemented with an
O(log (N)) time complexity by using a Concentrate fol-
lowed by a Generalize operation described in [8].

Reverse([Reg, (i), ..., Reg,(i)], Start, End): This oper-
ation routes, for every PE (i) with Start < i < End, its regis-
ters Reg, (i), ..., Reg,(i), z = O(1), to PE(Start + End
— i); i.e., it reverses the contents of those registers for the
sequence of processors between PE(Start) and PE(End).
Reversing, in the entire hypercube, a sequence of n values
(each stored in one processor) corresponds to routing each
value stored at processor PE(i) to processor PE(i’), where
i’ is obtained from i by inverting all bits in its binary repre-
sentation. Hence, this operation can be implemented in
time log(#) similarly to the Concentrate/Distribute opera-
tion described in [8].

BitonicMerge([Reg, (i), ..., Reg.(i)], Key(i), Left,
Peak, Right): This operation is the well known bitonic
merge [3]. It converts in time O(log N) a bitonic sequence
(with respect to register Key(i)) into a sorted sequence; it
simultaneously permutes the registers Reg, (i), . . . , Reg,(i)
(z = O(1)). Here, we apply it to a particular bitonic se-
quence consisting of an increasing sequence starting at
PE(Left) and ending at PE(Peak) followed by a decreasing
sequence starting at PE(Peak + 1) and ending at
PE(Right).

Sort([Reg,(i), ..., Reg.(i)], Key(i)): This operation
refers to O(log?n) time bitonic sort [3] with respect to
Key(i); it simultaneously permutes the registers Reg, (i),
..., Reg,(i)(z=0(1)).

369

3. AN O(min{S log N, log?N} + h log N) TIME
HYPERCUBE ALGORITHM FOR m-WAY SEARCH
ON ORDERED A-LEVEL GRAPHS

LetG=(V=L,,...,L,, E)bean ordered h-level graph
(with h-partitioning V'=L,, ..., L,), where | V| = n, and
such that every node has an out-degree of at most k = O(1)
and can be stored using O(1) space. For the remainder, s
denotes the number of sources of G (i.e., the number of v
€ Vwith Level(v) =1).

Furthermore, let U be a universe of search queries, each
of which can also be stored using O(1) space, and let f: (V
U{start}) X U= Nand g: (VU {start}) X U={1,...,
k} be the successor function and successor rank function,
respectively, describing the search path in G associated with
every search query. We assume that f(x, g¢) and g(x, g) can
be computed in constant time for any x € V' U {start},
ge U.

In this section, we consider the problem of solving, on a
hypercube multiprocessor, the m-way search problem for a
set @ = {qi, ..., gm} S U of m queries. We present an
O(min{slog N,log?’N} + hlog N) time algorithm for solv-
ing the m-way search problem on a hypercube of size N,
where N = max{n, m}.

For the remainder we assume, w.l.o.g., thatn = m = N
= 27 all results obtained can be easily generalized. In Sec-
tion 3.1 we give an overview of the algorithm, including the
assumed initial configuration of the hypercube, and how
the result, i.e., the m-way search, is reported. In Sections 3.2
and 3.3 we then present the details of the algorithm. Section
3.4 summarizes the results.

3.1. Algorithm Overview

The graph G is assumed to be stored in the hypercube
such that each vertex v with Index (v) = iis stored in register
v(i) of processor PE(i); register v(i) contains fields
v.data(i), v.Level(i), v.Levelindex(i), and v.Index(i),
storing a constant amount of data associated with vertex v,
its level, levelindex, and index, respectively. The edges of G
are stored as adjacency lists. That is, for every vertex v
stored in register v(i), the indices of the at most k suc-
cessors of v (i.e., the indices of the vertices w such that
(v, w) € E) are stored in the fields v.successorl (i), ...,
v.successork (7), respectively; see Fig. 2.

Theset Q = {q, ..., qn} of mqueries is stored in arbi-
trary order, such that every processor PE(i) stores one
query in its register g(i).

Figure 2 shows the set of registers necessary at every pro-
cessor PE(7). In addition to the registers v(i) and ¢(i) men-
tioned above, the algorithm assumes that every processor
also has a register v'(i) to store another vertex of G as well
as other auxiliary registers which will be described later.

The global structure of the m-way search algorithm is de-
scribed in Fig. 3. The m search processes for all m queries

370

v.level(i)

v.levelindex(i)
v.Index(i)
v.data(i)
v.successori (i)
v.successor2(i)

.

v(i): The original set of vertices.

v.successork(i)
v'.level(i)
v'.levelindex(i)
v'.Index(i)
v'.data(i)
v'.successori (i)
v'.successor2(i)

~
N

> Vi)

~

v'.successork(i)
q(i), 9'(), q"(i) A query and some aukxiliar copies.

N(i), N'(i), N"(i) The index of the next vertex in path(q(i)), and aux. copies.
Gi) The successor rank of the next vertex in path(q(i)).

LS(i)
Aucxiliary registers.

Shift(i
Dest(i

FIG. 2. The registers required at each processor PE(i, j).

qi, - - ., Gm are executed in s phases; each phase moves all
queries one step ahead in their search paths.

The algorithm permutes the queries (in registers g(i))
and copies some nodes into the registers v'(i) such that at
the end of phase x (1 < x < h):

e all queries are sorted with respect to the index of the
xth node in their search path, and

e each processor PE (i) containing a query g in its register
q(i) contains in its register v'(i) a copy of the xth node in
the search path of g (this is called a match of q and the xth
node in its search path).

A typical situation at the end of a phase is depicted in
Fig. 4; each vertical column represents the registers g(i) and
v'(i) of a processor PE(7).

In Sections 3.2 and 3.3, we describe the details of Phase
1 and Phase x (2 < x < h), respectively. The first phase
is different from the remaining phases. When ordering the
queries with respect to the index of the first node in their
search path, the first phase has to start with an arbitrary per-
mutation of the queries, whereas each subsequent phase
will utilize the ordering of the previous phase (in order to
improve the time complexity of the algorithm).

N

3.2. Phase 1 of the m-Way Search Algorithm

An outline of Phase 1 is given in Fig. 5a. The algorithm
consists of four basic steps (see also Fig. 5b for an
illustration). First, every processor PE (i) calculates the in-

Procedure M-Way-Search:
(1) Phase,y {Match every query with the 18! node in its search path.}

(2) Forx:=2tohdo
(3) Phase, {Match every query with the xth node in its search path.}

FIG. 3. Global structure of the m-way search algorithm.

DEHNE AND RAU-CHAPLIN

PE(0) PE(15)

q) | q5] q7|q15| qt | a4 | a6 | q8] a9 a12|q14|q16] a2 | 93 |q10]q11]q13
viindex(|t |1 |1 |2]2 |22]2 |2]2 |2 |3 |3]3]3]3
v.Data(i)f VI | vi[vi[v2]ve|v2] vafve|v2]v2|ve]v3|v3}]v3|v3| W3

A typical situation at the end of a phase.

dex of the first node in the search path of its query ¢g(i) and
stores this value in an auxiliary register N(i). Then, in Step
2, the number of sources is calculated (here represented by
a variable s). In Step 3, the queries are sorted by the index
of the first node in the search path, i.e., N(i); this ordering
is performed in one of two possible ways depending on the
number of sources. If s = log(N) then bitonic sorting [3] is
used; if s < log(N), a procedure called SortBySourceIndex
which sorts the queries in O(s log N) time is used and will
be described below. Note that in many applications s is a
constant (e.g., for search trees) and, thus, the sorting step is
performed in time O(log N).

Finally, in Step 4, the source nodes are copied to the que-
ries for which they are the first node in their search path.
Because of the ordering of the queries, this step can be per-
formed in O(log(N)) time using a procedure MoveVer-
ticesToQueries which will also be described below.

We first discuss the details of procedure SortBySourceln-
dex; see Fig. 6a. The procedure uses a register Shift(7) at
each processor which stores the number of queries that have
already been sorted. In Step 1, all registers Shift(i) are ini-
tialized to 0. Then, Steps 3 to 8 are executed for each source
of the graph. In each iteration, the queries g(i) that need to
be matched with that source [as well as the associated
source indices N(i)] are copied into registers g'(i) [N'(i)]
of the same processors, concentrated (Steps 3 and 4), and
then appended at the end of the sequence of queries ordered
so far (Steps 5 and 6); finally the registers Shift(i) are up-
dated (Steps 7 and 8). These steps produce, in the registers
q"(i), the correct permutation of the queries, which are
then copied back into the registers g(i) [N(i)]; see Step 9.
Obviously, each iteration takes O(log N) time and, hence,
the time complexity of procedure SortBySourceIndex(s) is
O(slogN).

Once the queries have been sorted by the index of the first
vertex in their search path, the matching process between
each query and the first node in its search path can be per-

Procedure Phase;:
(1) Every PE(i): N(i):=f(Start,q(i))
(2) Number(LS(i), v.Level(i)=1)
s:=LS(0)
(3) IF s2log(N) THEN
Sort([a(i), N(]. N(i))

{Note: LS(i)=LS(i") for all i,i'}

SortBySourcelndex(s)
(4) MoveVerticesToQueries(1)

FIG. 5a. Outline of Phase 1.

DATA STRUCTURES ON HYPERCUBE MULTIPROCESSORS

The Initial State on entering Phase 1

vindex() [1 1 2| 3| 4] s| e| 7| 8] of 10] 11] 12} 13] 14] 15] 16
vieveli) [1 |1 |1 |2]2 |22 |2 f2)3 |3]38]4]4]4 |4
q()]at |92 a3 |a4 | a5 a6 | a7 q8 | q9 |q10|q11]q12|q13]q14|q15]q16

After Step 1 of Phase 1: N(i) = index of the first node
in path(q(i)).

no[2]s]s]2]r 2] 22 ala]a]af2]1]2]

After Step 2 of Phase 1: S(i) = number of sources.

si[3]s]a]s]s]alala]alalalalalala]a]

After Step 3 of Phase 1: q(i) and N(i) ordered by N(i).
vindex() | 1| 2| 3| als| 6] 7| 8] o]10]11}12]13] 14] 15[16
v.level(i) |1 1 1 21221222 |3 |3 }|3|4]4]4]4
a() | q5] q7|a15] q1 | 94| a6 | 98| a9 |a12{q14|q16] a2 | a3 [q10|ql1|q13
N(i) 1 1 1 212122222 }2}3 |3 |3]3]3

After Step 4, the final step of Phase 1:
v'(i) = copy of the first node in path(q(i))

al) | 5| q7]a15| a1 | a4 | a6] a8 | a9 |a'2|q14|q16{ q2 | o3 [q10[q11]q13
N [t]l 22]2]2f2]2]2]2]3]38 (3 3|3
vii) | vif vijvi|v2ivefva]velvajve|v2]v2ivs v3|v3|v3]v3

FIG. 5b. Anillustration of Phase 1.

formed in time O(log N) using the procedure MoveVer-
ticesToQueries described in Fig. 6b. The parameter Cur-
rentLevel (which is one for all sources) denotes the level of
the nodes to which the queries are to be routed (i.e., to be
matched with). The idea is to identify, for each node, the
largest address of a query to be matched with that node
(Steps 1 to 5), and then use the procedure RouteAndCopy
to broadcast each node to the block of queries to be
matched with (Steps 6 and 7). The time complexity of this
process is O(log N).

3.3. Phasex (2 < x < h) of the m-Way Search Algorithm

As indicated in Section 3.1, the purpose of each subse-
quent phase is to advance, in time O(log N), all queries by
one step in their search path. After Phase x — 1 has been
completed, all queries are sorted with respect to the index
of the (x — 1)th node in their search path, and each proces-
sor PE(/) contains a query g in its register g() together with
a copy of the (x — 1)th node in the search path of g in its

Procedure SortBySourcelndex(s):
(1) Every PE(i): Shift(i):=0
(2) FORn=1TOsDO

(3) Every PE(i) with N(i)=r: q'(i):=q(i), N'(i):=N(i)
(4) Concentrate([q'(i), N'(i)], N'(i)=r)

(5) Route([q'(i), N'(i)], i+Shift(i), N'(i)=r)

(6) Every PE(i) with N'(i)=r: q"(i):=q'(i), N"(i):=N'(i)
(7) Number(H(i), N(i)=r)

(8) Every PE(i): Shift(i):=Shift(i)+H(i)

(9) Every PE(i): a(i):=q"(i), N(i):=N"(i)

FIG. 6a. Detailed description of procedure SortBySourceSelected.

371

Procedure MoveVerticesToQuerles(CurrentLevel):
(1) Every PE(i): N'(i):=N(i)

(2) Route([N'(i)], i-1, i>0)

(3) PE(1): N'(N):=N(N) + 1

(4) Every PE(i) with N'(i)#N(i): Dest(i):=i

(5) Route([Dest(i)], N(i), N'()=N(i))

(6) Every PE(i): v'(i):=v(i)

(7) RouteAndCopy([v'(i)], Dest(i), v.Level(i)=CurrentLevel)

FIG. 6b. Detailed description of procedure MoveVerticesToQueries.

register v'(i). The desired effect of Phase x is to have all
queries sorted with respect to the index of the xth node in
their search path, and have each processor PE(i) contain,
in its register v'(i), a copy of the xth node in the search path
of the query q(i).

An outline of the algorithm for Phase x is given in Fig.
7a; see also Fig. 7b for an illustration. First (in Step 1), every
PE (i) computes for the query currently stored in its register
q(i) the index of the next node in its search path as well as
the successor rank of that node (see Section 2.2) and stores
these two numbers in the auxiliary registers N(i) and G (i),

respectively. In Step 2, all queries are sorted by the index of

the next node in their search paths. This sorting operation
is performed by a procedure OrderQueriesByNextVertex in
time O(log N) by using the properties of the previous per-
mutation of the queries. Once this ordering has been ob-
tained, the nodes can be matched with the queries in time
O(log N) in the same way as that described in Section 3.2.

What remains to be discussed are the details of procedure
OrderQueriesByNextVertex. This procedure, which is de-
scribed in Fig. 8, creates in time O(log N) the new ordering
of the queries with respect to the indices of the next nodes
in the search paths.

Consider all edges (v, w) and (v', w'), where Level(v)
= Level(v') = x — 1 and w and w' have the same successor
rank. If Index(v) < Index(v’) then Index(w) < Index(w').
Therefore, the subsequence of queries for which the succes-
sor rank of the next vertex in their search path has the same
value ris already sorted with respect to the index of the next
vertex. Furthermore notice that, since each node has an
out-degree of at most k, there are at most k = O(1) such
subsequences. The idea for creating, in time O(k log N)
= O(log N), the new ordering of the queries is therefore to
extract these k ordered subsequences and merge them in k
bitonic merge steps. The details are shown in Fig. 8: for each
of the k possible successor ranks, the respective subse-
quence of queries is extracted (Steps 4 and 5), inverted
(Step 9), and appended to the sequence of queries already

Procedure Phase(x), 2<x<h:

(1) Every PE(i): N(i):=f(v'(i),a(i)), G(i):=g(v'(i).a(i))
(2) OrderQueriesByNextVertex

(3) MoveVerticesToQueries(x)

FIG. 7a. Overview of Phase x,2 <x<h.

372

Initial input to Phase 2.

a) | q5] q7|q15|q1 | a4 | a6 | a8 a9 |a12|q14|q16] q2 | q3 |q10|q11|q13
N(i) 1 1 1 21212222 |3 |3]|3]3]|3
Vi) vt vifvt [v2jv2|v2|v2]v2|v2|v2|v2|v3d|v3]v3|v3| v3

N
[

After Step 1 of Phase 2: N(i) =index of the next node in
path(q(i)); G(i) = its successor rank.

q() | q5| q7|q15| q1| q4| a6| q8] a9 |a12| q14|q16] g2 | g3 |q10|q11{q13

Ni) | s]a]s]se]ls]7z]7z]lo]lele]s]loflo] of of o
G [2]1|2]2]a 3]s |2 fa 1|1 |11 |1]

After Step 2 of Phase 2:
q(i) and N(i) have been ordered by N(i).

al) | q7| g5/qi15] q2| at|a14 47116[‘18 a4| q9 |q16| q2 | 93 |q10|q11|q13

N(i)4555666]789999999

After Step 3 of Phase 2:
V'(i) = copy of the next node in path(q(i)).

al) | q7| o5|a15] g2| a1 a14] q16] a8 a4] qo [q16| a2 | 43 [q10]q11]q13

Ni) | a]s|s]s]e|e|ls|7]8]9)olo]o] of of 9

v'(i) | v4| v5|v5 |v5 |v6 |v6 [v6 [v7 |vB | vO | vO|vO | ve | va| va| vO

FIG. 7b. Anillustration of Phase 2.

ordered (Steps 10 and 11), and finally the so created bitonic
sequence is converted into a sorted sequence (Step 12).

3.4. Summary
We obtain the following:
THEOREM 1. The m-way search problem for an ordered

h-level graph with n nodes and s sources can be solved on a
hypercube multiprocessor of size N, N = max{n, m}, in
time O(min{slog N,log’N} + hlog N).

The algorithm presented in Sections 3.1 to 3.3 has the
additional property that it consists of /4 phases such that at
the end of Phase x (1 < x < h) all queries are sorted with
respect to the index of the xth node in their search path, and
each processor PE (i) contains in its register v'(i) a copy of

Procedure OrderouerIesByNext\)ortox:
(1) Initialize all shift registers.

(2) Every PE(i): Shift(i):=0

(3) FORr=1TOkDO

(4) Every PE(i) with G(i)=r: q'(i):=q(i), N'(i):=N(i)
(5) Concentrate([q'(i), N'(i)], N'(i)=r)

(6) Number(LS(i), N(i)=r)

(7) Is := LS(0)

(8) shift := Shift(0)

(9) Reverse([q'(i), N'(i)],0,Is)

(10)
(11)

Route([q'(i), N'(i)], i+Shift(i), N'(i)=r)

Every PE(i) with N'(i)=r: q"(i):=q'(i), N"(i):=N'(i)
(12) BitonicMerge([q"(i), N'"(i)],N"(i),0,shift,shift+ls)
(13) Every PE(i): Shift(i):=Shift(i)+LS(i)

(14) Every PE(i): q(i):=q"(i), N(i):=N"(i)

FIG. 8. Details of procedure OrderQueriesByNextVertex.

DEHNE AND RAU-CHAPLIN

the xth node in the search path of the query currently stored
in its register g(i).

4. A HYPERCUBE IMPLEMENTATION OF A
SEGMENT TREE FOR NEXT ELEMENT SEARCH

We will now apply the results obtained in Section 3 and
present an efficient parallel implementation, for the hyper-
cube multiprocessor, of a well-known data structure: the
segment tree [4]. The segment tree is a widely used struc-
ture which has, for example, been utilized to obtain efficient
implementations of plane sweep algorithms in computa-
tional geometry [4, 7, 9]. Here, we consider an application
of the segment tree to the next element search problem.

In the following, we will first review the definition of the
next element search problem as well as the definition and
some basic properties of segment trees. We will then show
how to implement a segment tree on a hypercube multipro-
cessor, using the parallel m-way search algorithm for or-
dered h-level graphs, and obtain an efficient solution for the
next element search problem.

The next element search problem is a well-known prob-
lem in computational geometry. Given a set .S of » nonin-
tersecting line segments I;, ..., I, and a direction D,
(without loss of generality we will assume that D,.,, is the
direction of the positive Y-axis), the next element search
problem consists of finding for each point p; of a set of m
query points py, . . ., p,, the line segment J, first intersected
by the ray starting at p; in direction D, (m = O(n)), as
illustrated in Fig. 9.

An obvious method for solving the next element search
problem is to apply a plane sweep in direction D, us-
ing a segment tree[4,7,9].

Let 1™ [p™] be the projection of line segment J; [point
D;, respectively] onto the x-axis, and let (x,, X», . . . , X,,) be
the sorted sequence of the projections of the 2n endpoints
of I, ..., I, onto the x-axis. The segment tree T(S) = (V5,
E) for Sis the complete binary tree with leaves x,, . . . , X2,,.
For every node v of T(S), an interval xrange(v) is defined
as follows:

—ifvisaleafx;, then xrange(v) = [x;, Xi+). ([X215 Xon+1)
= [x2m xZn])

DNext‘ I I

\
I . P,

1 | P,
IP Nl .
*Fs « P4

FIG. 9. The nextelement search problem.

DATA STRUCTURES ON HYPERCUBE MULTIPROCESSORS

—.if vis an internal node, then xrange(v) is the union of
all intervals xrange(v’) such that v’ is a leaf of the subtree
of T(S) rooted at v.

With every node v of a segment tree 7'(.S) there is associ-
ated a node list NL(v) < S which is defined as follows:

NL(v) = {I € S | xrange(v) = I and not
(xrange(father of v) € I'®)}.

A segment tree T(.S) is an ordered A-level graph where h
is the height of T(.S); see Fig. 10. For any node v, Level(v)
is the height of v in T(S), Levelindex(v) is the rank of v in
{v'|Level(v') = Level(v)} with respect to the ordering of
these nodes by increasing x-coordinate of xrange(v'), and
Index (v)is defined by the above as described in Section 2.1.

For every query point p, we define path(p) to be the path
in T(S) from the root to the leaf v such that p
€ xrange(v). In order to solve the next element search
problem, we first construct the segment tree 7(S) and then
route every query point p along path(p). At every node v
on the path, the next element of p in NL(v) is determined
(this process will be referred to as locating pin NL(v)). For
each query point, the final result to be reported is the closest
of those next elements.

We show next how to build 7°(S), in particular how to
build the node lists NL(v). Note that each line segment can
occur in O(log n) node lists and, thus, the sum of the lengths
of all node lists is O(n log n) [7]. Hence, storing the seg-
ment tree with all its node lists in a hypercube multiproces-
sor requires O(n log n) processors.

For a segment I € S with I'® = [a, b] we define I-path(l)
to be the path from the root of 7(S) to the leaf v of T(S)
with a € xrange(v). Likewise we define r-path(l) to be the
path from the root of T(S) to the leaf v of T(S) with b
€ xrange(v). We observe that, if a line segment I is con-
tained in a node list NL(v), then exactly one of the follow-
ing four cases applies:

FIG. 10. A segment tree (the numbers associated with the nodes repre-
sent the node lists).

373

(1) ve I-path(/)
(2) vis the right child of a node v’ € I-path(/)
(3) ver-path(/)
(4) vis the left child of anode v’ € r-path(l).

We define NL,(v), r € {1, 2, 3, 4}, to be the set of all 1
€ NL(v) for which case r applies.

The algorithm for constructing the segment tree T(S)
consists of four parts. In Part 7, 1 < r < 4, all line segments
are routed through 7'(S). When they arrive at the nodes of
height i, 1 < i < h, the node list NL,(v) of all those nodes
are created. In order to efficiently determine, for a query
point, the next line segment in a node list NL(v), the seg-
ments have to be sorted with respect to the above-below
relation within the vertical slab defined by xrange(v). We
will create every sublist NL;(v) in sorted order; at the end
of Part 4, the node lists NL(v) in sorted order are obtained
from the sublists NL;(v) by applying bitonic sort [3].

We will show how to execute Parts 1 and 2; Parts 3 and
4 follow by symmetry. We assume a hypercube of size N
= max {n, m}, where initially every processor stores one
line segment and one query point; w.l.o.g.,m=n= N=24

We first present Part 1 of the segment tree construction
algorithm, i.e., how to create the node lists NL,(v) for all
nodes v. This problem is solved by using m-way search to
route every segment I € S along I-path(/). When applying
the m-way search algorithm of Section 3 to the tree T(S)
for this set of queries, at the end of Phase i (1 < i < h)
for every node v with Level(v) = i there exists a block of
consecutively numbered processors containing all line seg-
ments s such that v € I-path(s). From these, we can imme-
diately extract all line segments s € NL,(v).

What remains to be discussed is how to obtain a sorted
ordering of the node lists NL,(v). We observe that the m-
way search algorithm of Section 3 applied to a segment tree
T(S) is stable in the following sense: if two queries (line
segments) g, and g, are initially stored in processors PE(j,)
and PE(j,) with j; < j,, and the ith node in I-path(q,) is
the same as the ith node in I-path(g,), then at the end of
Phase i the queries ¢, and g, are stored in two processors
PE(j")and PE(j4) with j} < j5. Therefore, we initially sort
all line segments by the y-coordinates of their left end-
points. Then, at the end of each Phase i all line segments
which were routed to a node v are ordered by y-coordinate;
i.e., NL,(v) is in the desired order.

LEMMA 1. Part | of the segment tree construction algo-
rithm can be executed in time O(log*N) on a hypercube of
size Nlog N.

We now turn to Part 2 of the algorithm, i.e., constructing
the node lists NL,(v). In contrast to the construction of
the node lists NL,(v), the ordering of the line segments in
NL,(v), with respect to the above-below relation in the ver-
tical slab defined by xrange(v), cannot be obtained by using

374

the sorted order of the left (or right) endpoints of the seg-
ments.

Let v[i, j] be the vertex v of T'(.S) with Level(v) = i and
Levelindex(v) = j. We introduce 2 — 1 new vertices v[i,
271, 1 <i< h— 1, and define a new tree T'(S) as follows
(see Fig. 11): T'(S) = (V, E'), where

o V,=(V,— {v[i,0l|1 <i<h—1})U {v[i, 2|1
<i<h-1},and

e (v[i, j], v[i, j']) € E' if and only if ((i = A, j mod 2
=Li'=i—1l,andj'=(j+1)/2)or(l <i<h,i'=i
—l,andj' =1(j+ 1)/21%)).

For each line segment I € S let I-path’(/) be the path in
T'(S) either from the last node v of I-path(/), if v is a right
child in 7(S), or otherwise from the right sibling of v in
T(S), to the root of 7'(S). From the above definitions it
follows that if a segment I € S'is in a node list NL,(v) then
v is a node in I-path’(/). We also observe that if I-path’(/)

=(wi, ..., wy)and I & NL,(w;), then I & NL,(w;) for all
Jj = i. Thus, for three nodes wy, w;, and w, in T'(S) such
that (w;, wy) € E% and (w,, wy) € E it follows that
NL,(wo) = NLy(w;) U NL,(w,). Let xrange(w,) = [a, b)
and consider the ordering of NL,(w,) obtained by sorting
the line segments by the y-coordinate of their intersection
with the line x = a. This ordering can be constructed from
the analogous orderings of NL,(w,) and NL,(w,) by elimi-
nating from these sequences the elements not contained in
NL,(wp) and merging the so obtained subsequences.

The idea for Part 2 of the segment tree construction algo-
rithm is to route all line segments along I-path’(/). Since
T'(S) is an ordered A-level graph with O(n) sources, this
can be implemented in time O(log2N). It is easy to see that
during this search, it is possible to delete some line segments
(i.e., eliminate them from further consideration) in any
phase of the m-way search algorithm without changing the
time complexity. In this particular case, we delete a line
segment I € S if it has been routed to some node v with 7
& NL,(v). At the end of Phase i, 1 < i < h, for each node
woin G with Level(w,) = h — i + 1 there exists a consecutive

9 10 11 12 13 14 15
Levelindex

FIG.11. Thetrees T(S)and T'(S).

DEHNE AND RAU-CHAPLIN

sequence of processors containing all query points p such
that wy is the ith node in path’(p) and all line segments 7
€ NL,(wp). In Phase i — 1, these line segments have been
routed to at most two different nodes w, and w,. IfNL,(w,)
and NL,(w,) were previously ordered as described above,
then the same ordering for NL,(w,) can be obtained by ex-
tracting the two subsequences of segments previously
routed to NL,(w,)and NL,(w,), respectively, and merging
these subsequences using a bitonic merge [7]. Since only
two line segments were initially routed to every source of
T'(S), the orderings of all lists NL,(v) can be maintained
through all phases with an overhead of O(log N) steps per
phase.

We obtain:

LEMMA 2. Part 2 of the segment tree construction algo-
rithm can be executed in time O(log2N) on a hypercube of
size Nlog N.

Summarizing, we obtain:

THEOREM 2. The segment tree construction problem
can be solved on a hypercube of size N log N in time
O(log?N); N=max{m, n}.

In order to solve the next element search problem, we
first construct the segment tree 7°(.S) as described above.
Then, we route the query points down 7°(.S), constructing
a query list QL(v) for each node v, containing a copy of all
those queries that visit v. At the end of every phase of the
m-way search algorithms, the created query lists are concen-
trated and appended to the query lists created in previous
phases (using the “Concentrate” and “Route” operations
of Section 2.3).

Then, we convert in O(log?N) time the node lists NL(v)
into a forest of binary trees, one for each list. As a result
of the segment tree construction method described above,
every node list NL(v) is sorted with respect to the above-
below relation in the vertical slab defined by xrange(v).
Each node list is converted into a balanced binary search
tree ¢(v) with respect to this ordering. Each element calcu-
lates its position in the respective tree, and then a bitonic
sort is used to construct the so defined forest.

Now, the next element search problem, for the m query
points, can be solved by using another m-way search as fol-
lows: The query set is the union of all query lists QL(v),
and the ordered A-level graph is the union of all trees #(v).
First, every query point p; in a query list QL(v) is routed to
the root of #(v). Then, in order to locate p; in NL(v), it is
routed through #(v) (using the above-below relation be-
tween p; and the edges in NL(v)). Finally, for each point
the best of the O(log n) partial results is obtained by sorting
all results (line segments) with the primary key being the
query point and the secondary key being the vertical dis-
tance to the query point.

DATA STRUCTURES ON HYPERCUBE MULTIPROCESSORS

Summarizing, we obtain:

THEOREM 3. The next element search problem for a set
of n disjoint line segments and m query points can be solved
on a hypercube of size N log N in time O(log’N); N
=max{m, n}.

5. APPLICATIONS

Theorem 3 immediately implies an efficient hypercube
solution for another fundamental geometric problem: the
construction of the trapezoidal map [10].

Given a set S of n disjoint line segments in the plane, for
any endpoint p of a segment in S, the trapezoidal segments
for p are the (at most two) line segments first intersected by
the rays emanating from p in the direction of the positive
and negative y-axis, respectively. The construction of the
trapezoidal map consists of finding for each endpoint of the
segments in S its trapezoidal segments.

This problem is fundamental in computational geometry
and is frequently used to solve other geometric problems;
see, e.g., [6, 10, 11]. Atallah, Cole, and Goodrich [1, 6] pre-
sented an O(log n) time algorithm for computing the trape-
zoidal decomposition on a PRAM with O(n) processors
and O(n log n) space. As a consequence of Theorem 3, we
obtain:

COROLLARY 1. For a set of n disjoint line segments, the
trapezoidal map can be computed on a hypercube of size
nlog n in time O(log*n).

Yap [11] has shown that on a PRAM with O(n) proces-
sors and O(n log n) space, the triangulation of a simple
polygon (see [10]) can be computed in time O(log n) by
essentially applying two calls of the trapezoidal map algo-
rithm (of [1, 6]). By combining the result in [11] with Cor-
ollary 1, we obtain:

COROLLARY 2. An n-vertex simple polygon can be tri-
angulated on a hypercube multiprocessor of size nlog n in
time O(log?n).

6. CONCLUSION

In this paper, we have presented a general technique for
implementing standard data structures on a hypercube
multiprocessor.

A paradigm frequently used for the design of efficient
PRAM algorithms is to use well-established standard data
structures in a parallel environment by executing, in paral-
lel, several independent search processes on these struc-
tures. We have shown that this paradigm can also be effi-
ciently applied to hypercube multiprocessors for the class
of data structures that can be represented by ordered A-level

Received February 15, 1989; revised September 21, 1989

375

graphs. This follows from an algorithm presented here that
solves the m-way search problem for ordered A-level graphs
with n nodes and s sources on a hypercube multiprocessor
of size N, N=max{n, m},intime O(min {slog N, log’N}
+ hlog N).

We applied this method to the implementation of a seg-
ment tree for next element search on a hypercube and
showed that our approach provides O(log?n) time hyper-
cube algorithms for the next element search problem, the
trapezoidal map construction problem, and the triangula-
tion problem.

REFERENCES

1. Attallah, M. J., Cole, R., and Goodrich, M. T. Cascading divide-and-
conquer: A technique for designing parallel algorithms. SI4AM J. Com-
put. 18,3 (1989), 499-532.

2. Aggarwal, A., Chazelle, B., Guibas, L., O’'Dunlaing, C., and Yap, C.
Parallel computational geometry. Algorithmica 3, 3 (1988), 293-327.

3. Batcher, K. E. Sorting networks and their applications. Proc. AFIPS
Spring Joint Computer Conference, 1968, pp. 307-314.

4. Bentley, J. L., and Wood, D. An optimal worst case algorithm for re-
porting intersections of rectangles. JEEE Trans. Comput. 29, 7
(1980), 571-576.

5. Dadoun, N., and Kirkpatrick, D. G. Parallel processing for efficient
subdivision search. Proc. ACM Symposium on Computational Geome-
try, 1987, pp. 205-214.

6. Goodrich, M. T. Efficient parallel techniques for computational geom-
etry. Ph.D. thesis, Department of Computer Science, Purdue Univer-
sity, 1987.

7. Mehlhorn, K. Data Structures and Algorithms 3: Multi-dimensional
Searching and Computational Geometry. Springer-Verlag, New York/
Berlin, 1984.

8. Nassimi, D., and Sahni, S. Data broadcasting in SIMD computers.
IEEE Trans. Comput. 30,2 (1981), 101-106.

9. Preparata, F. P., and Shamos, M. I. Computational Geometry—An In-
troduction. Springer-Verlag, New York/Berlin, 1985.

10. Tarjan, R. E., and Van Wyk, C. J. An O(nlog log n) time algorithm
for triangulating a simple polygon. SIAM J. Comput. 17,(1988), 143—
178.

11. Yap, C.-K. Parallel triangulation of a polygon in two calls to the trape-
zoidal map. Algorithmica 3,2 (1988),279-288.

FRANK DEHNE is currently an assistant professor at the School of
Computer Science (Center for Parallel and Distributed Computing),
Carleton University, Ottawa. He received a M.C.S. degree (Dipl. Inform.)
from the Technical University of Aachen (West Germany) in 1983 and a
Ph.D. (Dr. rer. nat.) from the University of Wiirzburg (West Germany) in
1986. His research interests include computational geometry, data struc-
tures, and parallel algorithms and VLSIL.

ANDREW RAU-CHAPLIN is currently a graduate student at the
School of Computer Science (Center for Parallel and Distributed
Computing), Carleton University, Ottawa, on educational leave of ab-
sence from Bell-Northern Research. He received a B.A. degree from York
University, Toronto, in 1986. His research interests include data struc-
tures, parallel algorithms, and parallel Al applications.

