Jnternational Journal of Parallel Programming, Vol. 18, No. 5, 1989

Pipelined Search on Coarse
Grained Networks'

Selim G. Akl? and Frank Dehne’

Received September 1988; Revised March 1990

The time complexity of searching a sorted list of n elements in parallel on a
coarse grained network of diameter D and consisting of N processors (where n
may be much larger than N) is studied. The worst case period and latency of
a sequence of pipelined search operations are easily scen to be Q(logn —log N)
and Q(D +logn—log N), respectively. Since for n=N'*9D the worst-case
period is 2(log n) (which can be achieved by a single processor), coarse-grained
networks appear to be unsuitable for the search problem. By contrast, it
is demonstrated using standard queuing theory techniques that a constant
expected period can be achieved provided that n= O(N2V).

KEY WORDS: Average-case analysis; coarse grained processor network;
parallel algorithms; pipelining; searching.

1. INTRODUCTION

The parallel complexity of searching a sorted sequence S = (s;,..., 5,,) of size
n for a given element s was studied by Snir® for an N-processor shared
memory model of computation. For a variant of the model, where an item
of information can be accessed by one processor only at a time, he showed
that searching for one element requires at least Q(log n—log N) steps.
(Henceforth, all logarithms are with respect to the base 2.) In this short
communication, we study the parallel complexity of searching for the more

! This research was supported by the Natural Sciences and Engineering Research Council of
Canada under Grants A3336 and A9173.

2 Department of Computing and Information Science, Queen’s University, Kingston, Ontario
K7L 3N6, Canada.

3 Center for Parallel and Distributed Computing, School of Computer Science, Carleton
University, Ottawa, Ontario K1S 5B6, Canada.

359

0885-7458 89/1000-0359506.00,0 «{» 1989 Plenum Publishing Corporation




360 Akl and Dehne

realistic model of a processor network of size N storing a sorted list of 5
elements.

Section 2 reviews some results on the worst case time complexity of
parallel search in processor networks. For coarse grained networks, ie.,
n=N'72" the worst case period of a sequence of pipelined search opera-
tions is Q(log n) which can also be achieved by a single processor. This
seems to suggest that coarse grained networks are not particularly well
suited, in the worst case, for the search problem. By contrast, it is shown
in Section 3 that a constant expected period can be achieved on coarse
grained networks provided that n=O(N2"). Therefore, coarse grained
networks are good, on the average, for the search problem.

2. WORST CASE COMPLEXITY OF PIPELINED SEARCH ON
COARSE GRAINED NETWORKS

In a processor network, a set of N processors P,,..., Py are connected
by bidirectional unit-time communication links between pairs of processors
(e.g., mesh-of-processors, tree, mesh-of-trees, pyramid, or hypercube
architectures; see Akl®). By contrast with the model studied in Snir, "
there exists no shared memory. Instead, each processor P, has its own local
finite memory M, {which can solely be accessed by P;); processors can
communicate only by sending messages via the communication links. The
distance between two processors P; and P; is the minimum number of
direct communications links that a message has to traverse in order to
travel from P; to P;. The diameter D of the network is the maximum
distance between processors. The time complexity of a parallel algorithm
executed on a network consists of the local computation time for the pro-
cessors and the time for the messages sent via the communication links. As
usual we count, for each processor, an arithmetic or comparison operation
as well as a transmission of a word of length O(log n) bits to an adjacent
processor as a constant time operation.

For the sequential model of computation, the worst case complexity of
searching a sorted sequence of size n is O(log n) (this is achieved by binary
search; see Aho et. al.®’). When solving the search problem on a processor
network, the sorted sequence S of n elements is distributed among the M/s
such that each receives a sorted subsequence of size n/N. A designated pro-
cessor receives as input the element to be searched for and, in the worst
case, must propagate it through the network to another processor P, at a
distance D away. In addition, P, has to search its subsequence sequentially.
Consequently, the worst case lower bound on the time required to search
is Q(D +log(n/N)), ie. Q(D +logn) when n=N'*?". For example, on




pipelined Search on Coarse Grained Networks 361

the hypercube architecture where D equals log N the lower bound is
Q(log n), which can be achieved sequentially by a single processor.

One justification for advocating parallel search is to improve
throughput in the case of a stream of queries presented to the network in
a pipelined fashion. The searching problem for processor networks within
this setting is referred to as pipelined search:

« An infinite input sequence of search queries is sent, as an input
stream, to a designated processor of the network, the input
processor.

« The search queries are processed in a pipelined fashion and the
answers are reported back via another processor, the output
processor (which may coincide with the input processor).

The performance of a pipelined search algorithm is measured by

« the latency, ie., the time between an arrival of a query at the input
processor and the reporting of the result by the output processor,
and

« the period, ie., the time elapsed between the moments where the
processing of any two consecutive queries begin.

The obvious lower bounds for latency and period are (D) and (1),
respectively. Indeed, for N close to n, Dehne and Santoro?® have presen-
ted algorithms for mesh and hypercube networks, with O(D) latency and
O(1) period. This leads to m queries being processed in time O(m + D).
However, many current attempts at implementing databases on parallel
computers involve coarse-grained networks. In these networks, each node is
a relatively powerful processor with a significant amount of memory. An
example of such a system is the Intel iPSC hypercube which consists of a
relatively small number (between 8 and 512) of processors with up to
16 MBytes of memory each; for the iPSC/3, currently under development
by Intel, a hard disk can even be attached to every subhypercube of two
or four processors. Under these conditions, the search problem has to be
solved for n much larger than N. It is easy to see that the worst case
lower bounds on the period and latency are Q(logn—logN) and
Q(D +logn—log N), respectively. When n=N'*20" the worst case
period is 2(log n). Consequently, the total time to perform pipelined search
for m queries is (D +mlogn) in the worst case. However, the same
problem can be solved on a single processor storing n elements in time
O(mlogn) in the worst case. In other words, a single processor is at least
as fast (perhaps even faster) than an N-processor network.




362 Akl and Dehng

3. AVERAGE BEHAVIOR OF PIPELINED SEARCH ON COARSE
GRAINED NETWORKS

The worst case lower bounds presented in Section 2 are based on the
fact that all queries may refer to elements in the same subsequence S,
stored in processor P;. Obviously, the likelihood of this happening is very
low.. Hence, from a practical point of view, it is also important to study the
average case complexity of pipelined search on coarse-grained networks. In
this section we present and analyse a simple pipelined search algorithm for
coarse-grained networks which has a constant period if n=0O(N2"V).

For-a given processor network, the standard single-source shortest
path algorithm (see Aho et. al.'®, p. 207) determines the shortest path from
the input processor to every one of the other processors. These shortest
paths define a spanning tree of the network which will be referred to as the
routing tree. Likewise, the shortest paths from all processors to the output
processor define the report tree. The elements are stored such that every
processor contains n/N elements in sorted order and the concatenation of
these sorted subsequences, defined by the inorder traversal of the processors
with respect to the routing tree, is again a sorted sequence. In addition
to the data structure for searching S; sequentially, every processor P,
maintains two queues for storing pending queries and results which will be
referred to as the search queue and the report queue of P, respectively. The
pipelined search algorithm consists of three processes which are executed
simultaneously on all processors:

1) The routing process: Every query s arriving at the input processor
is sent via the routing tree to the processor P; with s in the
interval [min(S,), max(S,)]. There, s is inserted at the end of the
search queue of P,.

2) The searching process: Every processor P, continuously removes
the first query s from its search queue, if one exists, and tests
whether se S,. The result is inserted at the end of the report queue
of P,.

3) The reporting process: Every processor P; continuously removes
the first result from its report queue, if one exists, and sends it to
its successor on the shortest path from P; to the output processor
(as defined by the report tree). Every processor receives the results
from its predecessors in round robin fashion and inserts them at
the end of its report queue.

In the remainder of this section we will study the average case
behavior of this algorithm under the following assumptions:




Pipelined Search on Coarse Grained Networks 363

A1) For each processor P;, the time to search its subsequence S;
sequentially is ¢ log n/N, for some constant c.

A2) The arrival of queries at the input processor is a Poisson process

with constant period T; ie, P{n,=k} =e *(at)*/k!, where

s «=1/T and n, is the number of arriving queries within a time
period of length .

A3) The probability is 1/N that the element searched for by a given
query resides in a particular processor.

A4) The period T of the query stream is larger than the time to send
a query result from one processor to an adjacent one.

Theorem. (a) The expected length of the search queue of an
arbitrary processor P, is at most a constant L provided that
n< N2TN(L+1—(L2+ 1)12y/c

(b) The expected length of the report queue of an arbitrary processor
P, is constant.

Proof. (a) Consider the search queue at an arbitrary processor P,
From assumptions 42 and A3 it follows that the period of the queries
which have to be handled by P, is NT. Hence, the arrivals of these queries
at P;s search queue are a Poisson process with P{n,=k} =e " M(At)*/k!,
where 1= 1/NT. On the other hand, it follows from assumption Al that
the time between two results departing from P/s search queue is fixed
(for given n and N). Hence, the queue at P; is an M/D/1 queue; see
Papoulis.® Let p = (c log(n/N))/NT. The queue is stationary if and only if
p<1;ie, if p<1 then the expected length of the queue is a constant,
otherwise it becomes arbitrarily large. The expected length of an M/D/1
queue, p(2—p)/2(1—p), is equal to a constant L if and only if
p=L+1—(L*+1)"7 ie,n — N2TML+1- L2+ 1'% Gince for all smaller n
the time between two outgoing results from P; decreases, and therefore also
the expected length of the queue, part (a) follows.

(b) For every report queue, the period of the input stream is at least T.
From assumption A4 it follows that T is larger than the period of the
output stream of the report queue. Hence, the report queue is stationary;
i.e., its expected length is a constant. O

Let D,, and D, denote the expected minimum distance from the
input and output processors to an arbitrary processor P, respectively. If
n< N2TNE+1— L+ DY and assumptions A1 to A4 hold, then it follows
from this theorem that the pipelined search algorithm has optimal expected
period, a constant 7, and optimal expected latency O(D;,+ Dou +
log(n/N)), and the expected length of the search queue is a constant L.

828/18/5-4




364 Akl and Dehne

ACKNOWLEDGMENTS

The authors wish to thank the referees for their constructive commentg
on the first version of this paper.

REFERENCES

1. M. Snir, On Parallel Scarching, SIAM J. Comput. 14:3: 688-708 (1985).

2. S. G. Akl, The Design and Analysis of Parallel Algorithms, Prentice-Hall (1989).

. A. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of Computer Algorithms,

Addison-Wesley (1976).

4. F. Dehne and N. Santoro, Optimal VLSI Dictionary Machines on Meshes, in Proc. Int.
Conference on Parallel Processing, pp. 832-840, St. Charles, Ill. (1987).

5. F. Dehne and N. Santoro, An Optimal VLSI Dictionary Machine For Hypercube Architec-
tures, to appear in Proc. Workshop on Parallel and Distributed Computing, Bonas (France)
(1988).

6. A. Papoulis, Probability Theory, Random Variables, and Stochastic Processes, McGraw-
Hill (1984).

W




