International Journal of Parallel Programming, Vol. 19, No. 3, 1990

Optimal Visibility Algorithms for
Binary Images on the Hypercube'

Frank Dehne,? Quoc T. Pham,? and lvan Stojmenovi¢*

Received June 1988, Revised October 1990

Consider a nxn binary image. Given a direction D, the parallel visibility
problem consists of determining for each pixel of the image the portion that is
visible (i.e., not obstructed by any other black pixel of the image) in direction
D from infinity. A related problem, referred to as point visibility, is to compute
for each pixel the portion that is visible from a given point p. In this paper, we
derive O(log n) time SIMD algorithms for each of these two problems on the
hypercube, where one processor is assigned to every pixel of the image. Since the
worst case communication distance of two processors in a n’-processor hyper-
cube is 2 log n, it follows that both of the above algorithms are asymptotically
optimal.

KEY WORDS: Hypercube Algorithms; Image Processing; Parallel Algo-
rithms; Visibility.

1. INTRODUCTION

A d-dimensional hypercube is a set of 2¢ synchronized processing elements
P(i), 0<i<2“—1, where two processors P(/) and P(j) are connected by a
bidirectional communication link if and only if the binary representations

' This paper summarizes a preliminary version [Ref 1] and short note on a possible
improvement [Ref. 2] presented at the 1988 IFIP WG 10.3 Working Conference on Parallel
Processing and 1988 Allerton Conference on Communication, Control and Computing,
respectively. The first and third authors’ research are partially supported by the Natural
Sciences and Engineering Research Council of Canada.

2 Center for Parallel and Distributed Computing, School of Computer Science, Carleton
University, Ottawa, Canada K1S 5B6.

- ¥ Department 7TH65, Bell-Northern Research, P.O. Box 3511, Ottawa, Canada K1Y 4H7.

4 Department of Computer Science, University of Ottawa, Ottawa, Canada KIN 6NS5.

213

0885-7458 90,0600-0213806.00,0 ¢. 1990 Plenum Publishing Corporation

214 Dehne, Pham, and Stojmenovic

of i and j differ in exactly one bit. (See Refs. 3 and 4 for more details on
hypercubes.)

In Refs. 5-7 several hypercube algorithms are proposed for geometric
and topological problems on digitized images: labeling of the extreme
points, finding the diameter, finding the smallest enclosing box of a figure,
component labeling, etc.

In this paper, we continue this line of research by studying two
visibility problems: the parallel visibility problem and the point visibility
problem. Visibility problems have been extensively studied for the sequen-
tial model of computation.®® The notion of visibility in geometric objects
is important for a large number of geometric applications; e.g., the hidden
line problem in graphics,'” the shortest path problem for points in a planc
with polygonal obstructions,"'"” and the separability problem for planar
polygonal objects.!!>!*) In practice, studying these problems for digitized
images (rather than for sets of polygons} is of particular importance, since
the input data consists frequently of a binary image. Consider for example
the shortest path problem for a robot in a factory hall, where the descrip-
tion of the polygonal obstructions is obtained via a camera mounted at the
ceiling of the hall. In this case, an algorithm which can be applied directly
to the image is desirable since it does not need a costly image to polygons
transformation. (See also Ref. 15.)

Consider a digitized image n consisting of n x n = 2¢ pixels n(i) indexed
from 0 to 2—1 in row-major ordering, and stored in the hypercube
such that every pixel n(i) is assigned to processor P(i). (If the pixels are
numbered in Gary code ordering, a transformation can be performed in
time O(log n).111"

For a given direction D, the parallel visibiliry problem for the image
7 is to compute for each pixel n(i) the portion of n(i) that is visible in
direction D; ie., the portion of =m(i) that is illuminated by light in the
direction D from a light source at infinity, assuming that the black pixels
of = obstruct light; see Fig. la. The problem of computing the visibility
from a point p is to compute for each pixel n(i) the portion of n(i) that is
visible from p (i.e., the portion illuminated by a light source located at p);
see Fig. 1b.

In this paper we present, for both of the discussed visibility problems,
O(d) = O(log n) time algorithms for the hypercube architecture. Since the
worst case communication distance of two processors in a hypercube of
size n? is 2 log n, it follows that both solutions are asymptotically optimal.
The remainder of this paper is organized as follows: Section 2 presents the
algorithm for determining parallel visibility and, in Section 3, we solve the
point visibility problem.

Optimal Visibility Algorithms for Binary Images on the Hypercube 215

-
 smed
f—
et
AA_°
—
R

\[]

(a) (b)

Fig. 1. (a) Parallel visibility in direction D; (b) visibility from point p.

2. PARALLEL VISIBILITY

The basic geometric idea for our algorithm is to divide the image =
into strips parallel to direction D (as illustrated in Fig. 2), where each strip
is the portion of light intersecting the top edge of one pixel in the top row

D
B

NN N N NN

a segment

p=~~~=-~--3 strip

\ -
L\

N\

Fig. 2. Divising the image into strips and segments.

216 Dehne, Pham, and Stojmenovic

of the image (as if it were unobstructed by any black pixel). For the
remainder, let w, denote the horizontal width of a {square shaped) pixel.

We shall assume without loss of generality that the angle f between
the North-South direction and the direction D (in counter-clockwise
direction) is between 0 and 45°; otherwise, the algorithm can be obtained
similarly by symmetry.

We further divide each strip into segments, where a segment is the
portion of a strip contained in one row of pixels (see Fig. 2). The leftmost of
the pixels intersected by a segment will be referred to as the representative
pixel of the segment.

For each segment, we define the black interval to be the projection of
the black portion of the segment onto the cross-section of the strip; the
white interval is the complement of the black interval (with respect to
the cross-section of the strip). The projection of the visible portion of the
segment onto the cross-section of the strip will be referred to as visible
interval of the segment.

Lemma 1.

(a) No pixel (i) is properly contained in a strip (ie., every n(i)
intersects either the left or the right border of its strip).

(b) Each segment intersects at most three neighboring pixels.
(c) Every pixel intersects at most three strips.

(d) Each white or visible interval consists of at most two connected
components, and both components are adjacent to the boundary
of the strip.

Proof. (a) Follows from the fact that the horizontal width of each
pixel and strip are equivalent. (b) Follows from (a) and the fact that
B<45° (c) Let w, and w, denote the width of a pixel and a strip with
respect to the direction perpendicular to D, respectively. From 0 < < 45°
it follows that wy<w,<2w,. Hence, a pixel can intersect at most three
strips. (d) Follows from we<w,. |

Our algorithm solves the parallel visibility problem by computing, for
all strips in parallel, the visible intervals for all segments in the strip. From
Lemma 1d it follows that each white or visible interval requires only O(1)
memory space. For simplicity we describe the algorithm only for the
portion of the image covered by strips in Fig. 2; ie., the region bounded by
the top, right, and bottom edges of the image, and the line through the top
left corner of the image parallel to direction D. The parallel visibility
problem for the remaining pixels can be solved in a second, analogous step.

Optimal Visibility Algorithms for Binary Images on the Hypercube 217

The general structure of our algorithm is as follows:

(1) All white intervals are computed. Every processor determines the
segment it represents (if exists) and the corresponding strip
number. Then, it examines its local neighborhood and computes
the white interval for the segment it represents.

(2) All visible intervals are computed by using the following simple
geometric idea: Consider, within each strip, the sorted ordering
of the segments with respect to direction D such that the topmost
segment is the first in this ordering. The visible interval of each
segment is the intersection of the white intervals of its
predecessors (the visible interval of the topmost segment is the
entire cross-section of the strip).

We employ four standard hypercube operations, all of which can be
executed in time O(logn) on a hypercube with n? processors (see Refs. 3,
18, and 19):

Distribute: Assume that processors P(i), 0<i< j<n? each store a
record r(i) and a processor destination address dest(#) such that dest(i) <
dest(i+ 1) for 0<i<j. The distribute operation consists of routing, for
each of these P(i), the record r(i) to processor P(dest(i)).

Concentrate: The concentrate operation is the reverse of the
distribute operation.

Shift (special case of the distribute operation): Every processor P(i)
representing a pixel n(i) sends a record r(i) to the processor P(j) that
represents the pixel n(f) which is obtained by shifting n(i) k pixels to the
right (or to the left, upwards, downwards, respectively).

Partial sum: Given N values aq,.., a,2 (each value a, is stored in
processor P(i)) and an associative binary operator *, then the partial
sum operation consists of computing the values a,, ag*a;, ay*a,*a,..,
ag*a*a,*..*a,..

In part 2 of our algorithm, for each strip (in parallel) a partial sum
problem has to be solved where the operands for the partial sum opera-
tions are the white intervals of the segments and the associative binary
operator is set intersection. However, the O(log N) partial sum algorithm
assumes that the operands for each partial sum problem are stored in
exactly one-hypercube which, in general, is not the case for the white
intervals of a strip. We observe that the processors which store a row or
column of pixels form a sub-hypercube. Therefore, our strategy is to move
each of the strips into a column-subcube of the hypercube so that the

218 Dehne, Pham, and Stojmenovic

partial sums, for all strips, can be computed independently in O(log n)

time. Finally, the obtained visibility information is returned to the original

segment locations and propagated to the neighboring pixel in the segment.
The following is the final description of our algorithm:

(1) All strips are “rotated” to the left to coincide with the columns
as follows: In each row of segments (ie., the sub-hypercube of
processors representing the segments in one row of pixels), all
segments are shifted simultaneously to the left (using the strip
number to determine how far to shift) such that the leftmost
segment is stored in the leftmost processor of the row. For each
row-subcube this operation can be performed independently in
time O(log n) using the shift operation described earlier.

(2) In each column-subcube, which now stores the white intervals of
the segments of one strip, the partial sum operation can be
performed independently in O(log n) steps.

(3) The invese of Stepl is performed to return the “rotated”
(actually shifted) segments with the values obtained in the
previous step back to their original positions.

(4) After Step 3, each processor has received the visible interval for
the segment it represents. Finally, for each segment, the visibility
information is propagated from the representative pixels to the
neighboring pixel in the segment (using a shift operation) and,
for each pixel, the visible portion determined.

Since each of these steps can be executed in time O(log n), we obtain

Theorem 1. The parallel visibility problem for a digitized image of
size nxn can be solved on a d-dimensional hypercube, 2¢=nxn, in time
O(d) = O(log n).

3. POINT VISIBILITY

In order to determine the visibility from a point p, we will assume
without loss of generality that the point p is located at the upper left corner
of the image; otherwise, the digitized image can be split by the horizontal
and the vertical lines through p into (at most) four quadrants and the
problem can be solved for each quadrant separately.

In the remainder of this section we will show how to compute for all
pixels in the area below the 45° ray emanating from p (again, all angles are
defined with respect to the north-south axis and in counter-clockwise

Optimal Visibility Algorithms for Binary Images on the Hypercube 219

direction) the portion that is visible from p. For all pixels above the ray,
the visibility problem can be solved in a second analogous step.

Consider the 22.5° ray emanating from p. It splits the image (below
the 45° ray) into two strips whose widths (i.e., the horizontal distance
Between left and right border) increase with the distance from p and will,
eventually, exceed width w, which ensures that no pixel is properly
contained in a strip (cf. Lemma l1a). At the level where the width of the
rightmost strip reaches w,, each strip is split again (by rays emanating
from p) into two strips such that the angles between the borders of the four
strips are equal. When the width of the rightmost of these four strips
reaches w,, they are bisected again. This process is repeated until the entire
image below the 45° ray is covered (see Fig. 3). We define a sector to be
the section of a strip between two consecutive splittings.

Lemma 2.

(a) No pixel is properly contained in a sector (ie., every pixel
intersects either the left or right border of its sector).

(b) Every pixel intersects at most eight sectors.

Proof. (a) Follows from the fact that the horizontal width of a pixel
is not smaller than the maximum horizontal width of a sector. {b) For

1Al

AN

Fig. 3. Subdivising the image into sectors.

(]

828/19/3-5

220 Dehne, Pham, and Stojmenovic

every horizontal cut through the image, the width w, of the leftmost sector
intersected by the has the property

where w, is the width of the rightmost sector (intersected by the cut) and
o the angle between the left and right border of the sector (0° < a <22.5°).
Since 1/2 wo<w, <wy), and the width of all other sectors on the cut is
between w, and w,, we obtain for the horizontal width w of any sector
(along any horizontal cut): /4 wo<w<w, |

Furthermore, we divide each sector into segments. A segment of a
sector S is the portion of S contained in one row of pixels (see Fig. 4).

For each segment, the representative pixel, white interval, and visible
interval are defined in the same way as in Section 2.

The sectors, together with the relation “<” defined by

S, < S, if and only if the top horizontal border of S, is contained
in the bottom horizontal border of S,,

form a binary tree which will be referred to as sector tree (see Fig. 5). The
point visibility problem can be solved by executing for every path from the
root to a leaf of the sector tree, for the white initervals of the segments of
these sectors, the partial sum operation of Section 2.

\ ._ \ \ ‘/a pixel
1 NN
NN

Ay

Fig. 4. Sectors and segments.

v

Optimal Visibility Algorithms for Binary Images on the Hypercube 221

11111
56789
Fig. 5. Sector tree for the subdivision in Fig. 4.

Compared to Section 2, the problem arising here is not only that
segments involved in a partial sum operation are (in general) not stored in
a sub-hypercube but also that segments in non-leaf sectors are involved
in several partial sum operations.

The general idea for solving these problems is to copy, for every path
from the root to a leafl of the sector tree, the segments of the involved
sectors into a column subhypercube (see Fig. 6).

In order to do this efficiently, we utilize the generalize operation® of
which can be executed in time O(log n) on a hypercube with n’ processors:

Assume that processors P(i), 0 < i < j<n? each store a record r(i)
and a processor destination address dest(i) such that dest(i) <
dest(i + 1) for 0 <i < j; the result of the generalize operation is that
every record r(i) is routed to the processors P(dest(i—1)+1),..,
P(dest(i)).

The following is a detailed description of our hypercube algorithm for
solving the point visibility problem (To simplify exposition, we shall
assume that every processor representing a pixel simulates four ‘virtual’
processors, one for each of the at most four respective segments.):

(1) Every processor P(i) determines in constant time which segment,
Seg(i), in which sector, Sect(i), it represents (if any).

(2) Since the sector tree is a complete binary tree, every P(i) can also
determine in constant time the column number, c(i), of the

222

(4)

(5)

Dehne, Pham, and Stojmenovic

—
pary
——
—
-
N
N
N
N
w

2|2| 22| 2
Si6l7|8]9o |1]2]| 3] 4|5|6]7]|8]9 |0

Fig. 6. Copying each path of the sector tree into a
column subcube.

representative pixel of the bottommost segment in the rightmost
leaf-sector of the sub-sector tree rooted at Sect(i). If Sect(i) is a
leaf-sector then c(i} is the column number of the representative
pixel of the bottommost segment of Sect(:).

Every P(i) determines in time O(log n) the white interval, w(i), of
Seg(i); see Section 2.

A generalize operation is performed where, for every P(i)
representing a segment Seg(!), r(i)=w(i) and dest(i) is the row
major index, i *, of the pixel with the same row number as (/)
and column number ¢(). (It is easy to see that the requirement
i< j=dest(i) < dest(;) for generalize operations holds.)

After Step 4, for each path from the root to a leaf of the sector
tree, the white intervals of the segments of all sectors on the path
are stored in a column subcube in sorter order.

Therefore, for all paths in parallel, the partial sum operation with
respect to their white intervals can be computed in time O(log n).

The visible intervals obtained in Step 5 are returned from each
P(i*) to P(i), the procesor storing the representative pixel of
the segment. (This can be implemented with time complexity
O(log n) by using the concentrate operation.} Note that, in
Step 5, for all copies of the white interval of a segment the result
of the partial sum operation is the same.

Optimal Visibility Algorithms for Binary Images on the Hypercube 223

Finally (by using the shift operation), for each segment the
visible interval is sent in time O(logn) from the representation
pixel to the other pixel in its segment (if exists).

Symmarizing, we obtain

Theorem 2. The point visibility problem for a digitized image of
size nx n can be solved on a d-dimensional hypercube, 2¢=nxn, in time
O(d)= O(log n).

4. CONCLUSION

In this paper, we presented O(logn) time hypercube algorithms for
solving the parallel visibility problem, and computing the visibility from a
point, for a nxn binary image. Since the worst case communication
distance of two processors in a hypercube of size n* is 2 log n, it follows
that both solutions are asymptotically optimal. While the algorithms as
described here assume one processor per pixel, they can be immediately
generalized, using standard simulation, to O(n’/p log p) time algorithms for
solving the same problems on an arbitrary size hypercube with p<n?
processors. Hence, they yield a near optimal speed-up of O(p/log p) for all
p<n’

REFERENCES

1. F. Dehne and Q. T. Pham, Visibility algorithms for binary images on the hypercube and
the perfect-shuffle computer, Proc. IFIP WG 10.3 Working Conf. on Parallel Processing,
Pisa (Italy), North-Holland, pp. 117-124 (1968).

2. F. Dehne, Q. T. Pham, and I. Stojmenovic, Optimal visibility algorithms for binary
images on the hypercube—preliminary version, Proc. Allerton Conference on Communica-
tion, Control and Computing, Monticello, 1llinois, pp. 1035-1036 (1988).

3. D. Nassimi and S. Sahni, Data broadcasting in SIMD computers, JEEE Transactions on
Computers, C-30 (2):101-106 (1981).

4. C. L. Seitz, The cosmic cube, Comm. of the ACM, 28:22-23 (1985).

5. R. Miller and S. E. Miller, Using hypercube multiprocessors to determine geometric
properties of digitized pictures, Proc. IEEE Conf. on Parallel Processing. pp. 638-640
(1987).

6. R. Miller and Q. F. Stout, Some graph and image processing algorithms on the hyper-
cube, Proc. Second Conf. on Hypercube Multiprocessors, pp. 418-425 (1986).

7. Q. T. Pham, Parallel algorithm and architecture for binary image component labeling,
Technical Report, Department of Computer Science, University of California, Los Angeles,
California (1987).

8. H. ElGindy and D. Avis, A linear algorithm for computing the visibility polygon from a
point, Journal of Algorithms 2:186-197 (1981).

9. D. T. Lee, Visibility of a simple polygon, Computer Vision Graphics and Image Processing
22:207-221 (1986).

224 Dehne, Pham, and Stojmenovic

10.

19.

H. Freeman and P. P. Loutrel, An algorithm for the two-dimensional “hidden line”
problem, IEEE Trans. Electron. Comput., EC-16 (6):784-790 (1967).

. T. Asano, T. Asano, L. Guibas, J. Hersberger, and H. Imai, Visibility polygon search and

Euclidean shortest paths, Proc. of the IEEE Symp. on FOCS, pp. 154-164 (1985).

. F. Dehne and J.-R. Sack, Translation separability of sets of polygons, to appear in The

Visual Computer, Vol. 3, No. 4 (1987).

. J-R. Sack and G. T. Toussaint, Translating polygons in the plane, Proc. STACS ‘85,

Saarbriicken, Federal Republic of Germany, pp. 310-321 (1985).

- G. T. Toussaint, Movable separability of sets, Compurational Geometry, G. T. Toussaint

(ed.), North Holland, Amsterdam, New York, Oxford, Tokyo, pp. 335-376 (1985).

. F. Dehne, A. Hassenklover, J.-R. Sack, and N. Santoro, Computational geometry on a

systolic screen, to appear in F. Dehne (ed.), Parallel algorithms for geometric problems on
digitized pictures, special issue of Algorithmica.

- S. L. Johnson, Communication efficient basic linear algebra computations on hypercube

architectures, J. on Parallel and Distributed Computing, 4:133-172 (1987).

- I. Stojmenovic, Computational geometry on the hypercube, Technical Report TR-CS-87-

100, Computer Science Department, Washington State University, Pullman, Washington
(1987).

- €. P. Kruskal, L. Rudolph, and M. Snir, The power of parallel prefix, Proc. IEEE

Conference on Paralle! Processing, pp. 180-185 (1985).

R. E. Tarjan and U. Vishkin, Finding biconnected components and computing tree
functions in logarithmic parallel time, Proc. 25th IEEE Symp. on Foundations of Computer
Science, pp. 12-20 (1984).

