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In this paper we present an efficient O(n log n) time, linear space, algorithm for detecting a line, or line segment,
represented by a set of n, collinear points contained in a rectangular window with an additional set of ny independent,
uniformly distributed random noise points; n = n, +ny. Empirical results show that the algorithm is very reliable for

n /oy >3
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1. INTRODUCTION

In this paper, we study the well-known problem of
detecting dotted lines in noisy images; i.e. detecting a
line, or line segment, represented by a set of n,, collinear
points (referred to as line points) contained in a circular
or rectangular window with an additional set of n,
independent, uniformly distributed random noise points.
Several methods for solving this problem have been
proposed in the literature.? 58131517 However, most of
them are based on the Hough Transform, which is
computationally very costly. This motivated our research
in studying more efficient methods for line detection; in
particular, we considered the application of efficient
computational geometry methods, since some of these
tools have already been successfully applied to other
image processing and statistics problems.®

We present an efficient O(nlogn) time, O(n) space
algorithm for detecting dotted lines in noisy images; n =
n,+n,. Our method is based on convex hull and peeling
algorithms. Empirical studies have shown that the
algorithm is very reliable for up to three times as many
noise points as data points; i.e. n,/ny > 3.

The remainder is organized as follows. Section 2 will
review the concept of convex hulls and peelings and
discuss some statistical properties. In Section 3 we shall
present our algorithm and discuss its rationale; while
Section 4 will analyse its time complexity and discuss
some empirical results with respect to the accuracy of our
method.

2. HULLS AND PEELING

One of the most extensively studied structures in
computational geometry is the convex hull of a planar
point set S ={p,,...,p,}; i.e. the smallest convex set
containing S. The points of S located on the border of
the convex hull are referred to as extreme points of S;
removing the extreme points and iterating this process
for the remaining points until all points have been
removed is called peeling. A variety of algorithms has
been proposed for computing the convex hull;'** for
peeling a set S of n points, Chazelle? has presented an
optimal O(nlogn) time, linear space algorithm.

In addition to its efficient computation, several authors
have also studied the properties, in particular the
statistical properties, of convex hulls.?-® 2618 Tykey

suggested (as reviewed in Ref. 10) that the convex hull
could be used for getting a robust estimator for mean
values in higher dimensions similar to computing
trimmed means for one-dimensional data sets; i.e. a
fraction of the upper and lower extreme points of the
data set is removed before the mean value is computed,
thereby making it less sensitive to exceptional values in
the data set. For two-dimensional data sets, a portion of
the first hulls in the peeling process may be considered as
exceptions and deleted.

Except for removing exceptions, the deletion of the
extreme points does not have a considerable effect on the
centroid of a two-dimensional point set. In fact, for the
peeling process our experiments also show that, for
random point sets, the centroid remains reasonably
stable until the number of points becomes too small.
Furthermore, we placed a second smaller but denser
compact and convex point set (mass) within the convex
hull of the first set of points (noise). We found that, for
successive peelings (of the entire point set), the centroid
of the whole set migrates towards the centroid of the
mass. This is intuitively obvious since, for most cases,
each peeling will eliminate more points from the noise
than from the mass. In addition, the successive hulls tend
to converge towards an approximation of the mass;
however, if the mass is located close to the border of the
convex hull of the noise this effect is not as pronounced,
since an increasing number of points are deleted from the
mass by the peeling process.

3. ALGORITHM OVERVIEW

The above observation motivated our development of an
algorithm for locating line segments in a field with
random noise. The rationale for the algorithm is that,
since peeled hulls tend to converge to a convex and
compact mass, it is perhaps possible that they can be
made to converge to a line which is convex but,
unfortunately, very thin (see Ref. 4 for an exact definition
of thinness).

Experiments showed that, although lines do not behave
as well with respect to peeling as a compact mass, there
are some similarities. In particular, as we will point out
in Section 3.1, it turns out that the hulls do not converge
to the line but in general delete more noise points than
line points and will, eventually, converge to some
remainder of the line points (with several additional
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noise points). Then this remainder will be peeled off by
one hull. If it is possible to detect when this happens and
separate, in this hull, the line points from the noise
points, the other line points which have been peeled off
by previous hulls can be recovered by a post-processing

step.
Therefore, the general structure of our algorithm is the

following.

Phase 1. Peel off the entire point set; store the created
concentric hulls A,, ..., h,,.

Phase 2. Detect which hull, hk, has a ‘significant’
number of line points.

Phase 3. Delete noise points from h,.

Phase 4. Recover the line points peeled off by 4,,...,

h,_,.

In Sections 3.1, 3.2 and 3.3. we shall discuss Phases 1-3
of the algorithm in detail. Phase 4 is straightforward:
once a subset of line points (with only very few noise
points) has been extracted, all points close to the linear
approximation can be determined by one linear search,
thereby recovering all points on the original line or line
segment.

3.1 The effect of peeling on collinear data points
(Phase 1)

The basic idea for Step 1 of the algorithm is that,
although lines do not behave as well as compact masses
with respect to peeling, hulls 4, to h,_, will have a
“filtering’ effect in that they remove more (in some worst
cases, at least as many) noise points than line points.
Fig. 1 shows the most important cases which can occur
while peeling 4,, ..., h,_,. For line segments, there will be
in general no line point contained in the first hulls (Fig.
la); therefore, only noise is removed. When the
concentric hulls become smaller, they will eventually
contain at most two line points (otherwise, a hull
contains all remaining line points and will be considered
as containing a significant number of line points; see
Section 3.2) and at least two noise points as depicted in
Fig. 1b. For lines, the second case will occur immediately.
In the worst case, the number of removed noise and
line points is identical ; see Fig. 1¢. A worst-case scenario
(which can be easily detected and dealt with separately)

is shown in Fig. 1c.

(@) ®)

=

() d)

Fig. 1. Using convex hulls for noise removal. (@) Initial case for
line segment. (b) Subsequent case for line segments and initial
case for lines. (c) A case where as many line points as noise
points are removed. (d) A worst-case scenario.

3.2 Detection of hull 4, with a significant number of line
points (Phase 2)

At some stage of Phase 1, all points on one side of the
line points have been removed; all remaining line points
will be contained in the next convex hull and removed in

‘the subsequent step. This hull, A,, which contains a

significant number of line points (except for the above
worst case), is detected in Phase 2 of the algorithm. Note
that k may be very small (i.e. h, is peeled off very early)
if, for example, the line is located close to a border of the
window.

A typical example of a hull 4, is shown in Fig. 2.

>

Fig. 2. A typical hull 4,.

Empirical studies with a large number of random data
sets have shown that the hull A, can be characterized by
having one of the following two properties:

@ an increased number of points on the hull boundary,
or

@ a small relative area (relative to the previous hull) per
boundary point.

Let A, and HP, denote the area and the number of
extreme points of hull A, respectively, and let

4

ANAi= =55

denote the normalized average area of hull h,.

Our studies (see Section 4 and Appendix A) show that
hull 4, can be characterized by either a significant
increase in

HP,

b

n
the relative number of extreme points of hull A,, or
L
ANA;S

the reciprocal value of the normalized average area of ,.
Therefore, our algorithm detects hull 4, by selecting
from all hulls A, the hull which maximizes

L_HE 1
v Ty ANA

Our experimental results (see Section 4) show that this
measure is very reliable ; Appendix A shows some typical
plots of (HP,/n) and ANA,.

3.3 Deleting noise points from &, (Phase 3)

Once the Eull h, has been computed, the next stage of the
algorithm’is to ehmmate extreme points of A, which are
noise points.

Let p,, ..., p,_, be the extreme points of h, and let p and
a(p,) denote the centroid of p,,...,p, and the angle of the
polar coordinates of p, with respect to centre p (0 <i <
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t—1), respectively; finally, let B(p,): = |a(p;,; moar) —a(p))|
denote the difference of the angle of the polar coordinates
(with centre p) of p, and its successor p,,, moas-

Our method for eliminating noise points of 4, is very
simple; the rationale for it is that the angle (with respect
to centre p) between noise points is larger than the angle
between line points (see, for example, Fig. 2).

@ Compute for each extreme point p, of A, the value
B

@ Discard all p, with S(p,) > (360°/ HP).

Although it is very simple, it turns out that this method
is very accurate in that it deletes most of the noise points
but hardly any of the line points of 4, (see Section 4 and
Appendix A).

4. TIME COMPLEXITY OF THE
ALGORITHM AND EMPIRICAL RESULTS

The most time-consuming step of the algorithm is the
peeling process in Phase 1. As we have already indicated
in Section 2, Chazelle® has presented an optimal
O(nlogn) time, linear space algorithm for peeling a set S
of n points. It is easy to see that all other steps can be
executed in linear time. Hence the entire algorithm has a
time complexity and space requirement of O(nlogn) and
O(n), respectively; therefore, this method is much more
efficient than, for example, algorithms based on the
Hough Transform.

On the other hand, the proposed methods proved to be
very reliable. Table 1 summarizes some performance
results obtained from extensive testing with randomly
generated data sets.

Table 1. Percentage of correct answers for random data sets

n,+n,

n/ny 100 200 300

10/90 23 4 61 Horizontal or vertical lines
15/85 55 79 96
20/80 79 100 100

25/75 92 100 100

10/90 0 8 12
15/85 15 57 71
20/80 57 84 100
25/75 80 100 100 N

10/90 31 25 32 Arbitrary line segments
15/85 45 48 41
20/80 52 80 81
25/75 85 95 95

Diagonal lines

It shows three classes of tests:

@ randomly generated dotted horizontal or vertical
lines with additional random noise,

@ randomly generated dotted diagonal lines with
additional random noise, and

@ randomly generated arbitrary dotted line segments
with additional random noise. :

The first two cases were tested since they apply, for

example, to the detection of particle paths in nuclear

physics; for these cases, all answers were correct for up

to 75-80 % noise.

* For arbitrary line segments, the performance was

slightly inferior. However, for 75% noise a 95%
correctness rate could still be achieved; for 70%, no
incorrect answer was found.

Appendix A shows some sample plots. For each
experiment, the original point set, all hulls determined in
Phase 1 as well as the values (HF,/n) and ANA, for each
hull A,, the hull A, selected in Phase 2, and the remaining
points of h, after Phase 3 are shown.

5. CONCLUSION

In this paper we have presented an efficient O(nlogn)
time, O(n) space algorithm for detecting dotted lines in
noisy images; i.e. detecting a line, or line segment,
represented by a set of n,, collinear points contained in a
circular or rectangular window with an additional set of
n, independent, uniformly distributed random noise
points. Our method is based on efficient computational
geometry methods : convex hull construction and peeling.
Empirical studies have shown that the algorithm is very
reliable for up to three times as many noise points as data
points; i.e. n,/ny > L.

While the detection of one single line or line segment
is important for a number of applications (for example,
detection of particle paths in nuclear physics), there are
obviously also applications which require several lines or
line segments to be detected. The generalization of our
method for the solution of such cases is currently under
investigation.
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APPENDIX A: SAMPLE PLOTS

Total number Noise - N
of points (TP) (% of TP) B A
horizontal line
100 . 60
200 80
horizontal line close to a border
100 60
200 80
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Total number Noise
of points (TP) (% of TP) LY ANA,
= |1 (L.
diagonal |
100 60 R
200 80
arbitary line segment
200 80
200 80
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