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In this paper we consider a new form of connectivity in binary
images, called k-width connectivity. Two pixels a and b of value
“1” are in the same k-width component if and only if there
exists a path of width k such that a is one of the k start pixels
and b is one of the k end pixels of this path. We present char-
acterizations of the k-width components and show how to de-
termine the k-width components of an n X n image in O(n) and
O(log?n) time on a mesh of processors and hypercube, respec-
tively, when the image is stored with one pixel per processor.
Our methods use a reduction of the k-width-connectivity problem
to the 1-width-connectivity problem. A distributed, space-effi-
cient encoding of the k-width components of small size allows
us to represent the solution using O( 1) registers per processor.
Our hypercube algorithm also implies an algorithm for the shuf-
fle-exchange network. © 1991 Academic Press, Inc.

1. INTRODUCTION

The connected components of a binary image / partition
the entries of value “1” (called the 1-pixels) into sets so that
two 1-pixels are in the same set if and only if there exists a
path of 1-pixels between them. Two consecutive pixels on
the path are either vertically or horizontally adjacent. De-
termining the connected components in images is a funda-
mental problem in image processing [3, 8, 10, 11, 15-17].
Parallel algorithms for various architectures have been de-
veloped. When image I is of size n X n and is stored in an
n X n mesh of processors with one pixel per processor, the
components can be found in O(n) time [1, 5, 10]. On a
hypercube or shuffle-exchange network with n? processors,
the connected components can be determined in O(log?n)
time [2, 7]. In this paper, we formulate a stronger and more
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fault-tolerant form of connectivity in images, which we call
k-width connectivity, and present parallel algorithms for
finding the k-width components.

k-width connectivity in images captures forms of connec-
tivity analogous to k-vertex connectivity in undirected
graphs. A graph is k-vertex-connected if the removal of any
k — 1 vertices leaves the graph connected [4]. Every image
corresponds to a planar graph G in which the 1-pixels are
the vertices and adjacency between two vertices corresponds
to two horizontally or vertically adjacent 1-pixels. Since every
such graph G contains a vertex of degree 2, G can be at most
2-vertex-connected. In order to capture stronger forms of
connectivity in images, we define two 1-pixels a and b as
belonging to the same k-width component if and only if there
exists a path of width k such that a is one of the k start pixels
and b is one of the k end pixels of this path. Precise definitions
are given in Section 2. Figure 1 shows a path of width 3
between two pixels a and b. The image shown is not 3-width-
connected since there exists, for example, no path of width
3 between pixels a and c.

The problem of determining the k-width components has
a number of applications. One is in image segmentation,
where an image is partitioned into coherent regions that sat-
isfy certain requirements and relate the pixels in each region
in some way [13]. Another application is the detection of
connectivity in VLSI masks, where electrical connectivity
between components can be maintained only by a channel
whose width is never less than a value A [9]. The image
might also represent the corridors of a maze, in which case
the fact that a and b are in the same k-width component
implies that a robot occupying a k X k area is able to move
from a to b.

In this paper we present characterizations of the k-width
components and show how to determine the k-width com-
ponents on a mesh of processors and a hypercube. Through-
out we assume that the parallel architectures contain n? pro-
cessors, with each processor containing O(1) registers and
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the image being stored with one pixel per processor. We
develop O(n) and O(log?n) time parallel algorithms for
computing the k-width components of an image I of size n
X n on a mesh and hypercube, respectively. Our methods
use a reduction of the k-width-connectivity problem to the
standard 1-width-connectivity problem. This reduction re-
quires O(k) and O(log k) time on a mesh and hypercube,
respectively, which is asymptotically optimal. In order to
represent the solution using O( 1) registers per processor, we
use a distributed space-efficient representation of the k-width
components of small size. Labeling the k-width components
in a straightforward way requires O(k) registers per processor
(since a 1-pixel can belong to up to k k-width components).
Our hypercube algorithm also implies an O(log?n) time al-
gorithm for the shuffle-exchange network (with the same
time and number of processors).

The remainder of this paper is organized as follows. After
some basic definitions and properties are presented in Section
2, Sections 3 and 4 give characterizations of the k-width
components and general strategies for determining them.
The correctness of our strategies is shown in Section 5. The
mesh and hypercube algorithms are presented in Section 6.
Section 7 concludes our paper.

2. DEFINITIONS AND PRELIMINARIES

Consider an n X n binary image stored in a mesh or hy-
percube containing n? processors. For the mesh, we assume
that the image is stored in the obvious way; i.e., the processor
in row i and column j stores the pixel in the same row and
column. For the hypercube, the pixels are stored with respect
to the two-dimensional gray code mapping. The sequence
S, of n binary gray code numbers gray(0), ..., gray(n— 1)
is defined as follows: S, = (0, 1) and S, = 0%S,_,, 1=*
(SE.)). Here, 0+ S denotes the sequence of binary numbers
in S each prefixed with a 0, and S® denotes sequence S in
reverse order. The two-dimensional gray code mapping is
defined as gray(i, j) = gray(i) @ gray(j), where ® denotes
the concatenation of binary numbers. The pixel in row i and
column j is stored at processor gray(i, j) of the hypercube.
For the remainder of this paper in cases where it is obvious,
we refer to the processor storing pixel x as processor x.

3
XXX XX
A path of width 3 between 1-pixels a and b.

FIG. 1.

We now give the formal definition of k-width connectivity
in images. Let x and y be two 1-pixels in image /. We assume,
w.l.o.g., that no 1-pixels are located adjacent to the border
of I. Let P(x, y) be a path from x to y; i.e., there exist 1-
pixels x = vy, Uy, ..., Um_y, Uy, = y such that v; and v;,, are
horizontally or vertically adjacent. Unless stated otherwise,
two pixels are called adjacent if they are horizontally or ver-
tically adjacent. Consider two paths P(x, y) = vo, ¥y, .. .,
v,, and P(x', y') = wy, Wy, ..., w;.. The paths P(x, y) and
P(x', y') are shadow paths if and only if (i) no pixel is con-
tained in both paths, (ii) x and x’ as well as y and )’ are
adjacent, and (iii) the paths are the union of a sequence By,
..., Byof 2 X 2 blocks of 1-pixels where B; and B;,, share
exactly two adjacent pixels, 1 <i< /- 1, B;and B,,, share
at most one pixel, 1 < i <[ — 2, and no other two blocks
share a pixel. For example, P(x,, y,) and P(x,, y,) from
Fig. 1 are shadow paths.

Two pixels a and b are in the same k-width component
if and only if there exist k mutually disjoint paths P;(x;, y;),
1 <i<k,sothat

« path P;(x;, y;) has length at least k,

o path P,(x;, ;) and P;; (X, Vi+1) are shadow paths,

* Xy, X2, ...,Xi(1€SP. V1, V2, ..., Vx) @r€ ON a common
row or column, and

* a=Xx,and b = y, for some pand r.

Figures 2a and 2b show the k-width components for a given
image I when k = 2 and k = 5, respectively.

A 1-block is a subimage of I of size k X k which contains
only 1-pixels. Let x be a 1-pixel of I and let View, be the (2k
— 1) X (2k — 1) subimage of I that has pixel x in its center.
Pixel x can belong to at most k2 1-blocks and every possible
1-block containing x lies in View,. The block matrix B, is a
boolean matrix of size k X k which records the 1-blocks pixel
x belongs to. We set B, (i, j) = 1 if and only if there exists
a 1-block that has pixel x in row kK — i + 1 and column k
— j+ 1 (positions are relative to the upper-left corner of the
1-block). This indexing scheme ensures that the top-left 1-
block in View, corresponds to the top-left entry in the block
matrix (the top-left 1-block has pixel x at position (k, k)).
Figures 2c and 2d show View, and the block matrix B, of a
pixel x, respectively, when k = 5. For example, the “1” in
the first row and fifth column of B, indicates that there exists
a 1-block in image I that has pixel x in its bottom-left corner.
This 1-block is shown in Fig. 2¢ enclosed by dashed lines.
No other 1-block contains pixel x in the bottom row and
thus the first row of B, contains no further 1’s.

PROPERTY 1. Every row (resp. column) of the block ma-
trix B, contains at most one contiguous sequence of 1-pixels.

Proof Follows from the definition of a block matrix. &

A 1-pixel x in image I belonging to no 1-block (i.e., every
entry of B, is “0”) can obviously belong to no k-width com-
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FIG. 2. [Illustration of definitions: (a) the 2-width components; (b) the 5-width components; (c) View(x); and (d) block matrix B, for pixel x.

ponent. Such 1-pixels are called noise pixels. We partition
the k-width components into two types, local and global k-
width components. A Jocal k-width component is one whose
1-pixels can be enclosed by a rectangular region of size (2k
— 1) X (2k — 1). A k-width component that is not local is
called global . Property 2 limits the number of global k-width
components a pixel x can belong to.

PROPERTY 2. Pixel x belongs to at most two global k-
width components. N

Proof. Assume that x belongs to three global k-width
components. A global k-width component containing x must
contain at least one 1-block corresponding to a 1-pixel on
the border of B,,, as otherwise it would be contained in View.
Hence, B, contains three 1-pixels «, 8, and v belonging to
different 1-width components, each on a different side on
the border of B,. W.l.o.g., let a be in row 1, 3 be in column
1, and y be in row k of B,. (The other three possibilities are
handled in an analogous way.) Assume further that the col-
umn containing « is to the left of that containing . Let the

three 1-blocks associated with these pixels be W,, W;, and
W,. Pixel x is contained in all three 1-blocks. For any pixel
i, let row(i) (resp. col(i)) be the row (resp. column) con-
taining pixel i. For the particular case considered, the bottom-
right corners of W, and W, are contained in W, . This implies
that the entries in B, in row(8) from column 1 to col(«)
and in col(a) from row 1 to row(g) are 1-pixels. Hence, o
and £ belong to the same 1-width component of B, (when
B, is considered to be an image of size k X k). Thus, the 1-
blocks in I corresponding to « and 8 are in the same k-width
component and the property follows.” ®

The next property relates the 1-width components in block
matrix B, to the k-width components 1-pixel x can belong
to in image /.

PROPERTY 3. Let n, be the number of 1-width compo-
nents in block matrix By. Then, n, < k. Furthermore, either
every k-width component of image I containing pixel x cor-
responds to exactly one 1-width component of By (and vice
versa), or one global k-width component of image I containing
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pixel x corresponds to two 1-width components of B, and
each remaining k-width component containing pixel x is a
local component and corresponds to exactly one 1-width
component of B,.

Proof. That n, < k follows immediately from the struc-
ture of the block matrix stated in Property 1. Every k-width
component of image I containing pixel x induces at least
one 1-width component in block matrix B, . A local k-width
component can correspond to only one 1-width component
in B,. A global k-width component corresponds to either
one or two 1-width components in B,. From the proof of
Property 3 it follows that B, cannot contain more than two
1-width components corresponding to global k-width com-
ponents of image I (containing pixel x). Hence, if B, contains
two 1-width components corresponding to the same global
k-width component of image I, all other 1-width components
of B, must correspond to local k-width components. On the
other hand, consider the 1-pixels in image I contained in the
1-blocks associated with a 1-width component in B,. Between
any two such 1-pixels there exists a path of width k and
hence they are in the same k-width component. W

It is not difficult to design an algorithm labeling the k-
width-connected components in O(n) time on a mesh in
which every processor has O(k) registers. The main contri-
bution of this paper lies in developing a space-efficient rep-
resentation of the k-width components and an approach to
compute them efficiently on a number of parallel architec-
tures with O(1) memory space per processor. A natural ap-
proach for determining the k-width components would be
to “peel off” all the 1-pixels that are within distance k/2
from a 0-pixel and to obtain an image whose 1-width com-
ponents correspond to the k-width components of image /.
The straightforward application of such an approach runs
into problems. Assume that k is even. Then, eliminating all
1-pixels that are within distance k/2 of a 0-pixel can eliminate
local and global components. On the other hand, eliminating
all 1-pixels that are within distance k/2 — 1 of a 0-pixel may
not disconnect all k-width components. Similar problems
arise when k is odd. Our algorithm determines the global k-
width components by generating an image in which every
global k-width component of / corresponds to a 1-width
component of this new image. However, it is crucial that the
local k-width components have been handled at this point.
If we are only interested in counting the number of k-width
components a simpler algorithm exists. Assume that we cre-
ate from image I a new image I* such that a pixel x in I*
is a 1-pixel if and only if x is the bottom-right pixel of a 1-
block in image I. Then, it is easy to see that the number of
1-width components in image I* is the number of local and
global k-width components in image /. This method, how-
ever, does not help in deciding which components are local
and global, obtaining a description of the shape of the local

components, or labeling the global components in image 1.
Solving these problems using /* involves essentially the same
operations which we apply, in this paper, directly to 1.

In the following two sections we outline our general strat-
egy for determining the local and global k-width components.
For these two sections, we assume that every pixel x has the
matrices B, and View, available. The algorithms described
in Section 6 use a considerably more space-efficient repre-
sentation of the information contained in the block matrices.

3. DETECTING THE LOCAL k-WIDTH
COMPONENTS

From Property 3 it follows that every 1-width component
in B, represents a portion of either a local or a global k-
width component. In this section we show how to detect
among the 1-width components in B, those representing local
k-width components and to avoid the detection of a local k-
width component by more than one processor.

We make the following convention about which processor
detects which local k-width component. Processor x is in
charge of detecting local k-width component C if every 1-
pixel of component C is in View, and row 1 and column 1
of View, both contain one of its 1-pixels. Translated to the
block matrix B, this means that there is a 1-width component
of B, with a 1-pixel in both row 1 and column 1 of the block
matrix. A processor x with such a 1-width component in its
block matrix needs to determine whether the corresponding
k-width component C is indeed a local k-width component
(i.e., whether the respective k-width component is contained
in View,). Let View* be the (2k + 1) X (2k + 1) subimage
of I that has pixel x in its center. C represents a local k-width
component if no pixel adjacent to the border of View is in
a common k-width component with x. Efficient methods
for determining this property are described in Section 6. If
processor x is responsible for a local k-width component,
the index of processor x is made the component number,
also called the label, of the local k-width component.

4. DETECTING THE GLOBAL k-WIDTH
COMPONENTS

In this section we outline our general strategy for deter-
mining the global k-width components. We again assume
that for every pixel x the matrices B, and View, are available.
In the first step we create from image I a new image I'. We
then perform a 1-width-component computation on image
I', followed by a final propagation of labels to all 1-pixels in
I belonging to global k-width components.

Image I' is obtained from I by changing a 1-pixel x into
a 0-pixel if one of the following four conditions is satisfied:

(i) x is a noise pixel (i.e., B, contains no 1-width com-
ponent)
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(ii) x belongs to a local k-width component

(iii) B, contains two 1-width components

(iv) x is adjacent to a 1-pixel y and no 1-block contains
both x and y.

Section 6 describes how to test for these conditions efficiently.
Image I’ contains no noise pixel, no pixel belonging to a
local k-width component, no pixel belonging to two global
k-width components, and no pixel of a k-width component
adjacent to a pixel of another k-width component.

The following discussion (up to Lemma 4) shows that
there is a one-to-one correspondence between the 1-width
components of I’ and the global k-width components of I;
i.e., the removal of the 1-pixels from I does not eliminate a
global k-width component nor does it cause one global k-
width component to induce two 1-width components in I '
In order to make the necessary claims about image I', we
first define the notion of s-induced and a-induced regions in
a global k-width component.

Let C; be a global k-width component and x be one of its
1-pixels. Suppose that x belongs also to another k-width
component, say Cr. Cr can be a local or a global component.
Let Ry be the largest 1-connected region shared by C; and
Cr which includes 1-pixel x. Ry is a rectangular region whose
sides are of length at most kK — 1. (Note that every border
pixel of Ry is adjacent to 1-pixels in either C; or Cr.) We say
that Cy s-induces region R in C; (“s” indicates that Cr and
C; share pixels). In order to define a-induced regions, suppose
that pixel x is adjacent to a pixel y belonging to another k-
width component, say Cr. Then, let Ry be the largest 1-
connected region in C; containing x so that every pixel in
Ry is adjacent to a 1-pixel in Cr. Ry is a rectangle with width
1 and length at most k — 1. We say that Cr. a-induces region
Ry in C;(“a” indicates that Cr and C; have adjacent pixels).

The 1-pixels in Ry are O-pixels in image I' since they satisfy
either condition (ii) or (iii) for s-induced and condition (iv)
for a-induced regions. However, conditions (iii) and (iv)

G
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may remove additional pixels from image /. When B, con-
tains two 1-width components and x belongs to no local k-
width component, 1-pixel x may or may not belong to two
global k-width components. From x’s point of view, 1-pixel
x does belong to two global k-width components since there
exists no path of width k going through region Rr. If C;
= Cr, such a path exists by going “around” Rr. For the rest
of this section, when we say that Cr induces a region in C;
we mean that Cr and C; are two different k-width compo-
nents from x’s point of view.

We now state two properties that are used in the charac-
terization of the interaction between induced regions. A pixel
x belonging to k-width component C; is a corner pixel if x
is adjacent to exactly two pixels not in C;. Note that when
k> 1, no 1-pixel of C; can be adjacent to three pixels not in
C;. Every s- or a-induced region R contains exactly one
corner pixel of C;, and let ar be this corner pixel.

Assume that region Ry is s-induced by Cr in C;. Let p’
and p” be the corner pixels of Ry, each different from ar
and in the same column and row as ar, respectively. The
position of these pixels is shown in Fig. 3a.

PROPERTY 4. The pixel diagonally adjacent to p’ (resp.
p"), but not horizontally or vertically adjacent to a pixel in
Ry cannot belong to C; or Cy.

If either of these pixels belonged to one of the components,
Ry would not be the largest connected region. However, these
pixels do not need to be O-pixels. They can be noise pixels
or belong to another k-width component.

A similar property holds when region Ry is a-induced. We
give the statement for the case when Ry occupies a single
row (the property for a column is similar and omitted). Let
p' be the second pixel in R adjacent to only one pixel in Ry
(with ar being the first). See Fig. 3b for an illustration.

PROPERTY 5. The pixel horizontally adjacent to ar and
not in Ry cannot belong to C; or Cy. The pixel diagonally

FIG. 3. Induced regions. Circled positions cannot be in either k-width component.
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FIG. 4. Overlapping and adjacent regions with corner pixels not in the same row or column.

adjacent to p' and horizontally adjacent to a pixel in Cy, but
not vertically adjacent to a pixel in Ry, cannot belong to C;
or Cy.

Let Ry and R, be s-induced or a-induced rectangular re-
gions in C;. There are four possible relationships between
R; and R,. One rectangle can contain the other one. By
containment we mean that every 1-pixel of one rectangle is
also in the other one and the borders of the rectangles are
on different rows and columns. Obviously, no a-induced
rectangle can contain another rectangle and an a-induced
rectangle can only be contained in an s-induced rectangle.
When R and R, share pixels, but there is no containment,
we say that the two rectangles overlap. See Fig. 4a for an
example of overlapping regions. For the case when there is
no 1-pixel that is in both R and R,, we distinguish between
disjoint and adjacent rectangles. If no 1-pixel around region
Ry belongs to R,, the two rectangles are disjoint; otherwise
they are adjacent. See Figs. 4b and 5c¢ for examples of adjacent
rectangles.

Let R; be the smallest rectangular region enclosing R and
R,. R, is of size at most (2k — 2) X 2k — 2). Let ar (resp.
a,) be the corner pixel of C; that is in Ry (resp. R,). Pixels
ar and a, either are in the same row or column or are located
on diagonally opposite corners of R,. The next three lemmas
characterize which relationships between two rectangles are
not possible. We show that if C; is a global k-width com-
ponent, then Ry and R, cannot overlap. Ry and R, can be
adjacent only if at least one of them is a-induced and ar and
a, are in the same row or column.

LEMMA 1. Let Cr and C, be two k-width components
that induce regions Ry and R, in global k-width component
C;, respectively. If ar and a, are not in the same row or
column, then Ry and R, cannot be overlapping or adjacent.

Proof. Assume that R, and R, are overlapping or ad-
jacent with ar and «, on diagonally opposite corners of R;.

Then, because of Properties 4 and 5, there exist two pixels
g’ and g7 corresponding to pixels on the border around R;
such that neither pixel belongs to C;. See also Fig. 4. Fur-
thermore, the position of ¢t and g7 is such that one of them
is horizontally adjacent to a pixel of R; in col(ar) and the
other is vertically adjacent to a pixel of R; in row(ar). For
C, there exist two pixels g’y and g, with the corresponding
properties. Hence, every side of the border of R; contains a
pixel adjacent to a pixel that cannot belong to C;. Let the
clockwise order of these pixels be g, gt q'a, g's. There are
at most k — 2 columns (resp. rows ) between ¢t and g', (since
each side length of R, and Ry is of length at most k — 1).
The same statement holds for ¢t and ¢’4. This implies that
the rectangular region induced by these four pixels must
contain all the pixels in k-width component C;. Thus C;
cannot be a global k-width component and the lemma fol-
lows. B

LEMMA 2. Let Cr and C, be two k-width components
that induce regions Ry and R, in global k-width component
C,;, respectively. If ar and a, are in the same row or column,
then Ry and R, cannot be overlapping.

Proof. Observe that ar = a, is possible. However, it is
easy to see that in this case the pixels in C and C, belong
to the same k-width component.

Hence assume that ar and «, are not identical and are,
w.l.o.g., in the same row. Assume that R and R, are over-
lapping. Let Rr, be the largest connected region of intersec-
tion between Cr and C, that contains no pixels in R; and
contains a pixel adjacent to a pixel in R;; see Fig. 5a. Note
that Ry, cannot be empty, since each side of Ry (resp. Ra)
has length at most kK — 1. Assume w.l.0.g. that all the pixels
in Ry, lie below the row containing ar and a,. Let g be the

! For two sets S; and S,, S| — S, denotes the set containing the elements
in S|, but not in S,.
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FIG. 5. Overlapping and adjacent regions with corner pixels in the same row or column.

bottom leftmost pixel in Rp,. Then one of Cr and C,, say
C,, contains a pixel at position (row(q) + 1, col(q)). If such
a pixel did not exist, C;, Cr, and C, would belong to the
same k-width component. The rectangle induced by a4 and
g contains all 1-pixels and thus there exists a path of width
k from pixels in C; — R} to the pixels in Cr — R;. This
implies that C; and Cr belong to the same k-width component
and the lemma follows. B

The final lemma addresses the possibility of adjacency
when ar and a, are in the same row or column. An argument
similar to the one used in Lemma 2 shows that, if such an
adjacency occurred between two s-induced rectangles, then
C; and at least one of Cr and C, would belong to the same
k-width component. Figure 5b shows an example of such a
situation.

LEMMA 3. Let Cr be a k-width component that s-induces
region Ry and let C, be a k-width component that s-induces
region R, in global k-width component C;. If ar and o, are
in the same row or column, then Ry and R, cannot be ad-
Jjacent.

Proof. Similar to the proof of Lemma 2. =

Summarizing, we conclude that two rectangular regions
Ry and R, induced within the same global k-width com-
ponent C; cannot overlap. They can be adjacent only if both
corner pixels, ar and a,, are in the same row or column
and at least one of the regions is a-induced. Figure 5c shows
a possible example of two adjacent a-induced rectangles.

We can now prove the main lemma of this section: there
is a one-to-one correspondence between the 1-width com-
ponents of I’ and the global k-width components of I.

LEMMA 4. Let Cy, C,, ..., C,, be the global k-width
components of image I and let Cy, C5, ..., C] be the 1-
width components of image I'. Then, | = m and the compo-

nents can be ordered so that every 1-pixel in C} is also a 1-
pixelinC;, 1 <i<m

Proof. Let R;,, R;», ..., R;,, be the s- or a-induced
rectangles in the global k-width component C;. Assume that
rectangles that are contained in other rectangles have been
removed from this sequence. From the previous lemmas we
know that no two rectangles can overlap. If R; ;- is adjacent
to another rectangle R; ;», then one of them is an a-induced
rectangle and both corner pixels must be in the same row or
column. Furthermore, R; ;- can be adjacent to at most one
rectangle. This is shown by using an argument similar to
that used in the proof of Lemma 1. More precisely, if R, ;
were adjacent to two rectangles, there would exist four pixels
not in C; (see Properties 4 and 5) that would enclose C; and
thus violate the assumption that C; is a global k-width com-
ponent.

Hence, we remove from C; either a rectangular region
R, ;- where all the pixels around R, and in C; do not get
deleted or a region formed by two adjacent rectangles R; ;-
and R; ;. The pixels around the region formed by R; ; and
R, j that are in C; are not deleted. Clearly, if regions of this
structure are removed from C;, a nonempty set of pixels
remains and the pixels that remain (and which form C;) are
1-width-connected. Obviously, no two different sets, C; and
C}, of remaining pixels are 1-width-connected. &

After I' has been determined, we use an existing 1-width-
component labeling algorithm to determine the 1-width
components of I'. As a result, for each 1-width component
C’in I, every pixel in C; is labeled with the same index of
one arbitrary pixel x of C;. Note that no processor x that
gave its index to a local k-width component can give its
index to a global k-width component (since x is not in I).
Finally, for each component C’ in I its label has to be prop-
agated to those 1-pixels of the corresponding k-width com-
ponent C; in [ that are not in C}. Section 6 describes how
this step is performed efficiently.
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5. CORRECTNESS OF THE ALGORITHM

We now show that the algorithm described in the previous
two sections correctly determines the k-width components
of I. Let a and b be two 1-pixels of I that were assigned, by
our algorithm, to the same k-width component C. If Cis a
local k-width component detected and recorded by processor
x, then a path of width k between a and b can be obtained
from B, as follows. Let a and 3 be two 1-pixels in B, such
that a is in the 1-block corresponding to « and b is in the 1-
block corresponding to 8. The path from « to 8 in B, cor-
responds to a sequence of 1-blocks such that two consecutive
1-blocks share a subblock of size k X (k — 1). This sequence
of 1-blocks represents a path of width k from a to b.

Assume now that a and b are assigned to the same global
k-width component C. Let C’ be the 1-width component
corresponding to C in image I'. We obtain a sequence of 1-
blocks corresponding to a path of width k from a path in C’
and by using properties of 1-pixels in image I'. Assume first
that both a and b are also 1-pixels in C’ (i.e., conditions (ii)-
(iv) of Section 4 do not apply to them). Let a = vo, vy, . . .,
V1, Um = b be a shortest path from a to b in C'. We now
generate a sequence of 1-blocks that implies a path of width
k from a to b.

Assume that we have generated 1-blocks Wy, ..., W,
which represent a path of width k from v, to v;_; that also
contains v, . . ., U;_,. If v;is a pixel in W,_,, then we continue
with v;,, without adding another 1-block. Hence assume that
v;isnot in 1-block W_,. W.L.o.g let v;_; and v; be horizontally
adjacent and v;_, be to the left of v;. Let (r, ¢) be the position
of the top-left pixel of 1-block W_;. Recall that there exists
a 1-block, W', containing v;_, and v; (condition (iv) in Sec-
tion 4). If there exists a 1-block containing v;_, and v; whose
top-left pixel is in row r, then W, is the 1-block that has its
top-left pixel at position (r, ¢ + 1), and we continue with
v;+1. If such a 1-block does not exist, there exists at least one
0-pixel in column ¢ + k that is adjacent to the border of
W;_,. W.Lo.g assume that there exists such a 0-pixel above
the row containing v;. (If there were O-pixels above and be-
low, then v; could not belong to a 1-block.) Let po be this 0-
pixel and let 7 + & be its row, 0 < 6 < k — 2 (if there exists
more than one, choose the one closest to v;). The 1-pixel p,
of Wi_,inrow r + 6 + 1 and column ¢ + k — 1 must be the
top-right corner of a 1-block W”. Otherwise, the 1-blocks
W' and W;_, correspond to 1-pixels in the block matrix of
v,_, that are in different 1-width components (in the block
matrix ). That is, v;_; would not be a 1-pixel of I' due to
condition (iii) of Section 4. Hence, we set W; = W' and
W1 = W” and continue with v;,,.

If a and/ or b are 0-pixels in image I', we obtain a path of
width k as follows. If a and b belong to the same rectangular
region R removed from C, such a path exists in the 1-block
containing the corner pixel of C in R. If a and b belong to
different rectangular regions, let a’ (resp. b') be the closest

pixel in C’ in the same row or column as a (resp. b). Since
any region deleted from C is adjacent to at most one other
region, such pixels a’ and b’ always exist. A path of width k
between a’ and b’ can easily be extended or modified to a
path between a and b.

To complete the proof of correctness, assume that a and
b are not assigned to the same k-width component. They
cannot belong to the same local k-width component, since
the processor detecting and recording this local k-width
component would detect any path of width k between them.
They also cannot belong to the same global k-width com-
ponent since any path of width k between them would have
resulted in a 1-width component participating in the labeling
process of the respective global k-width components.

Hence, two 1-pixels a and b are assigned to the same k-
width component if and only if there exists a path of width
k between them.

6. PARALLEL ALGORITHM FOR MESHES AND
HYPERCUBES

We now describe how to determine the k-width compo-
nents of image I on a mesh and a hypercube architecture,
respectively. Let us recall the steps of the strategy presented
in the previous sections.

(1) For every pixel x determine the block matrix B, and
its 1-width components.

(2) Determine the local k-width components.

(3) Determine the global k-width components.

The remainder of this section is organized as follows. We
first describe a technique referred to as k-search, which, in
Section 6.2, is used for determining and recording the in-
formation contained in the block matrix. In Section 6.3 and
6.5 we show how to determine and record the local and
global k-width components.

6.1. k-Search on Meshes and Hypercubes

Consider a row of pixels in image I. Let x(1), ..., x(n)
be these pixels and assume that each x(j) has a binary value
t(j) associated with it. The k-search procedure consists of
determining for each row of pixels and for each pixel x(j)
the value

0<r<k}

) min{r|t(j+r)=1,
4(J) ={

otherwise

On a mesh, the k-search procedure can easily be executed
in O(k) time.
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We now describe an O(log k) time implementation of k-
search on the hypercube. Recall, from Section 2, that for
row i, the pixel x(j) is stored in processor gray(i,j) = gray(i)
® gray(j) (where @ denotes the concatenation of binary
numbers). Let k' be the smallest power of 2 larger than or
equal to k. We split each row of pixels x(1), . .., x(n) into
consecutive regions of length k' which are referred to as k-
regions. It is easy to see from the definition of gray codes
that the processors storing the pixels of one k’-region form
a subhypercube of size k'. Hence, inverse gray code conver-
sion (cf. [6]) can be applied to each k’-region independently,
in parallel. The conversion permutes the pixels in time
O(log k) such that the concentrate and distribute opera-
tions of [12] can be applied. We can thus obtain, in time
“O(log k), for each pixel the index of the next pixel (within
its k>-region) with #(+) = 1 and the index of the leftmost
pixel (within the k’-region) with 7(-) = 1. We then apply
gray code conversion to each k’-region to obtain the original
mapping of pixels to processors. Finally, the leftmost pro-
cessor within each region communicates the index of the
leftmost pixel (within the k’-region) with ¢(-) = 1 to its im-
mediate left neighbor, and each processor receiving such a
value broadcasts it to all others within its k’-region. The final
result is that (after O(log k) steps) each pixel has the index
of the next pixel (within its k’-region) with ¢(-) = 1 and the
index of the leftmost pixel, within the next k’-region, with
t(+) = 1. This allows each pixel x(j) to compute its
value #,(j).

6.2. Recording the Information of the Block Matrices

In our algorithms processor x does not have block matrix
B, available, but rather a k-vertex graph, called the block
graph. The block graph G, contains the same information
as the block matrix and it is stored in a distributed fashion
so that the algorithm uses only O( 1) registers per processor.

Recall that the 1-pixels in a row (resp. column) of the
block matrix form a contiguous sequence (Property 1).
Hence, the ith column of B, can be represented by the triple
(i, £(i), I.(i)), where f,(i) is the first row in column i con-
taining a 1-pixel and /(i) is the last row containing a 1-pixel,
1 <i<k.If column i contains no 1-pixel, we set f.(i) = (i)
= 0. The block graph G, = (V,, E,) for a pixel x consists of
k vertices and at most k — 1 edges with

Vo= {0, £3), LGN <i<k}
and
E. = {((i, fu(D), (D)), G + 1, fi(i + 1), [ (i + 1)))]

zwithfi(i)<sz<[()andfi(i+1)<z<[L(i+1)}.

HAMBRUSCH
Oo—>0 ®) o O
(1,45) (2,4,5) (3,3,3) (4,0,0) (5,1,2)

FIG. 6. Block graph G, for the block matrix in Fig. 2.

Figure 6 shows the block graph corresponding to the block
matrix shown in Fig. 2. In order to store all block graphs for
all pixels, it suffices to have each pixel x store only the first
node (1, (1), I,(1)) of its block graph G,. The remaining
k — 1 nodes (2, £(2), L(2)), ..., (k, f(k), [(k)) are then
stored in the k — 1 neighbors of x, immediate to its right.
To put it another way, every processor x stores only the
entries f,(1) and /.(1). The ith vertex of G, corresponds to
the entries stored in processor y, where y is i — 1 columns
to the right of processor x (and in the same row).

We now describe how to compute the f- and /-entries in
time O(k) and O(log k) on a mesh and hypercube, respec-
tively. The first step is to have every 1-pixel x compute a
boolean quantity br, which is set to 1 iff x is the bottom-
right corner of a 1-block (i.e., a k X k subimage of I consisting
only of 1-pixels). Assume that processor x is in row r and
column ¢ in image /. In order to compute the br, values,
every processor x computes a boolean entry r, with r, = 1
iff each one of the processors at position (7, ¢), (r, ¢ — 1),
..., (r,c—k+ 1) contains a 1-pixel (if one of these pro-
cessors contains a 0-pixel, 7, = 0). After the r,’s have been
determined, processor x sets br, = 1 iff each processor y at
position (r, ¢), (r — 1,¢), ..., (r—k+ 1,c)hasr, = L.
Clearly, br, = 1 if and only if x is the bottom-right corner
of a 1-block. Note that the above computation reduces to
two applications of the k-search procedure presented in Sec-
tion 6.1.

Next, the br, entries are used to determine f,(1) and /,(1).
For each pixel x this problem reduces to searching the k
pixels below x in the same column and determining the clos-
est as well as the furthest of these with a br-value equal to
1. This computation can be performed by invoking two calls
to the k-search procedure.

Summarizing, we obtain that the block graph G, can
be created on a mesh and hypercube in time O(k) and
O(log k), respectively, with O(1) memory space per pro-
cessor. It is easy to see that, using k-search, each pixel x can
determine the following properties within the same time
bounds:

« whether x is a noise pixel,

« whether B, contains more than one 1-width component;

« whether the leftmost column of B, contains a 1-pixel;
let C be the 1-width component of B, containing such a 1-
pixel; and

« whether 1-width component C contains a 1-pixel be-
longing to row 1 of B,.
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6.3. Determining the Local k-Width Components

We next discuss how to detect the local k-width compo-
nents. In order for a 1-pixel x, located in row r and column
¢, to detect and record a local k-width component, two prop-
erties need to be satisfied. First, block matrix B, needs to
contain a 1-width component that has a 1-pixel in column
1 and in row 1 of B,.. How to determine this property within
the claimed time bounds follows immediately from the dis-
cussion of the preceding section. Let C be this component.
Second, component C must not be k-width-connected to
any pixel outside View,. Component C is not k-width-con-
nected to any pixel adjacent to the right border of View, if
the following holds: let y and y’ be any two pixels in row r
and column ¢ + k — 1 and column ¢ + k, respectively. Then,
if pixel y belongs to component C, the intervals ( £(1),1,(1))
and (f,-(1), /,/(1)) have an empty intersection. The condi-
tions for not being k-width-connected to a pixel to the left
of the border are similar. The conditions for a component
C not being k-width-connected to a pixel adjacent to the
upper border of View, are as follows. Let y be a pixel in row
rand column ¢ + j, 0 <j < k — 1, belonging to component
C and with f,(1) = 1. Let y’ be the pixel in row r — 1 and
column c +j. Then, f,-(1) # 1. The conditions for not being
k-width-connected to a pixel adjacent to the lower border of
View, are similar. The above conditions can be checked in
O(k) and O(log k) time, on the mesh and hypercube, re-
spectively, by applying the k-search procedure and, for the
hypercube, the concentrate and distribute operations de-
scribed in [12].

Hence, we can determine which pixels are responsible
for detecting a local k-width component in O(k) and
O(log k) time on a mesh and hypercube, respectively. As
already stated, we do not explicitly label the local components
(since doing so would require O (k) registers per processor).
If processor x detected a local k-width component, it gets
marked and a convenient description of the shape of the
component is obtained from the £ and /-entries. This de-
scription uses O(k) registers and is stored in processor x,
the k — 1 processors in row r immediately to the right of x,
and the k — 1 processors in row r immediately to the left of
x. Let x = Xo, X1, . . . , Xxk_1 be the k — 1 processors to the
right and x__y, . . . , X_; be the k — 1 processors to the left
of x. For every processor x; we determine two entries, ¢; and
b;, which represent the vertical distances from row r to the
top and bottom boundary pixel of component C, respec-
tively. Any two processors in the same row such that each
one of the two detected a local component are at least dis-
tance k apart. Thus, a processor can contain at most two
pairs of ¢- and b-entries and our shape description of the
local k-width components requires only O(1) registers per
processor. We show how to compute, for all local compo-
nents, the t-values; the computation of the b-values follows
from symmetry.

The £ and [-values at each processor X;, i = 0, represent
a rectangle of height /; — f; + k and width k (except for those
processors with f; = /; = 0 which represent no rectangle).
The shape of a local k-width component is the union of these
rectangles. For the mesh, the f-values can be computed in
time O(k) simply by shifting the - and /-values k positions
to the left. In the remainder of this section we describe an
O(log k) time solution for the hypercube. We start by de-
fining the partial prefix operation which, together with simple
routing operations, is the main ingredient for determining
the t-values.

Assume that every processor p; in a k’-dimensional hy-
percube contains a value a; and two processors, ps; and p;
with s < ¢, are marked. In the left partial prefix every pro-
cessor p; with s < j < ¢ determines max {dy, dsr15 - - -5 &} -
In the right partial prefix every processor p; determines the
entry max{a;, @1, ---> a,}. Straightforward changes to
known parallel prefix algorithms allow us to determine the
left and right partial prefix in O(log k') time on a hypercube
of dimension k.

For every processor X;, i = 0, with f; > 0, let ti=k—f
and 0 otherwise. For —(k — 1) < j < 0, we have
= max{tg, th, ..., tkej1}- FOr 1 <j< k — 1, we have ¢
= max{}, i1, .., k-1 }.In order to compute the t-values
for —(k — 1) <j < 0, we first compute a left partial prefix
on the #’-values with processors xo and x,—; being marked
and send the entry computed by processor x; to processor
Xi—k+1. We then compute the i-values for1 <j<k-— 1. This
is done simply by performing a right partial prefix on the t-
values with processors xo and X, being marked.

We conclude the computation of the shape description by
sketching how to perform the partial prefix computations in
O(log k) time. Let k' denote, again, the smallest power of 2
larger than or equal to k, and view each row of processors
as being split into a sequence of blocks of length k'. A region
on which we need to perform a partial prefix operation can
lie entirely within a block or it can be split over two blocks.
Three partial prefix operations on subhypercubes of dimen-
sion k' can easily produce the necessary values. In the first
we perform a partial prefix on all regions that lie entirely
within a block. The next two handle the regions that are
split: the second parallel prefix works with the beginning
segments of the region and the third with the ending segments
of the regions. It is straightforward to combine the results of
the second and third partial prefix computations. Hence, the
description of the shape in terms of the - and b-entries can
be generated in O(log k) time.

6.4. Determining the Auxiliary Image I'

As stated earlier, the global k-width components are de-
termined by computing the 1-width components of an aux-
iliary image I" obtained from I by changing a 1-pixel x into
a 0-pixel if one of four conditions is satisfied. In this sec-




22 DEHNE AND HAMBRUSCH

tion, we describe how to obtain image I’ in time O(k) and
O(log k) on the mesh and hypercube, respectively.

First, we need to change all noise pixels to 0-pixels. Fol-
lowing Section 6.2, this is immediate.

Second, we require that all pixels belonging to any local
components be marked (and subsequently changed to O-
pixels). If processor x detected a local k-width component,
then processor x, the kK — 1 processors to the right of x, and
k — 1 processors to the left of x each contain a #-value and
a b-value describing the shape of this component (see Section
6.3). The marking can be done by having each processor x;
that stores values ¢; and b; broadcast a marker to the ¢; and
b; pixels above and below x; (and in the same column),
respectively. Each such broadcast is restricted to a neigh-
borhood of k pixels and can therefore be executed on a mesh
in time O(k). On a hypercube, each such broadcast can be
executed in time O(log k) using techniques already described.

Next, we need to delete all pixels whose block matrix con-
tains two or more 1-width components. Following Section
6.2, this is immediate.

Finally, we need to determine those pixels x that are ad-
jacent to a 1-pixel y but with no 1-block containing both x
and y. We now describe how to use the block graphs to
determine whether two adjacent 1-pixels x and y are not
contained in a common 1-block. Assume that x is to the left
of y. When no 1-block contains both x and y, G, consists
of one connected component formed by vertex (1, fi(1),
I.(1)) and G, consists of one connected component formed
by vertex (k, f,(k), ,(k)) (all other values in G, and G, are
zeroes). Assume that x is above y. Pixels x and y are in no
common 1-block if G, and G, contain one connected com-
ponent each, the vertices of G, have the values f,.(j) = I.(j)
= 1, and the vertices of G, have the values f,(j) = ,,(j) = k.
If x is to the right of or below y, similar arguments hold. All
of these tests can be implemented by a k-search procedure.

Summarizing, we obtain that the auxiliary image I’ can
be computed in O(k) and O(log k) time on a mesh and
hypercube, respectively.

6.5. Determining the Global k-Width Components

Once the auxiliary image I’ has been determined, an al-
gorithm for determining the 1-width components of I’ is
applied [1, 5, 10, 2, 7]. This requires time O(n) and
O(log?n) on the mesh and hypercube, respectively. As shown
in Section 4, the 1-width components of I’ correspond exactly
to the global k-width components of /. The final step consists
of propagating the labels to the 1-pixels of global k-width
components which are not in I'. Note that each such pixel
belongs to at most two global k-width components (see Sec-
tion 2) while the pixels in I’ belong to exactly one global .-
width component. Furthermore, each global k-width com-
ponent is the union of the 1-blocks indicated in the block

matrices of the pixels belonging to the respective 1-width
component in I'. The propagation of the labels can therefore
be accomplished in essentially the same way as the com-
putation of the shape of the local components and the mark-
ing of the pixels that belong to any local component, de-
scribed in the previous two sections (requiring time O(k)
and O(log k) time on a mesh and hypercube, respectively).

7. CONCLUSION

In this paper we have presented O(n) and O(log?n) time
parallel algorithms for computing the local and global k-
width components of an image I of size n X n on a mesh
and hypercube, respectively, requiring n X n processors and
O(1) memory space per processor. The hypercube algorithm
immediately implies a shuffle-exchange network algorithm
with the same time complexity.

The presented mesh algorithm is asymptotically optimal.
It is worthwhile to note that, besides the time for determining
the 1-width components of the auxiliary image I’, our meth-
ods requires only time O(k) and O(log k) time on a mesh
and hypercube, respectively. Hence, our algorithms can also
be viewed as a O(k) and O(log k) time, respectively, reduc-
tion of k-width connectivity to 1-width connectivity. In that
sense, our reduction algorithm is asymptotically optimal for
both the mesh and the hypercube architecture.
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