Computational Geometry: Theory and Applications 2 (1992) 141-167 141
Elsevier

COMGEO 125

Parallel fractional cascading on
hypercube multiprocessors

Frank Dehne*

Center for Parallel and Distributed Computing, School of Computer Science, Carleton
University, Ottawa, Canada K1S 5B6

Afonso Ferreira**

CNRS-Laboratoire de 'Informatique, du Parallelisme, Ecole Normale Superieure de Lyon,
69364, Lyon cedex 07, France

Andrew Rau-Chaplin***

Center for Parallel and Distributed Computing, School of Computer Science, Carleton
University, Ottawa, Canada K1S 5B6

Communicated by Bernard Chazelle
Submitted 11 February 1991
Accepted 19 February 1992

Abstract

Dehne, F., A. Ferreira and A. Rau-Chaplin, Parallel fractional cascading on hypercube
multiprocessors, Computational Geometry: Theory and Applications 2 (1992) 141-167.

In this paper we present a new data-structuring technique for parallel computational geometry
on a hypercube multiprocessor. This technique, called hypercube cascading, is an efficient
parallel implementation of fractional cascading for the hypercube multiprocessor. That is, it
allows complex data structures with catalogs to be traversed efficiently in parallel by a large
number of simultaneous queries. We show that for monotone graphs with n nodes, m multiple
look-up queries with path length at most p (including catalog look-ups) can be executed
independently, in parallel, in time O(p log N + t,(N)) on a hypercube multiprocessor of size
N =max{n, m}. The term £,(N) denotes the time for sorting N elements on a hypercube of size
N; currently £,(N) = O(log N log log N). Note that, the best known sequential time complexity
for one multiple look-up query, as presented by Chazelle and Guibas, is O(p + log N). Our
solution allows an arbitrary number of search queries to access the same node and its catalog at

* Research partially supported by the Natural Sciences and Engineering Research Council of
Canada.

** Currently on leave from the University of Sao Paulo (Brazil), project BID/USP. Most of this
work was done while the second author was visiting the Center for Parallel and Distributed
Computing of the School of Computer Science at Carleton University. Support from the Centre
Jacques Cartier is acknowledged.

*** Research partially supported by the Natural Sciences and Engineering Research Council of
Canada. -

0925-7721/92/$05.00 © 1992 — Elsevier Science Publishers B.V. All rights reserved

142 F. Dehne et al.

the same time. We present two parallel computational geometry applications of this technique:
multiple stabbing of a simple polygonal path and multiple slanted range search.

1. Introduction

Fractional cascading is a powerful general technique for deriving efficient
sequential computational geometry algorithms [7, 8]. In the sequential domain,
researchers have applied this data structuring technique to derive efficient
solutions to a wide range of geometric problems. In this paper, we demonstrate
how the fractional cascading technique can be supported on hypercube multi-
processors. Our method, which we will refer to as hypercube cascading, provides
a new tool for parallel computational geometry on hypercubes. For many
sequential algorithms based on fractional cascading, hypercube cascading prov-
ides a standardized method for obtaining an efficient parallel hypercube
algorithm.

When designing parallel computational geometry algorithms, many researchers
prefer the PRAM model over processor network models. A primary reason for
this is that the PRAM memory can be used to store and access data structures in
essentially the same way as on a standard sequential machine. Once the
processors have collectively built a data structure, each of them can individually
execute a query on this structure (as if it was a single processor architecture)
without interfering with the other query processes. This method has been
successfully used in applying fractional cascading for the design of geometry
algorithms on the PRAM (see, e.g., [1-3, 14]).

For processor networks, the parallel execution of independent queries on one
joint data structure is not as straight forward. Computational geometry algo-
rithms designed for processor networks have therefore tended to be not as
elegant as their PRAM counterparts. In general, network algorithms use only
very simple data structures, if any, and are mainly concerned with solving routing
and collision avoidance problems.! This paper will demonstrate that advanced
data structures based on fractional cascading [7, 8], which are commonly used in
sequential computational geometry, can also be efficiently utilized on hypercube
multiprocessors.

Consider a catalog graph of size n and bounded (fixed) degree, and a set of m
multiple look-up queries along paths of length at most p [7]; see Sections 1.1 and
2 for definitions. We show that, if the graph is monotone (to be defined in Section
2), such m multiple look-up queries (including catalog look-ups) can be executed
independently, in parallel, in time O(p log N +(N)) on a hypercube multi-
processor of size N =max{n, m}. The term ¢,(N) denotes the time for sorting N
elements on a hypercube of size N; currently ¢,(N) = O(log N log log N) [10, 15].

' A more elegant approach to simulate PRAM algorithm on processor networks; the obtained
results are however in most cases less efficient than algorithms designed directly for specific networks.

Parallel fractional cascading 143

Note that, the best known sequential time complexity for one multiple look-up
query, as presented by Chazelle and Guibas [7], is O(p + log N).? Our solution
allows an arbitrary number of search queries to access the same node and its
catalog at the same time.> The requirement that the graph needs to be monotone
is not overly restrictive; such graphs include, e.g., all k-nary trees (for fixed k).
The parallel hypercube implementation of fractional cascading presented in this
paper is completely different from the sequential algorithm presented in [7].

Our earlier work on implementing data structures on a hypercube was
presented in [13]. The methods presented there supported the routing of n
queries through a layered graph without catalogs. The algorithms described in
[13] could not support fractional cascading, and were more restrictive in terms of
the class of graphs considered and the manner in which queries could move. The
hypercube cascading technique described in this paper solves these problems by
extending our previous results as follows:

* The class of graphs considered is extended from ordered h-level-graphs (see
[13]) to the more general class of monotone graphs (to be defined in Section 2).

* Hypercube cascading supports the addition of catalogs (of more than
constant size) to each node of the graph. It allows each query to execute a catalog
lookup at each visited node without increasing the overall time complexity
(compared to the method in [13] without catalog look-ups).

* It allows more general movement of queries in the graph than the method in
[13]. Queries are now allowed to move along edges in either direction (rather
than only the direction of the edge, as in [13].

To demonstrate the use of our new technique, we present two new parallel
computational geometry algorithms for the hypercube. Both are derived by
applying hypercube cascading to Chazelle and Guibas’ sequential algorithms for
those problems. We present a hypercube solution for the multiple stabbing
problem, i.e., the problem of computing all intersections of m lines with a simple
polygonal path of length n. Our algorithm, described in Section 4, has time
complexity

O(k log%,log N+ ts(n))

on a hypercube multiprocessor of size N = max{n, m}, where k is the maximum
number of intersections per line. Furthermore, we study the multiple slanted
range search problem which consists of answering, in parallel, m slanted range
search queries on one set S of n points [8]. We show that, with a preprocessing of
O(log’ N), m slanted range search queries (with a maximum of k results per
query) can be answered on a hypercube of size N =max{n, m} in time
O(k log N + t,(N)).

% This implies directly a O(p + log N) time PRAM algorithm for m multiple look-up queries.
3 This cannot be achieved by, e.g., embedding graphs into hypercubes.

144 F. Dehne et al.
1.1. Problem overview

Fractional cascading, as described by Chazelle and Guibas [7], is a general data
structuring technique in which catalog graphs are used to represent data
structures. A catalog graph, G, is a directed acyclic graph where each node in the
graph has associated with it a catalog of ordered items from some ordered domain
U. Fig. 1 shows an example of a data structure represented as a catalog graph.

The iterative search problem consists of routing an iterative search query
through G, where at each node v visited, the decision as to which node to visit
next depends on a query look-up in v’s catalog. An obvious sequential algorithm
to perform this type of search is to route the query through the catalog graph
while performing binary search at each step along the query’s path. This naive
approach has a O(p log N) time complexity, where p is the length of the path.
Chazelle and Guibas’ main result in [7] is that, in the sequential setting, this can
be improved to time O(p + log N).

In the parallel setting, the analogous problem is considered in terms of one
catalog graph (of size n) and a set of m search queries, each with a path length of,
at most, p. This problem, referred to as the multi iterative search problem, can be
solved on the PRAM with N =max{n, m} processors as follows. First, all
processors work together in order to build the catalog graph. Then, each
processor independently executes the sequential algorithm of fractional cascading
for a single query. The PRAM’s concurrent read capability permits one shared
data structure to be traversed concurrently by all processors without interference.
Such an approach provides O(log n) time parallel solutions for several computa-
tional geometry problems [1, 14].

In this paper, we study the multi iterative search problem for the hypercube
multiprocessor. For this model, the parallel execution of independent queries on
one joint data structure is not as straight forward. There are two obvious
problems: instead of having one large shared memory that resembles memory in
the sequential model, the hypercube’s memory is distributed over the network,
and the hypercube does not provide a concurrent read capability. Our main result
is that for data structures which are monotone catalog graphs (to be defined in

&

Fig. 1. An example catalog graph.

Parallel fractional cascading 145

Section 2) of bounded (fixed) degree, m multi iterative search queries (including
catalog lookups) can be executed independently, in parallel, in time O(p log N +
t,(N)) on a hypercube multiprocesssor of size N = max{n, m}. We will refer to
this technique as hypercube cascading. It is important to note that our solution
allows an arbitrary number of search queries to access the same node and its
catalog at the same time.

Compared to the sequential methods presented in [7], we need to impose
restrictions on the type of catalog graphs (monotonicity) as well as the type of
search queries. We demonstrate, however, that, despite these restrictions, our
method does provide hypercube implementations of many data structures (see
Sections 2, 4, and 5).

The remainder of this paper is organized as follows. In Section 2 the original
fractional cascading technique from Chazelle and Guibas is briefly reviewed.
Section 3 is devoted to the introduction and analysis of the hypercube cascading
technique. Applications of this new technique to computational geometry are
shown in Sections 4 and 5. Section 6 contains concluding remarks.

2. Definitions

Consider a directed, connected, and planar graph G = (V, E). The graph is
also assumed to have bounded (fixed) degree; that is, there exists constants p,,
and p;, such that, for every vertex v € V, the out-degree and in-degree of v are at
most [, and p;,, respectively. As in [7], we associate with each vertex v of G a
catalog C, consisting of an ordered collection of records from a totally ordered
domain U. The graph G together with its catalogs is referred to as a catalog graph
of size N, where N is the number of nodes plus the sum of the sizes of all
catalogs.

A path t in G (of length p) is a sequence of vertices vy, vy, . . . , U,_; such that
for each 0<i <p, either (v;, v;,,) € E [forward edge] or (v, 4, v;) € E [backward
edge]. A multiple look-up query is a pair (q, 7) where q is a value of U and is a
path in G. For each catalog C we denote by o(q, C) the successor of q in C, that
is the first record of C whose value is greater than or equal to g. The iterative
search problem consists of executing a multiple look-up query (g,) by following
the path & in G and determining for every vertex v on the path the successor of g
in C,. The path & is assumed to be specified on-line, that is the successor v;,; of
the vertex v; in & is only known after the query has reached v;, and determined
a(q, C,).

It is shown in [7] that in O(N) time and space it is possible to construct, for the
standard sequential machine model, a data structure that solves the iterative
search problem for a multiple look-up query with path length p in time
O(p +1ogN.)

146 F. Dehne et al.

[15) (1)[5 13)

@[259] é(znu]

Key:

—> AnEdge
[4 6 9] Catalog
[] Empty Catalog

Fig. 2. An example of a monotone catalog graph.

We study how to obtain a parallel implementation of fractional cascading on a
hypercube multiprocessor. Compared to the sequential methods presented in [7],
we need to impose a restriction on the type of catalog graphs. Consider a catalog
graph G = (V, E) of size N with n vertices. G is called a monotone catalog graph
if there exists a one-to-one index function Index: V=>{1,...,n} with the
following property: if (v, v') or (w, w') are two edges of G with Index(v) <
Index(w) then Index(v’) <Index(w’). Fig. 2 shows an example of a monotone
catalog graph of size 16.

Montone catalog graphs are not as general as the class of planar graphs used by
Chazelle and Guibas [7, 8], but our experience suggests that most data structures
can be modeled by monotone graphs. The only non monotone data structure we
have found to date is Chazelle’s hive graph [9]. Note that the class of monotone
graphs includes all k-nary trees (k = O(1)). It is also less restrictive than the class
of ordered h-level graphs considered in [13]. Fig. 3 demonstrates the relationship
between these classes of graphs.

_plan

TTEemT T
1 ordered h-level

Fig. 3. Monotone graphs in relation to several other graph classes.

Parallel fractional cascading 147

On the other hand, as we will see in the next section, the restriction of
fractional cascading to monotone graphs allows for more efficient parallel
hypercube implementations based on faster ‘monotone’ routing [16] rather than
general routing.

3. Hypercube cascading

We show how, given a monotone catalog graph of size n and a set
0={q:, ..., qn) of m multiple look-up queries along paths of length at most p,
these m multiple lock-up queries can be executed independently, in parallel, in
time O(p log N +t,(N)) on a hypercube multiprocessor of size N = max{n, m}*.
We first describe the assumed initial configuration of the hypercube, and then
present details of the different phases of the algorithm.

3.1. Initial configruation

The graph G is assumed to be stored in the hypercube such that each vertex v
with Index(v) =i is stored in register v(i) of processor PE(i). For every vertex v,
let pred(v) and succ(v) be the sets of possible predecessors and successors in G:
i.e., the sets of at most u;, and ,,, vertices w such that (w, v) € E and (v, w) € E,
respectively. We assume that register v(i) contains fields wv.index(i),
v. successory(i), . . ., v. successor, (i), and wv.predecessor,(i),..., v. pre-
decessor,, (i), storing Index(v), the indices of the vertices in succ(v), and the
indices of the vertices in pred(v), respectively. Every register v(i) also has a field
v. EndCat(i) storing the address (processor number) of the last record of the
associated catalog.

We assume that each PE(i) also has a register c(i) to store a catalog record.
Each record c(i) contains a field c. index(i) storing the index of the associated
vertex of G and a field c. key(i). The catalogs are stored in sorted order with
respect to the index of the associated vertices, and each catalog is internally
sorted with respect to the order on U (using c . key(i)).

For a given set Q ={(q, 1), . . ., (g, T»)} of m multiple look-up queries,
every processor PE(i) stores in its register (i) one arbitrary query value g;. The
search paths m; (1 <j <m) are determined on-line by the following two functions:

o start: U>{1,...,n,}

c g VXUXUD{—tin,...,—1,1,. .., fhou}-

For each g;, start(q;) is the index of the first vertex v, in its search path ;.
Assume that the xth vertex v, of &; is stored in register v'(i) of processor PE(i),
and that the successor o(g;, C,,) of g; in C, has been determined; let y = g(v'(i),
gj» 0(g;, C,)). If y <O then v. predecessor_,(i) is the index of the (x + 1)st
vertex v, ., of ;; otherwise, v. successor, (i) is the index of the (x + 1)st vertex. It

* We assume, w.l.0.g., that N = 27; otherwise we at most double the data set to the next power of 2.

148 F. Dehne et al.

v.Index(i) \
v.data(i)

v.successori (i)
v.successor2(i)

V.SUCCESSOTpout(i) > v(i): The original set of vertices.
v.predecessori (i)
v.predecessor2(i)

v.predecessorpuin(i)

v.endCat(i) /
A

v'(i) copy of a complete vertex record

c.key(j)
c.index(i) c(i)
c.data(i)

c'(i) , c”(i) Copies of complete catalog element records.

afi), g'(), a*(i) A query and some auxiliary copies.

N(i), N'(i), N"(i) The index of the next vertex in path(q(i)), and aux. copies.
R(i) The successor rank of the next vertex in path(q(i)).

LS(i)

Shift(!)

33)5'(') Auxiliary registers.
Addr(i)

r(i), r(

Fig. 4. The registers required at each processor PE(i).

is required that both functions, start and g, can be calculated in by one processor
in time O(log N). Note that, in most cases, as for our example applications, O(1)
time suffices.

Fig. 4 shows the set of registers necessary at every processor PE(i). In addition
to the registers mentioned above, every processor PE(i) also has a register v'(i)
to store another vertex of G as well as other auxiliary registers R(i), N(i), q'(i),
q"(i), c'(i), N'(i), N"(i), LS(i), Shift(i) and Dest(i).

3.2. Algorithm overview ’

The global structure of the hypercube cascading algorithm is described in Fig.
5. The iterative search processes for all m queries ¢, . . ., g,, are executed in p
phases; each phase moves all queries one step along their search paths.

The key idea is that, in Phase x (1<x <p), instead of routing the queries to
the respective nodes (possibly resulting in collisions), these nodes are duplicated
and routed to the respective queries. In order to obtain the desired time

N

Hypercube Cascading:
(1) Phase 1: Match every query with the 1% node in its search path and perform the

respective catalog lookup.
(2 Forx:=2topdo
A3 Phase x: Match every query with the x* node in its search path and perform

the respective catalog lookup.

Fig. 5. Global structure of the hypercube cascading algorithm.

Parallel fractional cascading 149

q@) qs | q7 | q1 | 94 | q10]915| 92 }q11| g6 | q13| 90 |912]| 98 |q15| 93 | 99
N@) ojoj1}j1|1}11]1313]5|5]7|7]|8]|8|11}11
v'(i) Vo |volvi|vi|vi|vi|va|vs|vs]|vs|vz|Vv7|Vvs|vs|vii|vis

c” key(i) 15|15 5| 5(13}-1|-1]-1|11|(14}|-1|-1| 8|-1]14]14

Fig. 6. A typical situation at the end of a Phase.

complexity, the algorithm first permutes the queries (in registers g(i)) such that
they are sorted with respect to the index of the xth node in their search path. It
then creates, in registers v'(i), copies of the respective nodes. The algorithm
ensures that each processor PE(i) containing a query g; in its register g(i),
contains in its register v'(i) a copy of the xth node in the search path of g; (we
will call this a match of g; with the xth node in its search path). Finally, for each
node v all queries that have v as the xth vertex in their search path are merged
with C, into one sorted list, determining for each query its successor in C,.

The details of the individual phases are explained in the following sections. All
procedures used in those phases have time complexity O(log N), and are
composed of a constant number of calls either to the well known monotonic
routing operations defined in [16] or to bitonic merge [4], see Appendix A. The
only exception is the procedure Sort, to be used in Phase 1 of the hypercube
cascading algorithm (Section 3.3). Its time complexity, #(N), is currently
O(log N log log N) [10, 15].

A typical situation at the end of a phase is depicted in Fig. 6; each vertical
column represents the registers g(i), N(i), v'(i) and c¢"(i) of a processor PE(i).

In the following sections we will present details of Phase 1 and Phase x
(2=<x =p), respectively. The first phase is different from the remaining phases
because it starts with an arbitrary permutation of the queries.

3.3. Phase 1 of the hypercube cascading algorithm

An outline of Phase 1 is given in Fig. 7. The algorithm consists of five basic
steps (see also Fig. 8 for an illustration).

Phase 1:

(1) EveryPE(i): N(i):=Start(q(i))

@ Sort({[¢(®.q@DLINGD.N@®1}, NG))
(3) MoveVerticesToQueries

@) SelectCatalogs

(5) _SearchCatalogsForQueries
Fig. 7. Outline of Phase 1.°

% Consult Appendix A for the definitions of the elementary operation used in this and following
code fragments.

150

Algorithm Phase,:

Input: The Vertices of the catalog graph v(i), and the set of catalog elements

c(i).

Output: Every processor PE(i) stores a query g (i), a copy of the first vertex v'(i)
on the q(i)’s path, and the result of the catalog search c"(i). Note that the queries

F. Dehne et al.

q(i) are now sorted with respect to N(i).

Method: (See Fig. 7) First, in Step 1, every processor PE(i) calculates the index
of the first node in the search path of its query g(i) and stores this value in the
register N(i). Then in Step 2, the queries are sorted by the index of the first node
in the search path, i.e. N(i). In Step 3, the source nodes are copied to the queries
for which they are the first node in their search path. Finally, in Steps 4 and 5, the

v.index(i)
v.endCat(i)
c.value(i)
c.index(i)
q@)

NQ@)

q@
NG)

v'(i)

c'(d)
H@)

q()
N@)
v'(i)
c”.key(i)

The Initial State on Entering Phase 1

0|J]1]12|3|]4]|]5|6|718]|]9]10]111|12]|13]14]15
012|S5)|-1|-118}|-1]-1]13}-1]14f15}-1]-1f-1]-1
15513121619 2(11]14|5]6]7]|8|9|4]14
oj1]1|2|2]2|5}|5|5]|8]8]|8|8|8]|10]11
qo|q1|q921493 (9445|496 |97 |98 |99 |410|4911|912]|913|q14|415
After Step 1 of Phase 1: N(i) = index of the first node in path(g(i))
7111311111 0|S5]0}j8|1111)3|715]1]}38
After Step 2 of Phase 1: Both ¢(i) and N(i) are ordered by N(i

qs5 1497 | 91| 94 |q10|914]| 92 |q11]| 96 |913| 90 |412]| 98 {915| 43 | 99
ojol1 1 1|1}313|5|517]|7}8|8]|11]11
After Step 3 of Phase 1: v'(i) is a copy of the vertex required by ¢(i)

Vo Vo |VI|VI]|VI|VI|V3]|V3]|VS|VS|V7]|V7]|V8|V8|VII|VII

After Step 4 of Phase 1: ¢'(¥) is the set of catalog needed for the catalog search

Co|Cr|C2|C6|C7]|C8)ColCl0|CLI|Ci2|C13]|CIS
1211212121212 12}12] 12|12} 12| 12|12 12| 12| 12
At the end of Phase 1: Every q(i) is stored on a PE(i) that also stores

a copy of its vertex v'(i), and a copy of its calalog element c"(i).

q5 1497 | q1 | 94 |910]914| 92 |q11]| 96 |913| 90 | 912} 98 |915| 43 | 99
oOlOoOf| 1] 1}1}1]3|3|5|5]7]7|8]|8]|11]11
VolVo|Vi|ViI|VI|Vi]|V3]|V3|Vs|Vs]|Vv7z]|Vv7z]|Vve|Ve|Vii|ViL
15|15 5| 5|13}-1]-1]-1]11|14]-1]-1]8}|-1]|14]14

Fig. 8. An illustration of Phase 1.

Parallel fractional cascading 151

MoveVerticesToQueries:

@ IdentifyBlock Tail(N (i) N'(i))

() Every PE(i): if N'() = N(i) then Dest(i) := -1
else Dest(i) .= i

() EveryPE(i): addr(i) :=-1

(@) Route({[Dest(i),addr(i)]}, N@), N'(D)=N(D)

(3 RouteAndCopy({[v().v()]}, addr(), addr(i)#-1)

Fig. 9. Sketch of Procedure MoveVerticesToQueries.

catalogs associated with the current vertices are selected and, for each query, the
successor record in the respective catalog is determined.

Running time: Step 1 is implemented in time O(1), whereas the time complexity
of Step 2 is £,(N) = ©(log N). As we will see in the following, Steps 3 to 5 take
O(log N) time each. Therefore the overall running time is O(z,(N)).

Once the queries have been sorted by the index of the first vertex in their
search path, the matching process between each query and the first node in its
search path can be performed in time O(log N) using the procedure Move
VerticesToQueries described in Fig. 9.

See Fig. 10 for an illustration of the operation of this procedure.

The Initial State on MoveVerticesToQueries

v(i) Vo |vi|v2a|vs|ve|vs|ve|Vv7|vs]|ve|Vvio|lvit|via|vis|vie|vis
q@) 95197 | 41|94 |q10|914| 92 |911] 96 | 913 g0 | q12| g8 | q15]| 93 | 99
N@) ofo| 1|1 1}1]3|3|5|5|7]7|8]|8]11]11
After Step 1: If N(i) # N'(i) then i is the tail of a block
NG) 01|1 1 13355]’778|811|1112
After Step 2: Dest(i) = i for block tails otherwise -
Dest(i) I-l 1)-1]-1|-1|5]|-1]7]-1}9]-1 11|-1 13 -11]15
After Step 3: Initialize all addr(i)
addr(i) al-1]-a]a -1|-1 -1|-1|-1 NE -1|-1|-1|-1|-1
After Step 4: addr(i) = Address of last g(i) requiring v(i)
addr(i) l|5 -1y 71-119 -llll|13 111115 -1)-1)-11]-1
. After Step 5: v'(i) = a copy of the vertex reguireiby (i)
q@) 45 1497|491 | 494 |q10|915| 92 |11 96 | 913| 90 | 912) 958 |q15| 93 | 99
N@) oOfoj 1|11y 1}3|3|5]517]71818l11ln
v'(i) Vo |Vo|Vi|Ve|Vi|vi|vs|vs|vs|vs|vz|vrs|vs]|vs]|vii|vis

Fig. 10. An example trace of MoveVerticesToQueries.

152 F. Dehne et al.

SelectCatalogs:

(1) IdentifyBlockTail(N().N'(i))

@) RouteAndCopy({[v".index(i),Dest(i)1}, v'.endCax(i),
N(@)#N'(i) and v'.endCat(i)#-1)

() Number(H(i),c.index(i) = dest(i))

(5) Concentrate({[c(i).c'(})]}, c.index(i) = dest())

Fig. 11. Sketch of Procedure SelectCatalogs.

Algorithm MoveVerticesToQueries

Input: A set of queries g(i), sorted by their associated N(i) register which stores
the index of the next vertex required by each query.

Output: Each query ¢ (i) is matched with (i.e., stored in the same processor as) a
copy of the vertex v with index N(i).

Method: (See Fig. 9) The idea is to identify for each node that needs to be
matched (those with Dest(i) # —1), the largest address of the block of queries to
be matched with (Steps 1 to 4), and then broadcast each node to the respective
block of queries (Step 5).

Running time: O(log N).

Having matched each query g(i) with a copy of the next vertex in its search
path v’'(@), it is now necessary to perform the catalog look up. Before catalog
look up search can be performed, the set of catalog elements associated with

The initial state on entering SelectCatalogs

q@) qs 1 97| q1 | 94 | 910|914 92 | 911] 96 | 913| 90 | 912 98 | 15| 43 | 49
N@) ofof1]1}j1|1]3}3|5]|51717|8|8]11]11
v'(i) volvolvi|vi|vi|vi|vs|vs|vs|vs|Vvz|Vv7|Vs|Vs|Vil|ViL

viendCat() |00 2]2|2)2]-1|-1|8]|8]-1]-1|13]13]15}15

c@®) colcr|caleczlcales|cs|cr)csl|colcrolciifciz|ciz|cia|CLs

cindex(@y {(Of1|1|2]2|2]|5|5]5]8]|8|8|8)8]10]|11

After Step 1: If N(i) # N'(i) then i is the tail of a block
N'(i) 011113355i7788111112

After Step 2: If Dest(i) # -1 then catalog element c(i) has been selected
Dest(i) 0115555|55888881111

N

After Step 3: H(i) is the total number of selected catalog elements
H(®) 12112112112 12§ 12}12|12] 12 12l12 12|12 1211212

At the end of SelectCatalogs: ¢'(i) = a copy of all selected calalog elements
@) colcrfeca|cel|cr|ce|colcrofcn C12|013lc‘15 |

Fig. 12. An example trace of Procedure SelectCatalogs.

Parallel fractional cascading 153

vertices currently being visited by queries must be identified. This operation is
performed by the algorithm SelectCatalogs described in Fig. 11.
See Fig. 12 for an illustration of the operation of this procedure.

Algorithm SelectCatalogs:

Input: The set of catalog elements, c(i).

Output: The set of catalog elements c’(i) associated with vertices currently being
visited by queries.

Method: (see Fig. 11) First, in Step 1, the tail of each block formed by register
N(i) is identified. Then, in Step 2, every catalog element associated with a vertex
currently being visited by a query is selected. Lastly, the selected catalog
elements are concentrated into register ¢’(i) and counted.

Running time: O(log N).

Having selected the set of required catalog elements, we can now perform the
catalog search of each query ¢(i) in its catalog. At the end of the search
procedure, each PE(i) storing a query q(i) and a vertex v’'(i) will also store a
catalog element c”(i) which is the result of searching with query g(i) in the
catalog of vertex v'(i). The catalog search is performed by algorithm Search-
CatalogsForQueries described in Fig. 13.

Procedure SearchCatalogsForQueries is the last step in Phase 1. Fig. 14
illustrates the operation of this procedure.

Algorithm SearchCatalogsForQueries:

Input: The set of queries g(i) sorted by the index of the vertex they are currently
visiting and the set of catalog elements of those vertices ¢'(i) (also sorted).
Output: Register ¢"(i) containing a copy of the catalog element found in the
catalog search, if any. The value —1 will be used to indicate no catalog element
found.

Method: (see Fig. 13) First, in Step 1, the current location of each query is
recorded in q . currentIndex(i). In Steps 2 and 3, for each query q(i) its successor
in the associated catalog is computed. This is obtained by a biotonic merge of the
queries and catalog elements into a simulated double length register r(i). The
principal keys for the merge are the indices of the vertices being visited by the
queries’ v'(i) and the catalogs’ indices ¢’ . index(i). The secondary keys are the
queries’ and catalogs’ values q.key(i) and c’. key(i) respectively. When the

N

SearchCatalogsForQueries:
q.currentindex(i) := i
@ Merge({[9().q0)1} N.c'().H(O).r@)
3 RouteAndCopy(([r().r'()]}.i,r(¥) = a catalog element)
@ Route({[r'(),c"(D]1) r.currentIndex(i),r(i) = a query)
(5) _ Every PE(i): If c".index(i) # N(i) then ¢”() :=-1

Fig. 13. Sketch of Procedure SearchCatalogsForQueries.

154 F. Dehne et al.

The initial state on entering Search(‘amloTsFoQ:eres

q() 95 197 | 9194 |q10|914]| 92 |911] 96 | 913 90 | q12| g8 | 15| 93 | 99
N(@i) ojfoj1|1)1{1])3}13|5]|5|7]7]|8]8]11|11
c'@) Co|cr|cz|cs|cr|cs|colciofcir|ecrz|es]cis
c’.key(i) 1I505|131]2]16]9]5]6|7]|8]9]14

Clindex()) | O] 1| 1|5]|5|5|8]8|8]8]|8]11

Q)= 95|97 Co|q:1]|4qs] ci|qio| c21914|q2|q11] c6|qs | c7| cs |qis3

qo |q912] €9 |Cio|C11| g8 |C12]C13|q15| 93|99 |Cis

After Step 3: if r(i) = a query then '(}) (a simulated double length register)
the result of the search with ¢(i) in the catalog of v'(i).

rg)= colcolcolcr|cr|ci|caleca|cslcs|lcs|cslcr)er|cs]|co

Co| Co|Cofcrolcir)ciz|ciz|ci3|cis|cis|cis|cis

After Step 4: if ¢”(i) = N(i) then C"(i) the result of the search
with g(i) in the catalog of v'(i).

c”(i) Cofcolcr)erleczlcslcs|cs|cr]|colcolcoleralers|cislers

c”(@i) cofcolecrer|ca|-1]-1|-1}ecrfco|-1]-1]cs2]|-1]cislers

After Step 5: ¢"(i) = the result of the search with q(i) in the catalog of v'(i).
| 1

Fig. 14. An example trace of procedure SearchCatalogsForQueries.

merge step is finished, for every query its successor catalog element is the first
catalog element to its right. As several queries may have the same successor, Step
3 is required to make copies of such catalog elements. In Step 4 the located
catalog elements are routed back to the processor holding the queries that
requested them. Some catalog searches may result in no catalog element being
found for a particular query q(i). In these cases Step 5 sets the register ¢”(i) to
-1.

3.4. Phase x (2<x <p) of the hypercube cascading algorithm

The purpose of each subsequent phase is to advance, in time O(log N), all
queries by one step in their search paths. After Phase x — 1 has been completed,
all queries are sorted (in registers g(i)) with respect to the index of the (x — 1)th
node in their search path. Each processor PE(i) contains in its register v'(i) a
copy of the (x —1)th node in the search path of the query stored in q(i). In
register c"(i), PE(i) stores a copy of the successor catalog element of query g(i) in
catalog C,.(i). The desired effect of Phase x is to have all queries sorted (in
registers g(i)) with respect to the index of the xth node in their search path, and

Parallel fractional cascading 155

have each processor PE(i) contain (in its register v'(i)) a copy of the xth node in
the search path of query ¢(i) and (in register c¢'(i)) a copy of the successor of q(i)
in Cv’(i)‘

Algorithm Phase (x):

Input: The vertices v(i) of the catalog graph, the set of catalog elements c(i),
and a set of queries g(i) sorted with respect to the index of the (x — 1)th node in
their search path.

Output: Every query q(i) is stored on a processor PE(i) with a copy of the xth
vertex on ¢(i)’s path, and the result of the catalog search is stored in ¢”(i). Note
that, the queries g (i) are sorted with respect to N(i).

Method: (see Fig. 15) First (in Step 1), every PE(i) computes for the query
currently stored in its register (i) which edge to use for the next step in the
search path as well as the index of the next node, storing these two numbers in
the auxiliary registers R(i) and N(i) respectively. Note that, if the query has to be
routed in opposite direction of an edge in graph G (backwards), then a negative
value is stored in the register R(i). In Step 2, all queries are sorted by the index
of the next node in their search paths. By sorting first the backwards moving
queries and then the forward moving queries, this sorting operation can use the
properties of the previous permutation of the queries and be performed by a
procedure OrderQueriesByNextVertex in time O(log N). Once this ordering has
been obtained, the nodes can be matched with the queries and the respective
catalogs can be selected and searched, in time O(log N): Steps 3 to 5 are the same
as in Phase 1 described in Section 3.3; Step 2 is explained in the remainder.
Running time: O(log N).

See Fig. 16 for an illustration of the operation of this procedure.

What remains to be discussed is procedure OrderQueriesByNextVertex. This
procedure, which is sketched in Fig. 17, creates in time O(log N) the new
ordering of the queries with respect to the indices of the next nodes in the search
paths. It allows queries to move along any edge to any connected vertex.

Phase x , 2sx<p:
(1) Every PE(i): R(i):=g(v(i).q().c'®));
If R()>0
THEN N(i):=v’".successorg(;)(i)
ELSE N(i):=v'predecessor z(;)(i)
(2) OrderQueriesByNextVertex
(3) MoveVerticesToQuerics
@) SclectCatalogs

(®) __SearchCatalogsForQueries

Fig. 15. Sketch of Phase x, 2<x <p.

156

v.index(i)
v.endCat(i)
c.value(i)
c.index(i)

q@

NQ@)

q@)
NG@)

v'(@i)

c'(d)
H®)

q@)
N@)
v'(i)
c”.key(i)

F. Dehne et al.

The Initial State on Entering Phase x

4

5

71819

10| 1112

14

15

-1

8

-1]13} -1

14115] -1

15

13 6

9

11]1141 5

617

14

0

= Y. N

112]2

2

5158

818

10

11

qs

q7

q1144 4910

q14

q111 46 |913

qo |q12| 98

q3

q9

2

2

index of the firs

node in path(

After Step 1 of Phase 1: N()) =
l I 5 I 5 I 515

5

51813

i

9111

10

14

After

Step 2 of Phase 1

qs

q7

q1 |q13| 41

94

: Both ¢(i)

q10

and N(@) are orde

ered by N(i)

q14] 92 {911

96 | 99 |412

qis

q8

q3

2

2

314|5

5

5

51515

818

10

11

14

After Ste

V2

3 of Phase 1: v

‘@) is

a cop

of the vertex re

quired by g(@i)

v2

V3| ve | Vs

vs

Vs

Vs|Vvs|Vs

vg | vs | ve

Vio

Vi1

Vig

After Step 4 o

f Phase 1: ¢'(§) is

the set of catalog needed for the catalog search

C2

€3

cq|cs|cs

C9

Ci1o

Ci1)C14

13

13

13113113

13

13

131 13|13

1311313

13

13

13

At the end of Phase 1: Every ¢(i) is stored
a copy of its vertex v'(i)

and

a cop

of its calalog el

on a PE(i) that also stores

ement c”(i).

qs

q7

q1 4913 91

qd4

q10

q14| 92 {411

q6 | 49 1412

qis

qs

q3

2

2

314/(5

5

5

51515

81819

10

11

14

V2

V2

V3| Vg | Vs

Vs

Vs

V5| Vs | Vs

v | Ve | Vo

Vio

Vi1

Vig

2

2

1]-11 2

2

11

14] 14| -1

719]-1

14

-1

Fig. 16. Example of Phase x =2.

OrderQueriesByNextVertex:

(1) Every PE(i): Shift(i):=0
(2 FOR r:=-ujp,...,-1,1,....0oys DO
(€] Concentrate({[().¢' D], INON'D1}.GE)=r)
@ Number(LS(), G()=r)
Is := LS(0)
shift := Shift(0) ~
©) Reverse({[¢'().¢'@),ING).N'(1},0,Js)
©) Route({[q().q"DLIN'@O)N"()]}, i+shift, i<ls)
@ Merge({[g"(0).4"()1.IN"().N"(D]} N"(D),0shiftshift+ls)
Every PE(i): Shift(i):=Shift(i)+LS(i)
®) Every PE(i): g(i):=¢"(), N(i):=N"()

Fig. 17. Sketch of Procedure OrderQueriesByNextVertex.

Parallel fractional cascading 157

Algorithm OrderQueriesByNextVertex:

Input: A set of n unsorted queries g(i) each with an associated N(i) specifying
the index of the next vertex in each queries search path.

Output: The n queires g(i) along with their N(i) sorted with respect to N(i).
Method: (see Fig. 17) We first consider all forward edges to next vertices in the
search paths; the backward edges are handled analogously. Let (v, w) and
(v', w') be two such edges for queries g and q’, respectively, with the property
that g(v, q, (g, C,))=g(v, q', 6(q', C,’)). From the monotonicity of G it
follows that if Index(v) <Index(v') then Index(w)=<Index(w'). Therefore, the
sub-sequence of queries g for which g(v, g, o(gq, C,)) has the same value r is
already sorted with respect to the index of the next vertex. Furthermore, since
each node has an outdegree of at most p,,, there are at most u,, = O(1) such
subsequences. The new ordering of the queries can therefore be created in time
O(Uou log N) =O(log N) by successively extracting these u,, ordered sub-
sequences and merging them in u,,, bitonic merge steps.

For the backward edges, the same idea applies because a monotone graph has
the same monotonicity properties forwards or backwards. Thus, the same steps
described above can be used in order to sort the backward queries with respect to
the indices of the next nodes in the search path. As in the previous case, the time
for sorting them is O(u;, log N) = O(log N), since ;, is the constant maximum
in-degree in the graph G.

The algorithm is sketched in Fig. 17: for each of the u;, + t,,, possible values
of R(i), the respective sub-sequence of queries is extracted (Step 3), inverted
(Step 5), appended to the sequence of queries already ordered (Step 6), and
finally the newly created bitonic sequence is converted into a sorted sequence by
a bitonic merge (Step 7).

Running time: O(log N).

Note that the monotonicity of the graph G is crucial for the efficient
implementation of the preceeding procedure. For general graphs, this step might
require an arbitrary permutation to be performed on the hypercube.

3.5. Summary of results
The following lemma and theorem summarize our results.

Lemma 1. The multi iterative search algorithm described above consists of p
phases such that at the end of Phase x (1 <x < p) all queries are sorted (in registers
q(i)) with respec\t to the index of the xth node in their search path, and each
processor PE(i) contains in its registers v'(i) and c'(i) a copy of the xth node v, in
the search path of q(i) and a compy of the successor record of q(i) in C,_.

Note that all the sub algorithms used in Phase(x) require O(log N) time.
Hence, the time complexity of algorithm Phase(x) as a whole is O(log N). Thus,
we obtain the following.

158 F. Dehne et al.

Theorem 1. For a monotone catalog graph of size n (and fixed degree), m iterative
search queries along paths of length at most p can be executed independently, in
parallel, in time O(plogN +t(N)) on a hypercube multiprocessor of size
N; N =max{n, m}.

4. The multiple stabbing problem

In this section we present our first example of how hypercube cascading can be
applied to solve goemetric problems. Consider the problem of determining all
intersections of m lines with a simple polygonal path of length n. We will refer to
this problem as the multiple stabbing problem. Using hypercube cascading we
solve the multiple stabbing problem in

O(k log%log N+ ts(N)>

time on O(N) processors (O(1) memory per processor), where k is the maximum
number of intersections between one of the m query lines and the polygonal path
of length n, and N = max{n, m}.

Our solution is built exclusively on an advanced data structure without the need
for extensive new routing methods as would be required by a direct hypercube
solution. It is also efficient: its time complexity differs by less than a factor of log
N from the best known sequential solution for the single query line version of the
problem [8].

Solving this stabbing problem (see Fig. 18) in O(n) time for a given P and one
line [is trivial. The problem becomes much more interesting if we have many
query lines /i, l,,...,l, and wish to successively test each of them for
intersection with P as efficiently as possible. Chazelle and Guibas [8] present a
sequential fractional cascading algorithm that allows to answer, with O(n) space
and O(n log n) preprocessing, one stabbing query in time O(k log(n/k)), where k
is the size of the output. We will first describe their data structure and algorithm
and then show how, using our hypercube cascading methodology, their sequential
algorithm can be converted into a hypercube algorithm that efficiently solves the
multiple stabbing problem.

Fig. 18. Intersections of a line with a simple polygonal path of length n.

Parallel fractional cascading 159

4.1. Review of Chazelle and Guibas’ sequential stabbing algorithm

The central idea behind the algorithm in [8] is that a straight-line / intersects a
polygonal line path P if and only if / intersects the convex hull, CH(P), of P.
Chazelle and Guibas [8] build a data structure based on convex hulls represented
by their slope sequences. The slope-sequence of a convex polygon C is the
ordering of the edges of C in nondecreasing order of edge slopes. Let s and s’ be
the two slopes of a line / obtained by giving / its two possible orientations; if we
know the position of s and s’ within the slope-sequence of a convex polygon C,
we can clearly determine whether C and [/ intersect in constant time.

Chazelle and Guibas [8] define a convex hull decomposition tree for a simple
polygonal path P as follows. Let F(P) and S(P) denote the first and second
halves of the path P of length n, respectively; that is, the subpaths of P consisting
of the first n/2 and second n/2 edges. A convex hull decomposition tree, T, for a
simple polygonal path P, is a binary tree with CH(P) assigned to its root, and its
two children being the roots of convex hull decomposition trees representing
F(P) and S(P), respectively. Convex hull edges that occur in several convex hulls
(for several nodes) are stored only once at the highest node where they occur (see
Fig. 19, bold edges). The edges stored at a node v form a subsequence of
adjacent edges of the respective convex hull; we will refer to them as the subhull
stored at v. Chazelle and Guibas show that, if P is simple, then CH(F(P)) and
CH(S(P)) have at most two common tangents. Therefore, the resulting tree uses
linear space.

The subhulls at the nodes in the tree are each stored as slope sequences; each
slope sequence represents a catalog for fractional cascading. Having constructed a
convex hull decomposition tree T for a simple polygonal path P, all intersections
between P and a query line / can be reported by searching the tree T with query
line / through a branch and bound type searching procedure. At each node, if the
query line intersects the respective convex hull, then both subtrees have to be
searched recursively; otherwise the search is bounded at this point. In [8] it is

O Convex Hull CH(P)
CH(F(P)) O O CH(S(P))

a " ", AR Some additional
" '. " \ ,' \ 'I \ layel‘s

] ' \
o d ¢ ¢ i . o * Le:aye:l setgre
\ , 7 \ /7 \ _r ogmaledees

Fig. 19. A convex hull decomposition tree.

160 F. Dehne et al.

Fig. 20. The multiple stabbing problem.

shown how the intersection text can be performed on the subhull stored at the
node, rather than the entire hull. This test is based on locating the slope of the
query line [in the slope sequence of the edges of the subhull.

4.2. Hypercube cascading for the multiple stabbing problem

This section presents a hypercube algorithm for determining all intersections of
m lines with a simple polygonal path of length n; see Fig. 20.

The parallel hypercube algorithm described in this section will solve the
multiple stabbing problem by applying our hypercube cascading technique
presented in Section 3 to Chazelle and Guibas’ algorithm. In order to be able to
apply hypercube cascading, we have to solve the following additional problems:

(1) Construct the convex hull decomposition tree in parallel, on a hypercube.

(2) Define a query routing scheme for each query line for reporting its
intersections with the polygonal path P. Note that, Chazelle and Guibas’ branch
and bound scheme is not suitable for hypercube cascading.

We observe that Chazelle and Guibas’ convex hull decomposition tree is both
monotone and of fixed degree, and therefore meets the requirements of
hypercube cascading.

Algorithm Construct Parallel Convex Hull Decomposition Tree:

Input: The n edges of a simple polygonal path sorted by slope.

Output: A convex hull decomposition tree represented as a catalog graph
meeting the requirements of hypercube cascading as specified in Section 3.
Method: First, construct a complete binary tree with n leaves and empty catalogs
attached to all its nodes. Then, assign to each leaf a query consisting of a line
segment, such that the line segments are sorted by slope. These queries will be

Parallel fractional cascading 161

Fig. 21. Identifying the merge points of two convex hulls.

referred to as line queries. In O(log n) phases, the line queries are then moved
towards the root of the tree using hypercube cascading. In each phase a node may
be visited by line queries from its left and right children. The set of line queries
from any child form a convex hull (queries at leaves form degenerate convex
hulls) sorted by slope. Upon arriving at a node, the groups of line queries from
the left and right children are merged to form the convex hull of the union of
both sets. The O(log n) merging of two convex hulls can be implemented by a
bitonic merge operation [4]. This process creates six types A, B, C, D, A’, C' of
line queries as shown in Fig. 21.

Type A line queries are returned to the node’s left child to form its catalog
elements (sorted by slope). Type C line queries are returned to the node’s right
child to form its catalog elements (sorted by slope). The remaining queries are
compressed into a single sequence of lines sorted by slope and sent to the node’s
parent. If the node is the root node, the merged sequence is stored as its catalog.
Since the maximum path length of any query in this algorithm is O(logn) it
follows from Theorem 1 that the entire algorithm can be completed in time
O(log? n) using O(n) processors.

Theorem 2. A convex hull decomposition tree for a simple polygonal path of
length n can be constructed on a hypercube multiprocessor of size n in time
O(log? n).

What remains to be shown is that Chazelle and Guibas’ branch and bound
algorithm for reporting the intersections of one segment with P can be converted
into a scheme for hypercube cascading. We could execute each line query by
starting a query at the root of the tree and simulating Chazelle and Guibas’
branch and bound approach by duplicating the query at any branch. Such an
approach may however create, in the worst case, a total of O(nm) queries. Hence
rather than duplicating queries, our approach will be to have each line segment
represented by a single query which will report all its intersections with the simple
polygonal path.

Let T'(/) be the subtree of the convex hull decomposition tree T that must be
searched by Chazelle and Guibas’ algorithm to report all intersections of one
query line /. In [8] it is shown that the size |T'(l)| of T'(l) is O(k log (n/k)),

162 F. Dehne et al.

Key

Edgesin T:—
Edges in T': e
Inorder traversal: —
Intersections: @

Fig. 22. An order traversal of the subtree T’ of T.

where k is the number of intersections of / with P. Our approach will be to create
for each query line / one single query which traverses 7'(/) in inorder (see Fig.
22) and reports all intersections. The length of the path is O(k log(n/k)). Hence,
by applying Theorem 1, we obtain a

O(k log%log N+ tS(N))

time algorithm for answering m such queries. The details of this routing scheme
are described below.

Algorithm Report Intersections:

Input: A convex hull decomposition tree T for a simple polygonal path P, and m
query lines.

Output: For each query line /, each edge of P intersected by / is reported.
Method: For each query line /, generate one query g(/) that is routed through T
(using hypercube cascading). All queries initially visit the root of T, and then
each g(/) traverses in inorder the subtree 7’'(l) and reports all intersections.
When a query g(/) visits a node v, the slope of / is located in the attached catalog,
and the intersection test with the convex polygon associated with v is done in
exactly the same way as in the sequential algorithm (see Section 4.1). What
remains to be shown is how a query g(/) can decide locally which node to visit
next, such that the resulting path is the inorder traversal of T'(/). It is easy to see
that this decision can be made by one processor in constant time based on the
node previously visited (incoming direction) and the result of the intersection
test. All possible combinations are listed in Fig. 23.

Theorem 3. Given a simple polygonal path P of length n and a set of m arbitrary
query lines then, for all query lines, all intersections with P (with a maximum of k
results per query) can be determined on a hypercube multiprocessor of size N in

Parallel fractional cascading 163

Incoming] =~ No Intersection
1 4 Direction | intersection
1 4 5

= 2 N/A 6
W\\i
3
b 3 N/A 4

Fig. 23. Local computation of the next node in the inorder traversal of T'(/).

time

o(k log g log N + ts(N));

N = max{n, m}.

Note that we assume that at the end of each phase of hypercube cascading,
every processor can report a result without having to store it. Otherwise, after
each phase, the reported results would need to be concentrated in order to obtain
an even data distribution, and the number of processors and time complxity
would increase to

N
O(N + M) and O(k log T log(N + M) + ts(N)) , respectively,

where M denotes the total output size for all queries.

5. Multiple slanted range search

In this section we give another example of how hypercube cascading can be
used to generate efficient parallel computational geometry algorithms for hyper-
cube multiprocessors.

Consider a set S of n points in the Euclidean plane. An aligned trapezoid is a
trapezoid with one side b on the x-axis and the two adjacent sides parallel to the
y-axis. The slanted range search problem consist of reporting all points contained
in the aligned trapezoid [8]; see Fig. 24. The multiple slanted range search
problem consists of answering, in parallel, m slanted range search queries on one
set S of n points.

Chazelle and Guibas [8] present a sequential fractional cascading algorithm that
allows to answer, with O(n) space and O(nlogn) preprocessing, one slanted
range query in time O(k +logn), where k is the size of the output. Their
algorithm is based on a tree of convex hulls, TC(S), representing S as follows:
With the root of TC(S), we associate the lower hull LH(S) of S; i.e., the lower
portion of the convex hull of S. Consider the left half L and right half R,

164 FE. Dehne et al.

Fig. 24. Slanted range search problem.

respectively, of the set S minus the points of L(S). The left and right subtrees
recursively represent L and R, respectively. See Fig. 25 for an illustration.

In [8], one slanted range search query is again executed by a branch-and-bound
type search on TC(S), where the decision at each node reduces to a catalog
look-up of the angle of a border segment of the range in the sorted list of angles
of the lower hull edges associated with that node.

We solve the slanted range search problem by applying our hypercube
cascading technique presented in Section 3 to Chazelle and Guibas’ algorithm.
We have to solve the following additional problems: Constructing the tree of
convex hulls in parallel, on a hypercube, and defining a query routing scheme for
each query (that is consistent with the requirements of Section 3).

We observe that the convex hull of n points can be computed on a hypercube
of size n in time O(log®n) by using the standard divide and conquer approach
together with bitonic merging [4]. Hence, the tree TC(S) together with catalogs
representing the lower hull edges associated with each node (sorted by their
slopes) can be constructed in time O(log® n). Note that, since TC(s) is a binary

f

\

Fig. 25. Tree of convex hulls.

Parallel fractional cascading 165

tree, it is a monotone graph of fixed degree and therefore meets the requirement
of Theorem 1.

In order to answer, in parallel, a set of m slanted range queries on S, we again
replace for each query the branch and bound scheme in [8] by an inorder
traversal of length O(k log (n/k)). The approach is as in Section 4. The decision
each query has to make in order to find the next node in the inorder traversal of
the subtree searched by the sequential branch and bound scheme, can be made by
one processor in O(1) time based on what node was previously visited and the
result of the intersection test. Applying Theorem 1, we obtain the following.

Theorem 4. Given a set of n points in the Euclidean plane then, with a
preprocessing of O(log® n), m slanted range search queries (with a maximum of k
results per query) can be solved on a hypercube of size N = max{mn, n} in time
O(k log N + t,(N)).

6. Conclusion

Fractional cascading is a powerful and widely used technique for designing
efficient sequential computational geometry algorithms. In this paper we pre-
sented an efficient algorithm for implementing parallel fractional cascading on a
hypercube multiprocessor, thereby providing a new tool for parallel computa-
tional geometry on hypercubes. As example applications, we presented hyper-
cube algorithms for the multiple stabbing and the multiple slanted range search
problems.

Appendix A: Standard hypercube routing procedures

The algorithms in Section 3 of this paper used slightly generalized versions of
well-defined hypercube data movement operations. In addition to those registers
listed below, their implementation requires a constant number of auxiliary
registers. In the following, for every register A available at every processor, A(i)
refers to register A at processor PE(i).

Rank(Reg(i),Cond(i)): Compute, in time O(log N), in register Reg(i) of every
processor PE(i) the number of processors PE(j) such that j <i and Cond(j) is true
[16].

Number(Reg(i),Cond(#)): Compute, in time O(log N), in register Reg(i) of each
processor PE(i) the number of processors PE(j) such that Cond(j) is true.
Concentrate({[S,(i),Dy(i)], . . . , [S.(i),D,(i)1},Cond(i)): This operation includes
an initial Rank(R(i), Cond(i)) operation. Then for each PE(i) with Cond(i) =
true, the source registers S,(i), . . . S,(i) are copied to PER(R(i)) where the values

166 F. Dehne et al.

are stored in registers D;(i), ..., D,(i) respectively: z =O(1). The time com-
plexity of this operation is also O(log N) [16].

Route({[$;())D,()], . . . , [S;(i),D.(i)1} ,Dest(i),Cond(i)): Every processor
PE(i) has 2z=0(1) data registers S;(i),...,S.(i) and D,(i),...,D,(i), a
destination register Dest(i), and a boolean condition register Cond(i). It is
assumed that the destinations Dest(i) are monotone; i.e., if i <j then Dest(i) <
Dest(j). The operation routes, for every processor PE(i) with Cond(i) = true, all
source registers S(i), ..., S,(i) to processor PE(Dest(i)) here the values are
stored in registers D(i), . . . , D,(i) respectively. It can be implemented with an
O(logN) time complexity by using a Concentrate operation followed by a
Distribute operation described in [16].

RouteAndCopy({S;(#)D,(i)], . . . , [S,(),D,(i)]1},Dest(i),Cond(i)): Under the
same assumptions as for the Route operation, this operation routes, for every
processor PE(i) with Cond(i) = true, a copy of source registers S,(i), . . . , S,(i) to
destination registers D,(i),...,D,(i) of processors PE(Dest(i—1)+
1),...,PED(Dest(i)), each. It can be implemented with an O(log(N)) time
complexity by using a Concentrate followed by a Generalize operation described
in [16].

Reverse({[$1(i),D:()], - . . , [S,(i),D,(i)]1},Start,End): This operation routes for
every PE(i) with Start <i < End, its source registers S,(i), . . . , S,(i), z = O(1), to
destination registers D,(i), . . . , D,(i) on PE(Start + End —1i); i.e., it reverses the
contents of those registers for the sequence of processors between PE(Start) and
PE(End). Reversing, in the entire hypercube, a sequence of n values (each stored
in one processor) corresponds to routing each value stored at processor PE(i) to
processor PE(i”), where i’ is obtained from i by inverting all bits in its binary
representation. Hence, this operation can be implemented in time Log(n)
similarly to the Concentrate/Distribute operation described in [16].
Merge({[$:(0),D1()], . . . , [S,(i),D,(i)]1},Key(i),Left,Peak,Right): This oper-
ation is the well known bitonic merge [4]. It converts in time O(log N) a bitonic
sequence (with respect to register Key(i)) into a sorted sequence; it simul-
taneously permutes the source registers S,(i), ..., S,(i) (z =0(1)) storing the
results in the destinations registers D;(i), ..., D,(i). Here, we apply it to a
particular bitonic sequence consisting of an increasing sequence starting at
PE(Left) and ending at PE(Peak) followed by a decreasing sequence starting at
PE(Peak + 1) and ending at PE(Right).

Sort({[$:(i),D:()], . . . , [5,(i),D,(i)1} ,Key(i)): This operation refers to sorting
with respect to Key(i); it simultaneously permutes the source registers
$:(0), . . ., S.(1) (z=0(1)) storing the result in registers D,(i), ..., D,(i) respec-
tively. The time complexity, #(N), of this operation is currently
O(log N log log N) [10, 15].

IdentifyBlockTail(block(i),tail(i)): A block is a set of contiguous processors
which share the same value in some register block(i). This operation identifies the
last processor of each block defined by register block(i). An O(log N) time
implementation is easily obtained by applying the above Route operation.

Parallel fractional cascading 167
References

[1] M.J. Atallah, R. Cole and M.T. Goodrich, Cascading divide-and-conquer: a technique for
designing parallel algorithms, Technical Report CSD-TR-665, Department of Computer Science,
Purdue University, 1987.

[2] A. Aggarwal, B. Chazell, L. Guibas, C. O’Dunlaing and C. Yap, Parallel computational
geometry, Algorithmica 3 (1988) 293-327.

[3] M.J. Atallah and M.T. Goodrich, Efficient plane sweeping in parallel, in: Proc. ACM Symp.
Computational Geometry (1986) 216-225.

[4] K.E. Batcher, Sorting networks and their applications, in: Proc. AFIPS Spring Joint Computer
Conference (1968) 307-314.

[5] A. Bonopera, V. Ho, A. Rau-Chaplin and D. Yeong, Connection Machine Implementations of
Hypercube operations and Data Structuring Techniques, Technical Note 90-1, Dept. of
Computer Science, Carleton University.

[6] J.L. Bentley and D. Wood, An optimal worst case algorithm for reporting intersections of
rectangles, IEEE Transactions on Computers 29 (1980) 571-576.

[7] B. Chazelle and L.J. Guibas, Fractional cascading: I. A data structuring technique, Algorithmica
1 (1986) 133-162.

[8] B. Chazelle and L.J. Guibas, Fractional cascading: II, Applications, Algorithmica 1 (1986)
163-192.

[9] B. Chazelle, Filtering search: a new approach to query answering, SIAM J. Comp. 15 (1986)
703-724.

[10] R. Cypher and C.G. Plaxton, Deterministic sorting in nearly logarithmic time on the hypercube
and related computers, 1990 ACM Symposium on Theory of Computing.

[11] F. Dehne, A. Ferreira and A. Rau-Chaplin, Parallel fractional cascading on a hypercube
multiprocessor, in Proc. Allerton Conference on Communication, Control and Computing (1989)
1084-1093.

[12] N. Dadoun and D.G. Kirkpatrick, Parallel processing for efficient subdivision search, in: Proc.
ACM Symp. on Computational Geometry (1987) 205-214.

[13] F. Dehne and A. Rau-Chaplin, Implementing data structures on a hypercube multiprocessor and
applications in parallel computational geometry, J. Parallel Distributed Comput. 8 (1990)
367-375.

[14] M.T. Goodrich, Efficient parallel techniques for computational geometry, Ph.D. Thesis,
Department of Computer Science, Purdue University, 1987.

[15] F.T. Leighton, Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes (Morgan
Kaufmann, Los Altos, CA, 1991) Section 3.5.3.

[16] D. Nassimi and Sahni, Data broadcasting in SIMD computers, IEEE Trans. Comput. 30 (1981)
101-106.

[17] F.P. Preparata and M.I. Shamos, Computational Geometry—An Introduction (Springer, Berlin,
1985).

