JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 20, 1-13 (1994)

Multisearch Techniques: Parallel Data Structures
on Mesh-Connected Computers*

MIKHAIL J. ATALLAHT

Department of Computer Science, Purdue University, West Lafayette, Indiana 47907

FrRANK DEHNEF

School of Computer Science, Carleton University, Ottawa, Canada K18 5B6

Russ MILLERS

Department of Computer Science, State University of New York at Buffalo, Buffalo, New York 14260

ANDREW RAU-CHAPLINY

School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6

AND

JYH-JONG Tsay]|

National Chung Cheng University, Institute of Computer Science and Information Engineering, Chiayi, Taiwan 62107, Republic of China

The multisearch problem is defined as follows. Given a data
structure D modeled as a graph with n constant-degree nodes,
perform O(n) searches on D. Let r be the length of the longest
search path associated with a search process, and assurne that the
paths are determined “on-line.” That is, the search paths may
overlap arbitrarily. In this paper, we solve the multisearch prob-
lem for certain classes of graphs in O(Vn + r (Vn/log n)) time on
a Vn x Vn n mesh-connected computer. For many data struc-
tures, the search path traversed when answering one search query
has length r = O(log n). For these cases, our algorithm processes
O(n) such queries in asymptotically optimal ©(Vn) time. The
classes of graphs we consider contain many of the important data
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structures that arise in practice, ranging from simple trees to
Kirkpatrick hierarchical search DAGs. Multisearch is a useful
abstraction that can be used to implement parallel versions of
standard sequential data structures on a mesh. As example appli-
cations, we consider a variety of parallel on-line tree traversals, as
well as hierarchical representations of polyhedra and its myriad of
applications (line—polyhedron intersection queries, multiple tan-
gent plane determination, intersecting convex polyhedra, and
three-dimensional convex hull). © 1994 Academic Press, Inc.

1. INTRODUCTION

Let D be a data structure modeled as a graph G with n
constant-degree nodes. The multisearch problem con-
sists of performing O(n) searches on D, where the
searches need not be processed in any particular order.
Further, the searches may be simultaneously processed
in parallel by using, for example, one processor per
search. However, the path that an individual search will
trace in G is not known ahead of time, and must instead
be determined ‘‘on-line.”” That is, only when a search
query is at node v of G can it determine which node of G
it should visit next. (This is accomplished by comparing
the search key to the information stored at v. It should be
noted that the nature of the information stored at the
nodes, as well as the nature of the comparison that is
performed at every node, depends on the specific prob-
lem being solved.) It is important to note that the paths of
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the search queries can overlap arbitrarily. That is, at any
time, any node of G may be visited by an arbitrary num-
ber of search queries.

Multisearch is a useful abstraction that can be used to
implement parallel versions of standard sequential data
structures on a mesh. The multisearch problem is a chal-
lenging problem both for EREW-PRAMs and for net-
works of processors. This is due to the fact that many
search queries might want to visit a single node of G,
creating a ‘‘congestion’’ problem. In fact, this problem of
congestion can be complicated by the fact that we cannot
even tally ahead of time the amount of congestion that
will occur at a node, since we do not know ahead of time
the full paths of the search queries, only the nodes of G at
which the queries start. On the PRAM, the graph G is
stored in the shared memory in the standard way. When
the parallel model used to solve the problem is a network
of processors, the graph G is initially stored in the net-
work such that each processor contains one node of G, as
well as that node’s adjacency list. It is important to keep
in mind that the computational network’s topology is not
the same as the search structure G, so that a neighbor of
node v in G need not be stored in a processor adjacent to
the one containing v.' Initially, the O(n) search queries
are arbitrarily distributed one per processor.

In the EREW-PRAM, the difficulty of providing an
efficient solution to the multisearch problem comes from
the ‘‘exclusive read’ restriction of the model. A very
elegant way around this restriction was given by Paul et
al. [26] for the case where G is a 2-3 tree. However, it
should be noted that they assume a linear ordering on the
search keys. We cannot afford to make this assumption
since we consider applications involving multidimen-
sional search keys for which no linear ordering can be
used.

The multisearch problem appears to be even more
challenging for networks of processors than it is for the
EREW-PRAM, due to the fact that the data structure is
distributed over a network. Furthermore, similar to the
EREW-PRAM, each memory location can be accessed
only by a constant number of search queries at a time
since a processor containing, say, node v’s information
would be unable to simultaneously store more than a con-
stant number of search queries.

The main contribution of this paper is in solving the
multisearch problem for certain classes of graphs in
®(Vn + HVnllog n)) time on a Va x \Vn mesh-con-
nected computer, where r is the length of the longest
search path associated with a query. Note that for many

! Note that due to the congestion problem, even an efficient embed-
ding of the graph G into the network will not lead to an efficient multi-
search algorithm.

data structures the search path traversed when answering
a query has length r = O(log n). For this situation, our
algorithm processes O(n) search queries in asymptoti-
cally optimal ®(Vr) time.

The classes of graphs considered include many impor-
tant data structures that arise in practice, ranging from
simple trees to the powerful Kirkpatrick hierarchical
search DAGs that are so important to solving problems in
computational geometry. We will show how to exploit
our multisearch algorithm to efficiently implement paral-
lel on-line tree traversals as well as to traverse hierarchi-
cal representations of polyhedra. The latter yield solu-
tions to problems including line-polyhedron intersection
queries, multiple tangent plane determination, three-di-
mensional convex hull?, and intersection of convex poly-
hedra. Notice that these problems are of considerable
importance in robotics, solid modeling, computational
geometry, vision, and pattern recognition, to name a few.,

We believe that the multisearch problem is such a fun-
damental problem that we expect it to have additional
applications (e.g., in parallel databases and related ar-
eas).

The multisearch problem for hypercube multiproces-
sors was studied in [8]. The hypercube technique pre-
sented in [8] was based on the idea of moving the search
queries synchronously through G, and required time pro-
portional to the diameter of the network to move all que-
ries to the next nodes’ in their search paths. Unfortu-
nately, such an approach is not viable on the mesh, since
in order to obtain an optimal mesh algorithm to solve the
multisearch problem, the time per advancement of all
queries by one step needs to be O(Vn/log n), which is
less than the diameter of the network. The techniques we
use to solve the multisearch problem for the mesh are
very different from those used in [8], and they are also
very different from those used in [26].

In very broad terms, our techniques for solving the
multisearch problem are a judicious combination of the
following ideas.

+ Partition G into pieces, some of which are processed
sequentially, while others are processed in parallel.

+ Create multiple copies of those pieces of G for which
too many searches need access, and distribute the copies
to disjoint submeshes, each of which is responsible for
advancing a manageable subset of the ‘‘congested”
searches. It should be noted that the straightforward
strategy of making multiple copies of G, and using one
copy for each search, does not work. This is due to the

2 The 3-d convex hull problem has optimal mesh solutions recently
obtained [20, 16] independently of ours and using very different, purely
geometric approaches, rather than the multisearch method we use.



PARALLEL DATA STRUCTURES ON MESH-CONNECTED COMPUTERS 3

fact that it would not only take too much time to create
the O(n) copies, but there is not enough space to store all
of these copies of G. In fact, there is only enough space
to store &(1) copies of G, since G has n nodes.

* Map some pieces of G into suitably shaped portions
of the mesh, which are not necessarily rectangular sub-
meshes.

Of course, the parameters needed to efficiently per-
form these partitioning, duplication, and mapping strate-
gies cannot be precomputed, since the full search paths
are computed on-line. Therefore, these parameters must
also be determined on-line, as the searches advance
through G. The above description is necessarily an over
simplification, and only a careful look at the details can
reveal the exact interplay between the above ideas, as
well as the exact nature of each.

The classes of graphs considered in this paper include
hierarchical directed acyclic graphs (i.e., hierarchical
DAGs) and partitionable graphs, which contain many im-
portant data structures that arise in practice.

Hierarchical DAGs consist of a vertex set that can be
partitioned into A = O(log n) levels, Ly, ..., L, such that
every edge is from some L;to Liyy, |Lo| = 1, and ¢, u/ <
|Li| = c;u, for some w > 1 and positive constants ¢, and
¢2. An important member of this class of graphs is the
Kirkpatrick subdivision hierarchies [19]. Once an optimal
mesh implementation of multisearch for these graphs is
obtained, new optimal mesh algorithms for numerous ge-
ometric problems follow immediately.

Partitionable graphs will be defined in detail later, but
it should be noted that an important member of this class
of graphs is the balanced k-ary tree. For partitionable
graphs, we consider the multisearch problem for both the
undirected and the directed case. For tree data struc-
tures, the directed partitionable graphs model tree algo-
rithms for which search queries move along tree edges
only in one direction, either from the root towards the
leaves, or from the leaves towards the root. Many stan-
dard tree searches are of this type. Undirected partition-
able graphs model tree algorithms for which search que-
ries are permitted to move within the tree in an arbitrary
manner. Such cases arise when queries are traversing
parts of a tree, for example, in order. Note that other
instances of the multisearch problem for search trees
have been further studied in [31].

The next section contains a more formal definition of
the multisearch problem, and of the various terms used in
the paper. Sections 3.1 and 3.2 contain the main results:
our solutions to the multisearch problem for each of the
above-mentioned classes of graphs. Section 4 illustrates
the use of multisearch to solve various problems effi-
ciently on the mesh.

2. DEFINITIONS

In this section we will define the model of computation,
the multisearch problem, and the classes of graphs for
which we will present efficient multisearch algorithms in
Section 3.

2.1. The Mesh-Connected Computer

The mesh-connected computer (mesh) of size n is a
SIMD machine with n simple processors arranged in a
square lattice. To simplify the exposition, it is assumed
that n = 4¢, for some integer ¢. Foralli,j € [0, ..., n'> —
1], let P; ; represent the processor in row i and column j.
Processor P;; is connected via bidirectional unit-time
communication links to its four neighbors, P;_, ;, Py,
Pij-1, and P, ., assuming they exist. Each processor
has a fixed number of ®(log #) bit words of memory (reg-
isters), and can perform standard arithmetic and Boolean
operations on the contents of these registers in unit time.
Each processor can also send or receive a word of data to
or from one of its neighbors in unit time.

The communication diameter of a mesh of size n is
®(Vn), as can be seen by examining the distance be-
tween processors in opposite corners of the mesh. This
means that if a processor in one corner of the mesh needs
data from a processor in another corner of the mesh at
some time during an algorithm, then a lower bound on the
running time of the algorithm is Q(Vn). It is easy to see
that, because of the communication diameter, the prob-
lems in this paper have time complexities Q(\Vn).

In this paper, we will frequently use ©(Vn) time stan-
dard mesh operations such as sorting, random access
read, random access write, compression, parallel prefix,
and list ranking [4, 23, 24, 25, 29].

2.2. The Multisearch Problem

Let G = (V, E) be a directed or undirected graph of
size n = [V| + |E|, where the out-degree or degree, re-
spectively, of any vertex is bounded by some constant.
Let U be a universe of possible search queries on G.
Define the search path of a query g € U, denoted
path(q), to be a sequence of h vertices (v, ..., vy) of G
defined by a successor function f: (V U start) X U — V as

» f(start, q) = v, and
s flui,q) =vi fori=1, ..., h—1.

The function f has the following properties.

» If G is directed, then for every vertex v € V and
query g € U, (v, f(v, q)) € E.

« If G is undirected, then for every vertex v € V and
query g € U, {v, f(v, 9)} E E.
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* f(v, q) can be computed in G(1) time by a single pro-
cessor that contains the information pertinent to g and v.

We say that a query g € U visits anode v € V at time ¢
if and only if, at time ¢, the mesh is in a state where there
exists a processor which contains a description of both
the query ¢ and the node v. (Note that this definition
implies that many queries can simultaneously visit node
v, if each such query uses a different copy of v’s informa-
tion.) The search process for a search query g with
search path path(q) = (v,, ..., vy) is a process divided into
htime steps, ¢, <t; < -+ <t,,suchthatattime;, 1 =i=
h, query g visits node v;. We will refer to the change of
state between t;and ¢\, | =i < h, as advancing query g
one step in its search path. It is important to note that we
do not assume the search path to be given in advance. In
fact, we assume that the search path for each query is
constructed on-line during the search by successive ap-
plications of the function f.

Note that for a directed graph, a query can be ad-
vanced along an edge only in the indicated direction,
whereas for undirected graphs a query can advance along
an edge in both directions.

Given a set Q = {q,, ..., gm} C U of m search queries,
where m = O(n), then the multisearch problem for Q on
G consists of executing (in parallel) all m search pro-
cesses induced by the m search queries. It is important to
note that the m search processes can overlap arbitrarily.
That is, at any time ¢, any node of G may be visited by an
arbitrary number of queries, which may, in fact, be at
very different time steps in their respective search paths
(of course each such query would be using a different
copy of v’s information).

We will refer to the process of advancing, in parallel, a
subset of the m search queries by one step in their respec-
tive search paths as a multistep. Notice that we do not
require all queries to be advanced synchronously. We
will refer to a sequence of multisteps which has the prop-
erty that every search query is advanced (X log n) steps in
its respective search path, as a log-phase.

A convenient way of visualizing the multisearch pro-
cess is by associating a pebble with each query. Initially,
the pebble associated with query q is placed on the first
node in path(q). During the multisearch process, the m
pebbles move in parallel along edges of G, each pebble
according to its respective search path. Each node of the
graph may be visited, at any time, by an arbitrary number
of pebbles. Notice that if G is undirected, then pebbles
can move freely along edges of the graph, while if G is
directed, then pebbles can only move in the proper direc-
tion of an edge. Note that, pebbles may move with differ-
ent and possibly changing speeds.

For the remainder of this paper, we will assume that G
is connected (by a ‘‘connected’’ directed graph we mean

that the undirected version of that graph is connected).
For graphs with several connected components, the
multisearch algorithms described in Sections 3.1 and 3.2
can be easily applied independently and in parallel to
each connected component, such that the overall time
complexity remains unchanged.

2.3. Hierarchical DAGs

Let G = (V, E) be a directed acyclic graph with vertex
set V, edge set E, and size n = |V| + |E|, where the out-
degree of any vertex is bounded by some constant. The
graph G is called a hierarchical DAG of size n and height
h if and only if V can be partitioned into A + 1 subsets L,
..., Ly such that

1. h = O(log n),

2. |Lol =1,

3. There exists a constant u > 1 such that, foralli €
{0, cory h— 1}, IL,'+|I = [.LIL,]

4. For every directed edge (v, w) € E, there exists an
ie{0,..,h— 1}suchthatv € L;and w € L;,,.

See Fig. 1 for an illustration. The subsets Ly, ..., L, are
called the levels of G. For a node v € L,;, the index i is
called the level index of v. Notice that Requirement 3
implies that |L;] = u!. This requirement is introduced to
simplify the exposition of our algorithm in Section 3.1.
However, our algorithms can be easily adapted to the
case ¢ u' < |L;l = ¢, for some positive constants ¢,
and ¢,. It should be noted that subdivision hierarchies, as
described in [19], are hierarchical DAGs.

2.4. Partitionable Graphs

2.4.1. 8-Splitters. Let G = (V, E) be a (directed or
undirected) graph with vertex set V, edge set E, and size
n=|V|+ |E|.Let S CE. Then(V, E — §) is a graph with
vertex set V and edge set £ — § that consists of a set of
k = n connected components, denoted {G, ..., G;}.

We define S to be a §-splitter of G, 0 < d < 1, if and
only if |G;| = |V,| + |Ei| = O(n®), forall 1 =i=< k. Givena
S-splitter S, we will refer to G(S) = {G,, ..., G} as a §-
splitting of G.

A vertex v € V is defined to be at the border of a &-
splitter S if and only if v is a vertex of an edge ¢ € §. A §-

FIG. 1.

A hierarchical DAG with u= 2.
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splitting G(S) = {G,, ..
O(n'-9%),

., G} is called normalized, if k =

2.4.2. a-Partitionable (directed) graphs. Let G = (V,
E) be a directed graph with vertex set V, edge set E, and
size n = |V| + |E|, where the out-degree of any vertex is
bounded by some constant. Let distg(v,, v2) denote the
length of a shortest directed path in G connecting vertices
v; and v,. We define G to be a-partitionable if and only if
G has an a-splitter S, 0 < a < 1, such that G(§) = {G,,
..., Gi} can be partitioned into two sets of graphs, {H,,
..., Hy} and {7\, ..., T,}, such that for every directed
edge (vy, 17) € S, v € H;and v, € T;, for some i, j.

Note that, for example, every balanced k-ary search
tree with all edges either directed towards the leaves or
directed towards the root (i.e., all search queries can only
move in one direction, either from the root towards the
leaves, or from the leaves towards the root) is a-parti-
tionable; see Fig. 2.

2.4.3. a-B-Partitionable (undirected) graphs. Let
G = (V, E) be an undirected graph with vertex set V,
edge set E, and size n = |V| + |E|, where the degree of
any vertex is bounded by some constant. For two verti-
ces vy, v, € V, let distg(v,, vy) denote the length of a
shortest (undirected) path in G connecting v, and v,.

Let §; and S, be an a-splitter and a S-splitter, respec-
tively, of G. We define S| and S5 to have distance k if and
only if kK = min{dist;(v,, vy): u; is at the border of S| and
v, is at the border of S,}.

G is called a-B-partitionable if and only if G has an a-
splitter S, and a B-splitter §,, such that §, and §, have
distance Q(log n).

Note that, for example, every undirected balanced k-
ary search tree (i.e., search queries can move within the
tree in arbitrary direction) is a-B-partitionable; see Fig. 3.

T, T, T, T,

FIG. 2. A directed balanced binary tree and its a-splitter (a = ).

o

I'@

h/3

h/2

h/3

h/3

FIG. 3. A undirected balanced binary tree with its a-splitter S, (« =
1) and B-splitter S, (8 = 1), such that S, and S, have distance 4/6 =
Q(log n).

3. MESH SOLUTIONS TO THE MULTISEARCH PROBLEM

In this section, we present mesh solutions to the multi-
search problem for hierarchical DAGs, a-partitionable
graphs, and a-8-partitionable graphs.

First, we define some notation that will be used
throughout this section. Define G = (V, E) to be a graph
with vertex set V, edge set F, and size n = [V| + |E|. In
each subsection, we will specify whether the graph is
directed or undirected. For directed graphs, we assume
that the out-degree of every vertex is bounded by some
constant, and for undirected graphs, we assume that the
degree of every vertex is bounded by some constant.
Finally, we define Q = {q,, ..., g,.,j tobe a set of m = O(n)
search queries.

We now discuss the manner in which G and Q will be
represented on the mesh. Every processor will initially
store

 one arbitrary vertex v € V,

+ the addresses of all processors storing a vertex w €
V, such that (v, w) € E (recall that G has out-degree
A(1)), and

* one arbitrary query g € Q.

During an algorithm, no processor will store information
associated with more than (1) items of V nor more than
@(1) items of Q. Notice that the assignment of vertices
and queries to processors may change during the course
of the algorithms. In addition, we assume that every pro-
cessor p has a register visit(p), where at any stage of a
multisearch algorithm, a query g € Q will be said to visit
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anode v € Vif processor p is responsible for query g and
stores a copy of v in visit(p).

3.1. The Multisearch Problem for Hierarchical DAGs

Let G = (V, e) be a hierarchical DAG of size n and
height 4. Let Ly, ..., L, be the levels of G. Recall that this
implies G has out-degree O(1), # = O(log n), and |L,| =
u, for some p > 1.

Consider a set 0 = {g,, ..., g.} of n search queries. Due
to the structure of the hierarchical DAG, a search path
for a query g has length r = h + 1 and consists of
vertices in consecutive levels L;, ..., L;,_,, for some i €
{0, ..., h — r + 1}. We will henceforth assume, w.l.o.g.,
that each query has a search path of length 7 + 1.

In this section we show how to solve the multisearch
problem for G and Q on a mesh-connected computer of
size n in time O(Vn). The initial configuration of the
machine is as given at the beginning of Section 3. In
addition, we assume that every processor storing a node
v also stores the level index of v in G. Note that the level
indices can be easily computed in time ®(V'n) by succes-
sively identifying the vertices in each level L;, starting
with level L,, and compressing after each step the re-
maining levels into a subsquare of processors.

For i = 1, we will use log"” to denote the function
obtained by applying the log function i times, i.e., log"
x = log x and log® x = log log®~" x. For convenience, we
define log® x = x/2. Note that there exists a constant ¢
such that & = y? for any y = c¢. For any x = u¢, we define
log} x = max{i|logl? x = c}. Hence, log{? x = (log!i*" x)?
for 0 =i =<logg x — 1. For the remainder of this section,
all logarithms are taken to be the base u.

LetB;=(V;, E),0=i=<log*h — 1, be the subgraph of
G induced by the vertices of G between levels & — 2 log®
hand h — 1 — 2 log"*" h, inclusive. We will use |B)|, h; =
h—1-2log"V h, and Ah;, to refer to the size of B;, the
highest index of a level in B;, and the number of levels in

—— o = = = = —

hj

h
2 7
A ( ,:“:\3. Sy

FIG. 4.

----

A
P - -
\ Qlog(i*l)h
-

Illustration of the definition of subgraphs B;.

B;, respectively. See Fig. 4 for an illustration. Notice that
|Bi| = O(uh~2oe" "y = @(n/(logh)?) and Ah; = O(log®h).

Let B* be the subgraph induced by the vertices be-
tween levels A — 2 log®®™#=1 h and h, inclusive. Notice
that B* consists of &(1) levels.

The general strategy for solving the multisearch prob-
lem on G is to solve the multisearch problem for By, then
for By, and so on, until we solve the problem for Boges-1,
and finally for B*. That is, we first consider those queries
which originate in By, and process them until they either
terminate or wish to leave By. Next, we process those
queries that wanted to leave By (for B,), as well as those
queries which originate in B;, and process them until
either they terminate or wish to leave B, (for B,). This
process continues until all queries terminate that need to
be processed by B*,

Since B* has 0(1) levels, the multisearch problem for
B* can be easily solved in time O(Vn). What remains to
be shown is how to solve the multisearch problems for
By, ..., Bjogrn-| in total time o(Vn).

Consider the partitioning of the entire mesh-connected
computer into log® h x log® h submeshes of (Vr/log® h)
X (Vn/log® h) processors. Such a partitioning will be
called a Bi-partitioning, and each submesh will be called a
B-submesh. Notice that each B-submesh. Notice that
each B-submesh can store a copy of the subgraph B;.
Further, notice that every B;,,-submesh, A, contains sev-
eral B-submeshes. We will refer to the top-left B-sub-
mesh as the top-left Bi-submesh of A.

LeEMMA 1. Consider a Brpartitioning of the mesh-
connected computer, ) < i <log* h — 1, and assume that
every Br-submesh stores a copy of B;. Then the multi-
search problem for B; can be solved in time O(V|B/| log
Ah) = O(V|B|| logi*) h).

Proof. Let B/ be the subgraph of G induced by the
vertices of G between levels h; — Ah;and h; — 1 — 2 log
Ah;, inclusive, and let B be the subgraph induced by the
vertices between levels #; — 2 log Ah; and A;, inclusive.
See Fig. 5 for an illustration. Notice that |B}| =
O(uhi—2ossky = O(|B;|/(Ah;)?). On every B-submesh in
parallel, we will solve the multisearch problem for B; for
those queries stored in that submesh. We next describe
our solution for one B;-submesh. The solution consists of
two phases. In Phase 1, every query visits the vertices on
its search path that lie in B!; in Phase 2 the queries will
visit the vertices on their search path that lie in B?. For
Phase 1, the B-submesh is partitioned into Ak, X Ah;
submeshes of size |B;|/(Ah;)?, called B}-submeshes. No-
tice that every B!-submesh can store a copy of B!, In time
O(VIB]]), we can identify B! from B; and duplicate B!
such that every B!-submesh contains a copy of B!. Each
B}-submesh then (independently and in parallel) solves
the multisearch problem for B/ for those queries stored in
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Ahi -2log Ahi

2 log Ah;

C by )

Iilustration of the definition of subgraphs B! and B?.

FIG. 5.

that submesh. This can be easily done in 0(\/@) time
since |B!| = O(|Bi}/(Ah;)?) and B! consists of O(Ah,) lev-
els. For Phase 2, the search process is advanced level by
level. Since B} consists of O(log Ak,) levels, Phase 2 can
be executed in O(V|B;| log Ah,) time. Thus, the time
complexity of the above process is 0(\/|E—| log Ah). A

Obviously, if every B-submesh stores a copy of B; then
we need O(log* n) memory per processor. Our strategy
will be to distribute the subgraphs B; over the mesh in
such a way that, when the multisearch problem for B;
needs to be solved, all of the required copies of B; can be
created in time O(V/|B,,|). From this, we obtain a O(Vn)
time solution to the multisearch problem for G.

To simplify the presentation, we assume log® 4 is di-
visible by log“*!" &, for 0 = i = log* h — 1. Our algorithm
can easily be modified to handle the general case. Let
Biog-n-submesh denote the entire mesh.

ALGORITHM 1. An algorithm for solving the multi-
search problem for a hierarchical DAG G.

1. Aregister label( p) is allocated at every processor p,
and the following is executed for i = log* h — 1, ..., 0:

 In each B;,|-submesh, A, every processor p in the
top-left B-submesh of A sets label(p) := i.

Notice that the label of a processor may be overwritten
by smaller indices in later iterations.

2. Fori=log*h — 1, ..., 0, on each B, ,-submesh the
following is executed independently and in parallel:
(a) The subgraph B, is identified and its data is dis-
tributed evenly among the processors with label = i.
(b) (log" h/logt*V h)? copies of the union of By, ...,
B;_, are created and one copy is moved to each B;-sub-
mesh.

Note that, after this step, each B, -submesh stores a
copy of B; using the processors with label = i.

3. Fori=90,...,log* h — 1, on each B;;,-submesh the
following is executed independently and in parallel:

(a) B;is duplicated such that each B-submesh stores
a copy of B;.

(b) For each B;-submesh, the multisearch problem
for B; with respect to those queries stored in that sub-
mesh is solved as indicated by Lemma 1.

4. Finally, the multisearch problem for B* is solved.

THEOREM 2. Let G be a hierarchical DAG of size n
and let Q = {q1, ..., Qn} be a set of m = O(n) search
queries. Then the multisearch problem for Q on G can be
solved on a mesh of size n (with ©(1) memory per proces-
sor) in ®(W) time.

Proof. We first study the correctness of Algorithm 1,
and then give some implementation details and prove the
claimed time complexity and space requirement. In Steps
1and 2, each B;, for 0 =i < log* h — 1, is duplicated such
that every B;.,-submesh contains one copy of B;. In Step
3, the multisearch problem is solved sequentially for By,
By, ..., Biog*s—1 . Notice that within every B,.,-submesh, 0
= i = log* h — 1, the graph B, is copied into every B-
submesh, such that Lemma 1 can be applied to solve the
multisearch problem for B;. Finally, in Step 4, the multi-
search problem for B* is solved. Thus, the multisearch
problem for G is solved.

Next, we analyze the space complexity of Algorithm 1,
showing that only ®(1) space is required per processor.
This is obvious for Steps 1, 3 and 4; a potential problem
lies in the duplication scheme in Step 2. For Step 2(b) we
observe that ZiZg|B;| = O(B) and, hence, it requires
only ©(1) storage per processor. For Step 2(a), we need
to show that in each B-submesh there are ()(|B;|) proces-
sors with label = i. Note that for j < i — 1, each B,,,-
submesh contains one Bj-submesh in its top-left corner
whose processors’ labels are set to j (see Step 1). That is,
in Step 1, the labels of at most (n/(log® h)?) (log(j+1) h/
log'? h)* processors are changed from i to j. Hence, the
number of processors in each B-submesh with label = i is
Qn/(log® A (1 — ,’Zé (og(j+1) h/log" h)?)) = Q(n/
(log® h)?). Since |B;| = O(n/(log? h)?), these processors
can store B; with @(1) storage per processor provided that
the B;’s data can be evenly distributed among them. This
can be achieved in O(Vn) time, using a combination
of the standard mesh operations. Summarizing, we
have shown that Algorithm 1 requires O(1) storage per
processor.

Next, we prove the time complexity of Algorithm 1.
Since %" V[B]| = O(Vn) and O %" VIBisi]) =
O(V'n), the time complexity of Steps 1 and 2 is @(Vn).
Since B* consists of ©(1) levels, the ®(\Vn) time com-
plexity of Step 4 is obvious. Since each B;,-submesh
contains one copy of B;, the total time complexity for
Step 3a (over all iterations) is O(Z'%*"! VIBii|) =
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O(\/I_I). From Lemma 1 it follows that for each i = = 0, ...,
log* h — 1, the time complexity of Step 3b is O(V|B/| log
Ah)). Thus the total time for all iterations of Step 3b is
ozl \/|B [log Ak) = O 18" Vn (logi*!) h/log!?
h)) = O(V'n). Hence, the time complexity of Algorithm |
is®(Vn). m

3.2. The Multisearch Problem For Partitionable Graphs

In this section, we present mesh solutions to the multi-
search problem for a-partitionable graphs and «-fB-parti-
tionable graphs. We will first introduce a tool referred to
as constrained-multisearch, which will be utilized in Sec-
tions 3.2.2 and 3.2.3.

3.2.1. Constrained-Multisearch. lLet G = (V,E)be a
directed or undirected graph. Consider a set ¥ = {G,, ...,
G,} of k edge and vertex disjoint subgraphs of G such that
|Gi| = O(n®) and k = O(n'-?), for some 0 < & < 1. It is
important to note that we do not assume that the union of
the subgraphs in ¥ contains all vertices of G.

Consider any stage of the multisearch for Q on G, and
let v(g) € path(q) denote the node currently visited by
query g € Q.

The constrained-multisearch problem with respect to
¥ consists of advancing, for every G; € ¥, every search
query g with v(q) € G, by log; n steps in its search path,
unless the next node to be visited by g is not in G;. Notice
that the queries may be advanced by a nonuniform num-
ber of steps.

The remainder of this section focuses on procedure
Constrained-Multisearch(¥, 8), which solves the con-
strained multisearch problem on a mesh of size n in
®(V'n) time.

For every G; = (V,;, E;) € ¥, we define

l{g € Q: v(g) € V}l]

nd

r4@G) = |

PrOPERTY 1.

> T%(G) = O(n'?),

Gev

Proof. A trivial consequence of the fact that |Q| =

=0Mn). B

We now present our mesh algorithm for solving the
constrained-multisearch problem with respect to ¥,

PROCEDURE Constrained-Multisearch (¥, 8). Imple-
mentation of constrained multisearch with respect to W¥.

Initial configuration. A stage of the multisearch for Q
on G, where every g € Q currently visits node v(g) €
path(q). Furthermore, every processor storing a vertex

v € V, also stores an index indicating to which G; € ¥ the
vertex v belongs, if any.

Implementation.

1. All queries ¢ € Q, such that v(g) is in some sub-
graph G; € W, are marked active; all other queries are
marked inactive. (Queries whose search paths have al-
ready terminated are also marked inactive.)

2. Forevery G; € ¥, the value of I'}(G,) is computed.

3. If

> T%G) =0

GEev

then EXIT.

4. For each G; € V¥, I'{(G)) copies of G; are created.
Each copy is placed in a Vn® x Vn? size subsquare of
the mesh-connected computer. That is, a submesh of size
Vnd X Vnd.

5. Every active query g € Q, with v(g) € G;, is moved
to one of the submeshes storing a copy of G;. This move-
ment is coordinated so that each submesh containing a
copy of G; will receive O(n?) queries.

6. Within every submesh storing a subgraph G; € WV,
the following is executed log, n times.

(a) For every active query ¢ € Q, the next node in
its search path is determined (by applying the successor
function f).

(b) Every active query for which the next node in its
search path is not in G;, is marked inactive. (A query
whose search path terminates is also marked inactive.)

{c) Every active query visits the next node in its
search path.

7. Discard the copies of the subgraphs G; € ¥ created
in Step 4.

LEMMA 3. The constrained-multisearch problem with
respect to ¥V can be solved on a mesh of size n in &( V)
time.

Proof. We first study the correctness of Constrained-
Multisearch(¥, 8), then give some implementation de-
tails, and finally prove the time complexity. Obviously,
every query q either

« visits the next log; n nodes in its search path,

« visits the next N nodes in its search path, where N <
log, n, until the next node to be visited is no longer in the
same subgraph G; € ¥ that contains v{(g), or

+ does not advance any steps in its search path, for the
case where v(g) is not in any G; € V.

The crucial step for proving the correctness of the proce-
dure is to show that (1) the total size of the copies of
subgraphs G; created in Step 4 is O(n), and (2) in Step 5,
the sizes the total number of queries to be moved match
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the sizes and total number of submeshes available. Item
(1) follows from Property 1, and Item (2) follows from the
definition of I'}(G,) and the fact that each submesh is of
size O(n?).

We will now prove the claimed time complexity. Steps
1,2, 3, and 7 can be easily implemented in time O(\Vn) by
applying a constant number of standard mesh operations.
For Step 4, the mesh is subdivided into a grid of Vn'=% x
Vn'-% submeshes, each of size n®. The total number of
copies created of every subgraph G; is O(n!'~?) (Property
1). Hence, every submesh needs to simulate only a con-
stant number of ‘‘virtual’’ submeshes, where each *‘vir-
tual’’ submesh stores just one copy of some subgraph
G; € . Creating the required copies of subgraphs and
moving them to the ‘‘virtual’’ submeshes can be imple-
mented by a constant number of standard mesh opera-
tions. Step 5 is implemented analogously. Finally, we
discuss the time complexity of Step 6. Notice that each
execution of the loop body is executed independently and
in parallel on every submesh of size O(n®) created in Step
4. Therefore, by using standard random access read and
write operations within every submesh, each iteration of
the loop can be implemented in O(Vn®) time, which im-
plies a total of O(log nVn®) time for Step 6 (since there
are log, n iterations). Since 0 < 8§ < 1, the total time
complexity of Step 6 is O(log nVn?) = O(Vn). ®

3.2.2. The multisearch problem for directed a-parti-
tionable graphs. Let G = (V, E) be a directed a-parti-
tionable graph. Let Q = {q, ..., g} be a set of m = O(n)
search queries, and let r denote the length of the longest
search path associated with a query g € Q. In this sec-
tion, we present an algorithm to solve the multisearch
problem for Q on G in oVn +r (\/ﬁ/log n)) time. Our
strategy is to give an algorithm which executes one log-
phase of multisearch in (Vn) time. The entire multi-
search algorithm consists of iterating the log-phase algo-
rithm O([r/log n]) times.

Let G(S)={H,, ..., H., Ty, ..., T\,} be an a-splitting of
G such that for every edge (v;, v;) € S (directed from v,
tovy), vy €E Hiandv, ET;, forsome 1l =ik, 1 =j=k;.
Recall that this implies 0 < a < 1, |H}| = O(n®), and |T}| =
O(n9).

We assume that the a-splitter S is known a priori. That
is, initially the processor that stores vertex v € V also
stores an index indicating the graph in G(S) to which v
belongs. We can also assume, without loss of generality,
that G(S) is normalized. That is, we can assume that £ =
ky + k = O(n'"); see Section 2.4.1. Otherwise, we
group the subgraphs H;(T;) such that each resulting sub-
graph has size ©(n®). This operation is easily performed
on a mesh of size n in O(Vn) time. Furthermore, the
algorithm described in this section does not require that
every subgraph in G(S) consist of only one connected
component of the graph (V, E — §).

Before presenting our mesh algorithm for one log-
phase of the multisearch problem for Q on G, we observe
some properties of a-partitionable graphs.

PROPERTY 2. Let G(S) ={H,, ..., H,, T\, ..
an o-splitting of G. Then the following hold.

.y Tk:} be

* A query q that has a node of a subgraph H; in its
search path does not visit any node of another subgraph
H;,i#j.

* Once a query q has visited a node in a subgraph T;,
all subsequent nodes visited by q will be in the same
subgraph T;.

Proof. The proof follows from the fact that edges of
an a-partitionable graph are either directed from some H;
to some 7;, or have both endpoints in the same subgraph
HorT,.. N

ALGORITHM 2. Implementation of one log-phase of
multisearch on a directed «-partitionable graph.

1. If this is the first log-phase, then every query g € Q
visits the first node in its search path; otherwise, every
g € Q visits the next node in its search path.

2. Constrained-Multisearch {H,, ..., H;, Ty, ...
a).

3. Every g € Q visits the next node in its search path.

4. Constrained-Multisearch {H,, ..., H; , Ty, ..., T, .},

a).

] Tkz}v

LEMMA 4. One log-phase of multisearch on a di-
rected a-partitionable graph of size n can be performed
in @(Vn) time on a mesh of size n.

Proof. We first consider the correctness of Algorithm
2. The algorithm is based on the following. Initially,
every query starts at the first node in its search path,
whichisinsome H;, 1 =i=<kj,orT;, 1 =j < k,. Using
Constrained-Multisearch, every query is advanced until
it visits either its log, n successors, or needs to visit a
node that is not in its initial subgraph, at which point it
stops. Next, every query is advanced one node and then
Constrained-Multisearch is performed again. So, by 2
applications of Constrained-Multisearch, every query
will be advanced at least log; n nodes. (Note, if there are
fewer than log, 7 nodes in a given search path, then that
query will terminate at the appropriate time.) Property 2,
it follows that for every query g € Q, one of the following
cases must apply:

I. All nodes visited by g within the log-phase are in
one subgraph H;.

2. All nodes visited by g within the log-phase are in
one subgraph T;.

3. Within the log-phase, query g first visits only nodes
within one subgraph H;, and once it “‘leaves’ H; it will
only visit nodes in one subgraph T;.
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For those queries to which either Case 1 or Case 2 ap-
plies, all nodes visited on the search path during the log-
phase are visited during Steps 1 and 2; see Lemma 3. Let
g be a query to which Case 3 applies, and let (v, ..., v,,
Us+1s --+5 Uy) be the sequence of nodes to be visited within
the log-phase, where vy, ..., v, are in some subgraph H;,
and v,4y, ..., U, are in some subgraph T;. It follows from
Lemma 3 that vy, ..., v, are visited during Steps I and 2,
and that v,, ..., v, are visited during Steps 3 and 4.

From Lemma 3 it also follows that Algorithm 2 has
time complexity ®(Vn) and requires only ©(1) memory
per processor. W

Therefore, by iterating Algorithm 2 O([r/log n]) times,
the multisearch problem can be solved for a-partitionable
graphs.

THEOREM 5. Let G be a directed a-partitionable
graph of size n, and let Q = {q,, ..., qu} be a set of m =
O(n) search queries. Then the multisearch problem for
on G can be solved in O(\Vn + r(\/?t/log n)) time on a
mesh of size n, where r is the length of the longest search
path associated with a query g € Q. ®

3.2.3. The multisearch problem for undirected o-§-
partitionable graphs. l.et G = (V, E) be an (undirected)
a-f-partitionable graph. Let @ = {q), ..., q..} be the set of
m = O(n) search queries, and let r denote the length of
the longest search path associated with a query g € (. In
this section, we present an algorithm to solve the multi-
search problem for Q on G in O(Vn + r(Vn/log n)) time.
As in Section 3.2.2, we will again give an algorithm to
execute one log-phase of the multisearch problem in
®(Vn) time. The multisearch algorithm will consist of
iterating this log-phase algorithm O([r/log n]) times.

Let S, and S; be an a-splitter and a 8-splitter, respec-
tively, of G such that §; and S, have distance d(log n).
We assume that S| and S, are known a priori. That is,
initially the processor that stores vertex v € V also stores
an index indicating the graph G(S,) to which v belongs,
and an index indicating the graph G(S,) to which v be-
longs.

With the same argument as in Section 3.2.2, we also
assume that G(S,) and G(S§,) are normalized. Let G(§,) =
(Wi, ..., Wi} and G(Sy) = {Wi, ..., Wi}. Recall that 0 <
a<1,0<B<1, |W/|=0mn, |W]|=0n),k =
O(n'—), and k, = O(n'=A).

We first state a property of a-B-partitionable graphs
that will be used in the algorithm.

PrROPERTY 3. Let S| and S; be an a-splitter, and B-
splitter, respectively, of G, such that S| and S, have dis-
tance log n). Then, if at any stage of the multisearch, a
query q € Q visits a node v at the border of S, it can

advance (log n) more steps in its search path without
visiting a node v' at the border of S,.

Proof. The proof follows immediately from the defi-
nition of a-B-partitionable graphs. B

ALGORITHM 3. Implementation of one log-phase of
multisearch on an a-B-partitionable graph.

1. If this is the first log-phase, then every query q € Q
visits the first node in its search path; otherwise, every
q € Q visits the next node in its search path.

2. Constrained-Multisearch (W1, ..., Wi}, a).

3. Every g € Q visits the next node in its search path.

4. Constrained-Multisearch (W1, ..., Wi}, B).

LEMMA 6. One log-phase of multisearch on an (undi-
rected) a-B-partitionable graph of size n can be per-
Jormed in @(W) time on a mesh of size n.

Proof. We first consider the correctness of Algorithm
3. The algorithm is based on the following. Initially,
every query starts at the first node in its search path.
Using Constrained-Multisearch on G(S,), every query is
advanced until it visits either its log, n successors, or
needs to visit a node that is not in its initial subgraph, at
which point it stops. Next, every query is advanced one
node and then Constrained-Multisearch is performed
again, but this time with respect to G(S5,). Notice that by
performing the second application of Constrained-Multi-
search with respect to G(S,), every query that had
reached a border of G(S,) will be able to advance )(log n)
more steps in its search path without visiting another
node at the border of S;; by this time, the log-phase is
completed. Therefore, by two applications of Con-
strained-Multisearch, every query will be advanced at
least log, n nodes. (Note, if there are fewer than log; n
nodes in a given search path, then that query will termi-
nate at the appropriate time.) That is, for every query g €
0, one of the following cases applies:

1. All nodes visited by g within the log-phase are in
one subgraph W/,

2. All nodes visited by g within the log-phase are in
one subgraph W7},

3. Within the log-phase, query g first visits some nodes
in one subgraph W/ of G(S)). Once it ‘‘leaves” W/, it is
sufficient (for the completion of a log-phase) to consider
only the subgraph W} of G(S,) visited at that point in
time, and let the query continue on its search path until it
reaches a vertex at the border of 5;.

The correctness of Algorithm 3, as well as the time
and space complexity, follow immediately from L.emma
3. m
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Therefore, by iterating Algorithm 3 O([r/log n]) times,
the multisearch problem can be solved for a-8-partition-
able graphs.

THEOREM 7. Let G be an (undirected) a-B-partition-
able graph of size n, and let Q = {q\, ..., qn} be a set of
m = O(n) search queries. Then the multisearch problem
for Q on G can be solved in oVn + r(\/ﬁ/log n)) time on
a mesh of size n, where r is the length of the longest
search path associated with a query. R

4. IMPLEMENTING PARALLEL DATA STRUCTURES ON
A MESH-CONNECTED COMPUTER

In this section, we illustrate the use of the multisearch
techniques presented in Section 3. The multisearch tech-
nique for partitionable graphs, described in Section 3.2,
can be immediately applied to parallelize standard query
processes on balanced search trees. When processing
many such queries independently and in parallel, the
query paths may overlap arbitrarily. Of particular inter-
est are on-line processes where the paths taken by the
queries can not be computed a priori. Such cases occur,
for example, when no global order exists for the set of
queries and data.

We give two simple illustrations of possible applica-
tions. Consider a set S of n nonintersecting line segments
spanning a vertical slab. Each query consists of a point
within the slab, for which the two segments determining
the region containing that point must be computed. The
obvious sequential solution is to build a balanced binary
tree for the line segments and answer queries by a
straight forward tree search. Using our multisearch tech-
nique, a set Q of n such queries can be processed in time
O(Vn) on a mesh of size n. Note that, there exists no
total ordering on the set Q U §.

Now, consider the problem of determining the *‘best’’
common ancestor of a pair of nodes in a tree. Such a
problem occurs, e.g., in clustering [17]: given a hierarchi-
cal agglomerative clustering scheme, determine for two
data elements the ‘*best’’ cluster (e.g., the cluster with
closest cluster center) containing both elements. The ob-
vious sequential solution to the general ‘‘best’” common
ancestor problem, in a tree of size n, is to visit the path of
all common ancestors in the tree while maintaining the
current best element. Using our multisearch technique, a
set of n such queries can be processed in time O(Vn) on
a mesh of size n.

The multisearch techniques for multiple on-line over-
lapping queries on partitionable graphs also supports
cases where queries may change directions indepen-
dently. For example, in a tree, queries may move both
upwards and downwards during the search. Possible ap-

plications include cases where each query performs an
inorder traversal of a certain subtree [7].

An interesting application of multisearch techniques
for hierarchical DAGs (Section 3.1) are mesh implemen-
tations of Kirkpatrick's subdivision hierarchies. In [6],
O(log n log* n) time deterministic and Oflog n) time ran-
domized PRAM algorithms are presented for construct-
ing two well known data structures, namely, the subdivi-
sion hierarchy for a planar graph (with » nodes) and the
hierarchical representation for a convex polyhedron
(with n vertices). Both are hierarchical DAGs of size
O(n) with triangles and triangular faces, respectively, as-
sociated with their vertices. As stated in [6], once these
hierarchies are given, the following problems can be
solved in time O(log n) on the PRAM.

* Multiple planar point location: Given a planar graph
G of size n, and »n points in the plane, determine for each
point p the face of G containing p.

« Multiple line-polyhedron queries: Given a 3-d con-
vex polyhedron P of size n, and n lines in 3-space, deter-
mine for each line / whether it intersects P and, if not,
determine the two planes through / that are tangent to P.

* 3-d convex polyhedron separation: Given two con-
vex 3-d polyhedra P and Q, each of size n, determine
whether or not there exists a plane which separates P
and Q.

* Merging 3-d convex huils: Given two-separated con-
vex 3-d polyhedra P and @, construct the convex huil of
the union of P and Q.

The first two problems can be solved in O(log n) time
for a single query on a sequential machine [19, 10].
Therefore, for the CREW PRAM, both problems can be
solved in O(log n) time by assigning one processor to
each query and performing the sequential algorithm con-
currently for all processors. The third problem can be
reduced to a linear number of independent line-polyhe-
dron queries [6, 11]. The major step in solving the fourth
problem consists of determining for each vertex/edge/
face of P and Q, whether it is a vertex/edge/face, respec-
tively, of the convex hull of the union of P and Q. With
this information, the hulls can be merged by a fixed num-
ber of parallel prefix operations. As presented first in [1],
with corrected versions in [9] and [3], each edge of P can
locally determine whether or not it is in the convex hull
based on the result of its line-polyhedron query with re-
spect to ). Hence, the problem of merging 3-d convex
hulls reduces to 2n line-polyhedron queries.

For the mesh-connected computer, it has been shown
in [9] that the subdivision hierarchy for a planar graph
(with n nodes), as well as the hierarchical representation
for a convex polyhedron (with n vertices), can be con-
structed in time O(Vn) using O(n) processors. Using
Theorem 2, we obtain
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THEOREM 8. The following problems can be solved in

time ®(\/ﬁ) on a mesh of size n:

hull of n points in 3-space

pr

1. Multiple planar point location.?

2. Multiple line-polyhedron queries.

3. 3-d convex polyhedron separation.

4. Merging 3-d convex hulls; determining the convex
|

5. CONCLUSION

In this paper, we have considered the rmultisearch
oblem for O(n) search queries on a data structure mod-

eled as a graph G with n constant-degree nodes. We have

pr

esented a O(Vn + r (\/ﬁ/log n)) time algorithm for

performing, in parallel, O(n) searches on a shared data

structure stored in a

n X V'n mesh-connected com-

puter. The main problem for the mesh, in comparison to
other networks like the hypercube, is that in order to
obtain optimal algorithms from multisearch, the time per
advancement of all queries by one step in their search
paths must be O(\/ﬁ/log n). That is, it must be less than
the diameter of the network. The algorithms presented

he

re show how to overcome this problem.
To illustrate the use of the multisearch techniques, we

considered parallel online traversals of trees and hierar-

ch

ical representations of polyhedra. The parallel mesh

implementation of the latter one yields optimal mesh al-
gorithms for multiple line-polyhedron intersection que-
ries, multiple tangent plane determination, intersecting

Cco

nvex polyhedra, and computation of the three-dimen-

sional convex hull. We believe that the multisearch prob-
lem is such a fundamental problem that we expect it to
have many additional applications (e.g., in parallel data-
bases and related areas).
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