
Algorithmica (1997) 17: 19–32 Algorithmica
© 1997 Springer-Verlag New York Inc.

“The Big Sweep”: On the Power of the Wavefront
Approach to Voronoi Diagrams

F. Dehne1 and R. Klein2

Abstract. We show that the wavefront approach to Voronoi diagrams (a deterministic line-sweep algorithm
that does not use geometric transform) can be generalized to distance measures more general than the Euclidean
metric. In fact, we provide the first worst-case optimal (O(n logn) time,O(n) space) algorithm that is valid for
the full class of what has been callednice metricsin the plane. This also solves the previously open problem of
providing anO(n logn)-time plane-sweep algorithm for arbitraryLk-metrics. Nice metrics include all convex
distance functions but also distance measures like the Moscow metric, and composed metrics. The algorithm
is conceptually simple, but it copes with all possible deformations of the diagram.
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1. Introduction. Given a setS of n sites in the plane, theirVoronoi diagramis a
partition of the plane into regions, one to each site, such that the region of sitep contains
all points of the plane that are closer top than to any other site inS. This structure has
proven most useful in computational geometry as well as in other areas; see, e.g., [2] for
a survey on variations and applications.

Four different algorithm schemes have been developed for computing the Voronoi
diagram efficiently. First, a divide-and-conquer algorithm was presented in [18] that runs
in optimal timeO(n logn) in the worst case. Second, geometric transformations were
discovered in [3] and [8] that reduce the problem to computing convex hulls in 3-space. A
third worst-case optimal algorithm was proposed in [9]; after applying a transformation in
the plane, a line-sweep algorithm is used. Finally, a randomized incremental construction
was presented in [4] that allows the Voronoi diagram ofn points to be computed in
expected timeO(n logn), the average being taken over then! many orders of insertion.

The concept of the Voronoi diagram and the algorithms for its construction have
been generalized to different types of sites and distance measures [2], and to an abstract
setting [11], [12].

In this paper we study the line-sweep approach. This paradigm can also be used for
computing the Voronoi diagram of points on a cone [7]. Furthermore, it has been pointed
out in [17] and [6] that the planar transform suggested in the original paper [9] is not
necessary. Rather, the Voronoi diagram can be constructed directly by sweeping the plane
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with a vertical linel from left to right, maintaining that part of the diagram to the left
of l that cannot change any more as new sites are discovered during the sweep. Its right
boundary is a sequence of parabola segments that looks like awavefront. As a matter of
fact, this is just the Voronoi diagram of the points to the left ofl and of the sitel itself, and
the wavefront is the boundary of the region ofl . A sweep algorithm without transform
has been used in [19] for computing the Voronoi diagram of points with respect to the
Manhattan distanceL1 and, analogously,L∞.

Since this wavefront algorithm is extremely natural and simple, we would like to
generalize it to distance measures other thanL1, L2, andL∞. For example, in order to
plan collision-free motions of a convex robot, convex distance functions are required
[5].

We show that the wavefront approach can even be generalized to the full class ofnice
metricsin the plane introduced in [14].

Roughly, a metricd is called nice if convergency of point sequences means the same
in d as in the Euclidean metric, if for any two points there is a third one between them
such that their mutual distances add up, and if bisectors are tractable; see Definition 1
below. This class contains not only all symmetric convex distance functions, but also
distance measures like the Moscow metric, composed metrics, etc.; see [12].

So far, only for a proper subclass of nice metrics has a deterministic worst-case
optimal algorithm been known [12]. Since it is of divide-and-conquer type, it works only
if each point set can be partitioned into subsets of equal size whose bisector is acyclic. In
practice, this condition is not easy to verify. Also, the divide-and-conquer algorithm is
quite complicated in its general version. A randomizedO(n logn) algorithm suitable for
all nice metrics can be obtained from the results on abstract Voronoi diagrams presented
in [16] and [13].

In this paper we present the first deterministic algorithm for computing the Voronoi
diagram ofn points in an arbitrary nice metric in the plane withinO(n logn) time
and linear space. This also extends the results of [19] by providing anO(n logn)-time
plane-sweep algorithm for arbitraryLk.

Among the efficient deterministic algorithms, the wavefront approach might be the
easiest to implement. It gracefully deals with all kinds of ugly phenomena like multiple
vertices, two-dimensional bisector pieces, one-dimensional pieces of Voronoi regions.

The paper is organized as follows. After providing the basic definitions in Section 2,
we briefly review, in Section 3, how the wavefront algorithm works in the Euclidean
metric. In Section 4 we study the dynamic properties of the wavefront during the sweep.
Then, in Section 5, we present the general wavefront algorithm. Four different kinds of
events call for an update of the wavefront; how to handle them is described in respective
subsections. In the last section we mention possible generalizations and propose some
problems for further research.

2. Nice Metrics and Voronoi Diagrams. Most of the material contained in this section
has been presented in [12]. We include it here for the convenience of the reader.

Let d be a metric in the plane, i.e., a function that assigns to each pair of pointsa, b
in the plane a nonnegative distanced(a, b), such thatd(a, b) = 0 if and only if a = b,
d(a, b) = d(b,a), andd(a, c) ≤ d(a, b)+ d(b, c) hold for alla, b, c.
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Fig. 1.The bisectorB(q, l ), whereq ∈ l andq ≺ l , in the Euclidean metric (L2) and in theL∞-metric defined
by L∞(a, b) = max(|x(a)− x(b)|, |y(a)− y(b)|).

Let l denote a (vertical) line. By

d(p, l ) := min{z ∈ l ; d(p, z)}

we denote the distance between pointp and linel . We haved(p, l ) = 0 if and only if
p ∈ l . Now let p be a point, and letr denote a point or a vertical line. Let

B(p, r ) = {z; d(p, z) = d(r, z)},
D(p, r ) = {z; d(p, z) < d(r, z)},

and putC(p, r ) = D(p, r ) ∪ B(p, r ). The setB(p, r ) is called thebisectorof p andr
(see Figure 1). It need not be a curve; inL1 it contains quarter-planes if the points are
diagonal vertices of a square. For a pointp and nonnegative distanceα, thed-circle for
p with distanceα is defined as{z; d(p, z) = α}.

We consider the following class of metrics in the plane.

DEFINITION 1. A metricd on<2 is callednice if:

1. Eachd-circle contains a standard circle, and vice versa.
2. Eachd-circle is contained in a standard circle.
3. For any two pointsa and c there exists a pointb 6∈ {a, c} such thatd(a, c) =

d(a, b)+ d(b, c) holds.
4. If p, r are two points, or a point and a line, then the boundary ofB(p, r ) consists of

two curves each of which is homeomorphic to a line. The intersection of two such
curves consists of finitely many connected components.

The curves referred to in property 4 of Definition 1 will be the edges of the Voronoi
diagram. However, we can choose between the left and the right boundary curve of
B(p, r ), C(p, r ) ∩ D(r, p) or C(r, p) ∩ D(p, r ).

In order to make a consistent choice, letS= {p1, . . . , pm, l } be a set ofm points and
one vertical line,l , and let≺ be a total order onS. By ∂M we denote the boundary of a
setM .
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DEFINITION 2. For sitesp, r ∈ S, p 6= r , let

R(p, r ) :=
{

D(p, r ) ∪ B(p, r ) if p ≺ r,
D(p, r ) if r ≺ p.

Then

VR(p, S) :=
⋂
r∈S
r 6=p

R(p, r )

is theVoronoi region of p with respect to S, and

V(S) :=
⋃
p∈S

∂R(p, S)

is theVoronoi diagram of S.

Clearly,∂R(p, r ) = ∂R(r, p) holds. We denote thisseparating curveby J(p, r ).
The Voronoi regions form a disjoint decomposition of the plane. It can be derived

from property 3 of Definition 1 that for any two points,p andq, there exists ad-straight
pathfrom p to q, satisfyingd(a, c) = d(a, b)+d(b, c) for any three consecutive points
a, b, andc on the path. Since the Voronoi regionsVR(p, S) ared-star shaped—each
d-straight path fromp to a point inVR(p, S) is contained inVR(p, S)—we obtain the
following consequence:

LEMMA 3. For each point p∈ S, VR(p, S) is connected. The Voronoi region of line l
is connected if no point in S lies on l.

The Voronoi diagram is a planar graph of linear complexity whose edges consist of
pieces of bisecting curvesJ(p, r ), and whose faces are the Voronoi regions. However,
the regions may contain one-dimensional pieces (cut-points whose removal leaves the
region disconnected). Examples are shown in Figure 2 for theL∞-metric and for the

Fig. 2.Let S= {p,q, r } andp ≺ q, r . Then the regionVR(p, S) contains one-dimensional pieces. The thick
half-line in the left picture and the shaded quarter-plane in the right picture consist of points equally far from
p, q, andr ; they belong to the region ofp.



“The Big Sweep”: On the Power of the Wavefront Approach to Voronoi Diagrams 23

Moscow metric, where distance is defined by minimum length paths that consist only
of segments radial to the centerc, and of segments of circles aroundc; see [12]. If the
region of sitep has a cut point,v, thenp must, with respect to≺, be the minimum of all
other sites whose regions are adjacent tov.

3. Review of the Wavefront Algorithm for the Euclidean Metric. Let S= {p1, . . . ,

pn} be a set ofn point sites in the plane. We want to construct the Euclidean Voronoi
diagramV(S). To this end we compute, for each value oft from−∞ to∞, the Voronoi
diagramV(St ), where

St = {p ∈ S; x(p) < t} ∪ {l t }.
Here l t denotes the vertical line whosex-coordinate equalst . Thoughl t works as the
sweepline it is most useful to add it to the set of sites.

First, we sort the pointspi by theirx-coordinates. We may without loss of generality
assume that the pointspi have pairwise different coordinatesx(pi ).

In Figure 3 two Voronoi diagrams,V(St ) andV(St ′), are depicted. We first discuss the
situation at timet . Since none ofp1, . . . , p5 lies on linel t , the bisecting curvesJ(pi , l t ) =
B(pi , l t ) are parabolae. In this example, all of them contribute to thewavefront Wt , i.e.,
to the boundary of the Voronoi regionVR(l t , St ). The points on thep-side of J(p, l t )
are closer top than tol t , so they area priori closer top than to any linel t ′ , wheret < t ′,

Fig. 3.The Euclidean Voronoi diagramsV(St ) andV(St ′ ).
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and to any point site to the right ofl t . Consequently, asl t moves on, the waves move on
as well, whereas the Voronoi regions ofV(St ) that do not contribute to the wavefront do
not change anymore.

There are two possible events that call for an update of the wavefront, namely when a
new wave appears inWt , or when an old wave disappears. The first type of event is called
asite event. In Figure 3 it occurs when the sweepline hits the point sitep6. Shortly after,
at timet ′, there is a new wave formed by a segment ofJ(p6, l t ′) glued onto the wave
of p4 (which now contributes two segments to the wavefrontWt ′ ). When the sweepline
hits p6 the new wave starts out as a left half-line; see Figure 1.

Let p, q denote two point sites whose waves are adjacent inWt . The bisector ofp
andq gives rise to an edge ofV(St ) to the left ofWt . Its prolongation into the region
of l t is called aspike. In Figure 3 spikes are depicted by dashed lines. The spikes can
be thought of as tracks the waves move along. A wave disappears from the wavefront
once it has reached the point where its two neighboring spikes cross. This is called a
spike event. At point v in Figure 3 a spike event could occur. Without sitep6, the wave
of p3 would disappear, after reachingv, and the neighboring waves ofp4 andp5 would
become adjacent. However, after detecting sitep6 point v′ gives rise to an earlier spike
event that occurs when the wave ofp4 (together with the wave ofp3) arrives atv′.

If, at time t f , all point sites have been detected and all pending spike events have
been processed, the diagramV(S) can be obtained fromV(Stf ) simply by removing the
wavefront.

To implement this algorithm the segments of the wavefront can be stored in a balanced
binary tree and a priority queue maintained for the site and spike events. Together with
the initial sorting step, all this can be done in timeO(n logn) and spaceO(n), in the
worst case.

4. Proofs of Wavefront Properties for the General Case. In the general case there
are two additional types of events. Two nonintersecting waves may touch, and then
intersect (touch event), and of two intersecting waves one may outrun the other (pass
event). These event types are illustrated in Figure 6. They do not occur in the Euclidean
metric because any two parabolaeB(p, l ) and B(q, l ) intersect, ifp andq are not on
l . Also, we have to replace the intuitive arguments given in Section 3 by formal proofs
based on the properties of nice metrics, as stated in Definition 1.

Let p1, . . . , pn denote the given point sites. As before, let

St = {p ∈ S; x(p) < t} ∪ {l t }.

As tie break order≺ in Definition 2 of the Voronoi diagram we choose the order induced
by the (unique)x-coordinates; thus, the linel t is always the maximal element of all sites
currently considered. It is this choice of≺ that helps us cope with deformations.

First, we study the behavior of a single waveJ(p, l t ), ast grows bigger.

LEMMA 4. For every point p, the function fp(t) = d(p, l t ), t ≥ x(p), is strictly
increasing and continuous. The function fp(t) is unbounded, that is, fp(t) → ∞ for
t →∞.
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Fig. 4.The point-to-sweepline distance increases continuously.

PROOF. Let x(p) ≤ t < t ′, and letπ denote ad-straight path fromp to a pointq′ ∈ l t ′
satisfyingd(p,q′) = d(p, l t ′); see Figure 4. The pathπ intersectsl t at some pointq, and
we obtaind(p, l t ) ≤ d(p,q) < d(p,q′) = d(p, l t ′). Hence,fp(t) is strictly increasing.
In order to show the continuity offp(t) we consider ad-straight pathδ from p to l t
ending inr , whered(p, r ) = d(p, l t ). Let r ′ be the point onl t ′ with y(r ) = y(r ′). Then
d(p, l t ) < d(p, l t ′) ≤ d(p, l t )+ d(r, r ′). If |t ′ − t | → 0, thend(r, r ′)→ 0 and, hence,
| fp(t ′)− fp(t)| → 0. The unboundedness offp(t) follows from the assumption that the
d-circles are bounded.

Now we show that the waves keep moving, as the sweepline proceeds.

LEMMA 5. For any t < t ′, and for any point p with x(p) < t , the bisecting curve
J(p, l t ) is contained in the domain D(p, l t ′). In particular, J(p, l t ) ∩ J(p, l t ′) = ∅.

PROOF. Letw ∈ J(p, l t ) ⊂ B(p, l t ), as shown in Figure 5. From Lemma 4 it follows
thatd(w, l t ′) > d(w, l t ) = d(w, p). Hence,w ∈ D(p, l t ′).

As a consequence, the Voronoi regions ofV(St ) can only grow bigger, as the sweepline
proceeds.

Fig. 5.The waves keep moving, as the sweepline proceeds.
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LEMMA 6. For any t < t ′, and for any point site p∈ St , we have VR(p, St ) ⊆
VR(p, St ′); equality holds if the Voronoi region of p in V(St ) does not share an edge
with the wavefront∂VR(l t , St ).

PROOF. Lemma 5 impliesR(p, l t ) ⊂ R(p, l t ′) for each point sitep ∈ St . For each
point siteq ∈ St ′ − St we haveVR(p, St ) ⊂ R(p,q). Namely, ifz belongs to the region
of p in V(St ), then, in particular,z ∈ R(p, l t ), henced(p, z) ≤ d(z, l t ) ≤ d(z,q);
the latter could be an equality ifq ∈ l t . This impliesz ∈ C(p,q) = R(p,q), due
to p ≺ q.

Next, we show that there is no bound to the expansion of a wave.

LEMMA 7. Let p ∈ St , and let z∈ D(l t , p). Then there is a real number t′ > t such
that z lies on or to the left of J(p, l t ′).

PROOF. At time t we haved(z, l t ) < d(z, p). Due to Lemma 4 the value ofd(z, l t )
is continuously increasing, ast tends to∞ (it may be decreasing first, ifz lies to
the right of l t ). Thus, there is a uniquet ′ such thatd(z, l t ′) = d(z, p), which means
z ∈ B(p, l t ′) ⊂ R(p, l t ′).

DEFINITION 8. For each pointz to the right of pointp let treach(p, z) = inf{t; z ∈
R(p, l t )}.

To simplify the discussion we assume that the bisectorB(p, l t ) is a curve, i.e., that
B(p, l t ) = J(p, l t ) holds if p 6∈ l . This can be shown to be true for all symmetric convex
distance functions. The case whereB(p, l t ) contains two-dimensional pieces does not
cause any problems. Under this assumption,treach(p, z) marks the unique time when
J(p, l t ) hits z.

Now we look at the possible interaction of two waves.

DEFINITION 9. Two bisecting curves,J(p,q) and J(q, r ), are said tocrossat point
v if, in a neighborhood ofv, one piece ofJ(p,q) is a Voronoi edge that separates the
regions ofp andq in the Voronoi diagramV({p,q, r }), and the other piece ofJ(p,q)
is not.

This definition is symmetric inJ(p,q) andJ(q, r ).
Two bisectorsJ(p, l t ) andJ(q, l t ) can cross at most twice, or the Voronoi diagram of

{p,q, l t } would have a disconnected Voronoi region, contradicting Lemma 3. It is easy
to distinguish the two vertices that two bisectors represented in the wavefront may have
in common. Namely, the cyclic sequences of Voronoi regions in counterclockwise order
around them are different; see, for example, the waves ofp4 and p6 in Figure 3.

DEFINITION 10. Forp,q ∈ St let

tstart(t
′, p,q) = inf{t ≥ t ′; J(p, l t ) crossesJ(q, l t ) with region order(p,q, l t )},

tstop(t
′, p,q) = sup{t ≥ t ′; J(p, l t ) crossesJ(q, l t ) with region order(p,q, l t )}.
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Fig. 6.At time t1 a touch event occurs. At timet2, theq-wave outruns thep-wave, giving rise to a pass event.

If J(p, l t ′) is strictly aboveJ(q, l t ′) thentstart(t ′, p,q) marks the time when the two
curves touch, as depicted in Figure 6, if they ever do. Otherwise,tstart(t ′, p,q) = ∞.
Once two such bisectors have started to intersect, they can only get disentangled if one
of them passes the other, because they never recede, due to Lemma 5. In Figure 6 this
happens at timet2 = tstop(t1, p,q).

Next, we look at the wavefrontWt = ∂VR(l t , St ) as a whole. Sincel t is maximal with
respect to≺, its Voronoi region does not contain cutpoints, according to Definition 2. The
wavefront can consist of finitely many disconnected pieces that are separated by parts
of VR(l t , St ) extending to infinity. Each wavefront segment consists of finitely many
waves, some of which may have degenerated into points. Conceptually, we assume that
the “essential” part of the diagram is encirled by a closed curve0 consisting of a segment
of l t and a⊂-shaped segment to the left, so large that only semi-infinite bisectors are
outside of0, which either coincide or stay disjoint. Each of the wavefront segments hits
0 at two points, thereby introducing a top–down order among these segments, just as if
they were connected.

The right drawing of Figure 3 shows that the same site may contribute more than one
wave to the wavefront.

LEMMA 11. At each time t, the number of waves in Wt is O(n).

PROOF. Since any two bisecting curves can cross at most twice, the assertion follows
from the fact thatλ2(n) = O(n); see [1].

As in Section 3 we denote the part inVR(l t , St ) of the curve bisecting the sites of two
neighboring waves ofWt aspike. It is easy to see that the two spikes of ap-wave inWt

can cross at most once, and that they do not intersect at all if they belong to the same
bisecting curve.
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5. The General Wavefront Algorithm. During the sweep, we maintain the combina-
torial structure of the wavefrontWt = ∂VR(l t , St ), i.e., the sequence of boundary edges
of VR(l t , St ) in top–down order, and the event queueQt . In the latter, future events of
four types are stored, together with the time when they will occur:

• Site events.For each point sitep to the right ofl t the timex(p).
• Spike events.For each pair of spikes of ap-wave inWt that cross at pointv the time

treach(p, v); see Definition 8.
• Touch events.For each pair of disjoint segments ofWt the timetstart(t, p,q), if less

than∞, if the lowest wave of the upper segment is ap-wave and the uppermost wave
of the lower segment is aq-wave; see Definition 10.
• Pass events.For each end of a segment ofWt the timetstop(t, p,q), if less than∞, if

the last wave in the segment is ap-wave, its predecessor aq-wave, and if thep-wave
is above theq-wave.

We assume that events scheduled for the same time are sorted in such a way that spike
events come first, next pass events, then touch events, and finally site events.

The correctness of the wavefront approach is due to the following:

LEMMA 12. The wavefront can only change its structure when one of the above events
occurs.

PROOF. Suppose that no event occurs within the time interval(t ′, t ′′). Then disjoint
wavefront segments remain disjoint, because there is no touch event. If a wave outruns
its neighbor, the latter must be situated at the end of a wavefront segment (otherwise
there would be a spike event before), but such pass events do not occur in(t ′, t ′′), by
assumption.

Therefore, the waves run along their spikes. Since the spikes do not cross it follows
that no wave can disappear fromWt ′ .

Suppose that at timet ∈ (t ′, t ′′) a new wave of sitep appears. Thenp belongs to
St ′ , and has, due to Lemma 6, already contributed one or several waves toWt ′ . None
of them has yet disappeared. For eachp-wave inWt we consider ad-straight arc top;
since it is contained in the region ofp, it must pass through ap-wave ofWt ′ . Since the
latter contains fewerp-waves thanWt , there must be two paths leading through the same
p-wave ofWt ′ ; see Figure 7. Each wave ofWt between thep-waves these paths start
from is separated from its site—a contradiction. Therefore, the sequence of waves in the
wavefront does not change before timet ′′.

If the two spikes of ap-wave cross at pointv, then thep-wave reachesv at time
treach(p, v) and not before, by definition. However, some other part of the wavefront
could reachv at an earlier time.

LEMMA 13. Assume that the first event in Qt is a spike event,and letv be the cross-point
associated with it. Thenv lies in front of Wt , i.e., in VR(l t , St ).

PROOF. Suppose the spike event is scheduled for timet ′ = treach(p, v). If some piece
of the wavefront reachesv before timet ′, then it is bound to hit thep-wave head-on
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Fig. 7.The wave ofq cannot be connected toq by a path contained in the region ofq.

before the latter arrives atv. However, then there must be a spike event before timet ′—a
contradiction.

Next, we describe how to updateWt andQt on processing an event.

5.1. Spike Events. When a spike event occurs we delete the corresponding wave from
the wavefront. If any of the two spikes involved has had a later cross-point with its other
neighbor, this spike event is deleted fromQt . For example, in Figure 3 we would at time
tp4(v

′) delete the event associated withv. Finally, we form the spike of the two newly
adjacent waves and compute the cross-points with its neighbors. The corresponding spike
events are inserted intoQt . They could occur at timet , too, but they would be processed
before the sweepline moves on.

Multiple spike events (leading to Voronoi vertices of degree larger than three) are dealt
with like simple ones. If we have a sequence of spikes crossing at the same point,v, then
all the associated waves arrive atv at the same time. Within this sequence, neighboring
pairs of spikes can be processed in any order.

5.2. Touch and Pass Events. When two formerly disjoined segments ofWt become
united we have to update the sequence of waves, because the piece of the encircling
curve0 that has separated the two segments disappears. A new spike appears between
the newly touching waves. We compute the cross-points with its neighbors, and insert
any resulting spike event into the queueQt .

Similarly, if a wave at the end of a wavefront segment is outrun by its neighbor, we
delete it fromWt , and remove fromQt the spike event possibly caused by the spike
between these two waves.

5.3. Site Events. When the sweepline hits a new site,q, at timet , we insert a new wave
into the wavefrontWt . Before that, we have processed all other events of timet that were
stored in the queue.

From the examples depicted in Figure 1 we know that the new waveB(q, l t ) can be
a curve throughq that is still folded, like the left half-line inL2, or one that has already
begun to open up, like the contour of the left quarter-plane inL∞. We treat the first
situation as a special case of the second. Thus, for each of the two arcs ofB(q, l t ) we
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have to find the first point where it crosses the wavefront. This is greatly facilitated by
the following observation.

LEMMA 14. Let A be an arc of B(q, l t ), where q ∈ l t . Then there is at most one
cross-point of A with Wt , namely, the first point on A that belongs to Wt .

PROOF. The first pointw of Wt on A must be a cross-point. Namely, ifw belongs to the
wave of sitep ∈ St , thenp ≺ q ≺ l t holds, by definition of≺. However, thenA stops
being a(q, l t )-Voronoi edge at pointw, even if it only touches the wavefront. In fact, we
havew ∈ B(p, l t ) ∩ B(q, l t ) ⊂ B(p,q) ⊂ R(p,q), sow belongs to the region ofp,
and notq, in V({p,q, l t }). Moreover, onceA has touched the wavefront it cannot return
into the region ofl t ; either the region ofq or the region ofl t would not be connected.
This shows that there can be only one cross-point.

Thanks to Lemma 14 we can locate each of the two cross-points ofB(q, l t ) with Wt

by abinary searchon the ordered sequence of waves inWt . We start with the waves in
the middle ofWt and test if arcA has a cross-point withs. If not, we check whethers
lies above or belowA, to direct the further search. Note that this search works correctly
even ifWt is not y-monotone.

Once both cross-points have been found, the new wave is inserted into the wavefront.

LEMMA 15. The waves of Wt that are covered by the new wave B(q, l t ) now become
Voronoi edges separating the regions of their point site from q; see Figure8.

PROOF. For the two points markedx andzwe haved(r, x) ≤ d(x, l t ) ≤ d(x,q), hence
x ∈ R(r,q) because ofr ≺ q. Also, we haved(z,q) = d(z, l t ) < d(r, z), which implies
z ∈ R(q, r ) for eachr ∈ St .

After inserting the new wave we check its two spikes for cross-points with their
neighbors, and insert the resulting spike events into the event queue. Before that, we
remove fromQt all spike events involving spikes that are covered by the new wave.

Fig. 8.The part ofWt covered by the newq-wave belongs toV(S).
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Note that, forL2 we need to consider only spike events and site events, and Lemmas 14
and 15 are obvious for this special case.

THEOREM16. The Voronoi diagram of n points based on a nice metric in the plane can
be computed by the wavefront algorithm in optimal time O(n logn), using linear space.

PROOF. Only the performance bounds need proof. Due to Lemma 11, the update oper-
ations onWt andQt can be carried out in timeO(logn) per event, and linear space is
sufficient to hold these structures. Clearly, we haven site events andO(n) spike events,
each giving rise to a Voronoi vertex. Each touch or pass event results in an unbounded
Voronoi edge. Hence there areO(n) events altogether.

Here we assume thatO(1) implementations of the followingelementary operations
are available. To find out if and where two neighboringp-spikes cross, and to test if and
where a segmentc of a bisectorB(p, l ) is crossed by an arcA of B(q, l ) starting from
q ∈ l , or whetherc lies above or belowA. Finally, to compute the functionstreach(p, z),
tstart(t ′, p,q), andtstop(t ′, p,q).

6. Conclusion. We have shown that the wavefront approach to computing the Voronoi
diagram is very natural, that it applies to a variety of interesting metrics, and that it can
easily cope with all kinds of degeneracies. These properties should make it a tool well
suited for practical applications.

An obvious question is if the wavefront algorithm can handle even more general
situations than point sites in nice metrics. For example, as long as there is a substitute
for d-straight paths that connect each point to its site, a further generalization seems
possible. Another open problem is whether the approach can also be applied to general
(not necessarily symmetric) convex distance functions. Second, sites other than points
should be considered. We expect that without major modifications the Voronoi diagram
of n line segments can be computed, as is the case for Fortune’s approach [9] that uses
a geometric transform.

Also, it would be possible to use curves different from a vertical line for the sweep. For
example, an expanding circle would allow us to compute the Voronoi diagram of a large
set of pointslocally, if the sites are given in increasing distance from the query point.

The existing general Voronoi diagram algorithms make use of the fact that the bisector
of two sites is homeomorphic to a curve, and not to a circle. However, this condition is
violated, e.g., if the sites are disjoint convex curve segments, or for point sites on the
surface of a cone [7]. We think it is one of the major open problems to invent a general
algorithm that can deal with this case, too.
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