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“The Big Sweep”: On the Power of the Wavefront
Approach to Voronoi Diagrams

F. Dehné and R. Kleir?

Abstract. We show that the wavefront approach to Voronoi diagrams (a deterministic line-sweep algorithm
that does not use geometric transform) can be generalized to distance measures more general than the Euclidean
metric. In fact, we provide the first worst-case optintalfilogn) time, O(n) space) algorithm that is valid for

the full class of what has been calleide metricsn the plane. This also solves the previously open problem of
providing anO(n log n)-time plane-sweep algorithm for arbitralk-metrics. Nice metrics include all convex
distance functions but also distance measures like the Moscow metric, and composed metrics. The algorithm
is conceptually simple, but it copes with all possible deformations of the diagram.
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1. Introduction. Given a setS of n sites in the plane, theivoronoi diagramis a
partition of the plane into regions, one to each site, such that the region pfcitgains

all points of the plane that are closerpdhan to any other site i. This structure has
proven most useful in computational geometry as well as in other areas; see, e.g., [2] for
a survey on variations and applications.

Four different algorithm schemes have been developed for computing the Voronoi
diagram efficiently. First, a divide-and-conquer algorithm was presented in [18] that runs
in optimal timeO(nlogn) in the worst case. Second, geometric transformations were
discovered in [3] and [8] that reduce the problem to computing convex hulls in 3-space. A
third worst-case optimal algorithm was proposed in [9]; after applying a transformationin
the plane, aline-sweep algorithm is used. Finally, a randomized incremental construction
was presented in [4] that allows the Voronoi diagrammgboints to be computed in
expected timeéD(nlogn), the average being taken over tileanany orders of insertion.

The concept of the Voronoi diagram and the algorithms for its construction have
been generalized to different types of sites and distance measures [2], and to an abstract
setting [11], [12].

In this paper we study the line-sweep approach. This paradigm can also be used for
computing the Voronoi diagram of points on a cone [7]. Furthermore, it has been pointed
out in [17] and [6] that the planar transform suggested in the original paper [9] is not
necessary. Rather, the Voronoi diagram can be constructed directly by sweeping the plane
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with a vertical linel from left to right, maintaining that part of the diagram to the left

of | that cannot change any more as new sites are discovered during the sweep. Its right
boundary is a sequence of parabola segments that lookswkeefront As a matter of

fact, this is just the Voronoi diagram of the points to the leftafd of the sité itself, and

the wavefront is the boundary of the regionl oA sweep algorithm without transform

has been used in [19] for computing the Voronoi diagram of points with respect to the
Manhattan distanck; and, analogously, .

Since this wavefront algorithm is extremely natural and simple, we would like to
generalize it to distance measures other than_,, andL . For example, in order to
plan collision-free motions of a convex robot, convex distance functions are required
[5].

We show that the wavefront approach can even be generalized to the full ctass of
metricsin the plane introduced in [14].

Roughly, a metrid is called nice if convergency of point sequences means the same
in d as in the Euclidean metric, if for any two points there is a third one between them
such that their mutual distances add up, and if bisectors are tractable; see Definition 1
below. This class contains not only all symmetric convex distance functions, but also
distance measures like the Moscow metric, composed metrics, etc.; see [12].

So far, only for a proper subclass of nice metrics has a deterministic worst-case
optimal algorithm been known [12]. Since it is of divide-and-conquer type, it works only
if each point set can be partitioned into subsets of equal size whose bisector is acyclic. In
practice, this condition is not easy to verify. Also, the divide-and-conquer algorithm is
quite complicated in its general version. A randomigigh log n) algorithm suitable for
all nice metrics can be obtained from the results on abstract Voronoi diagrams presented
in [16] and [13].

In this paper we present the first deterministic algorithm for computing the Voronoi
diagram ofn points in an arbitrary nice metric in the plane with®(nlogn) time
and linear space. This also extends the results of [19] by providing(arog n)-time
plane-sweep algorithm for arbitraty.

Among the efficient deterministic algorithms, the wavefront approach might be the
easiest to implement. It gracefully deals with all kinds of ugly phenomena like multiple
vertices, two-dimensional bisector pieces, one-dimensional pieces of Voronoi regions.

The paper is organized as follows. After providing the basic definitions in Section 2,
we briefly review, in Section 3, how the wavefront algorithm works in the Euclidean
metric. In Section 4 we study the dynamic properties of the wavefront during the sweep.
Then, in Section 5, we present the general wavefront algorithm. Four different kinds of
events call for an update of the wavefront; how to handle them is described in respective
subsections. In the last section we mention possible generalizations and propose some
problems for further research.

2. Nice Metrics and Voronoi Diagrams. Most of the material contained in this section
has been presented in [12]. We include it here for the convenience of the reader.

Letd be a metric in the plane, i.e., a function that assigns to each pair of @oints
in the plane a nonnegative distar@, b), such thatl(a, b) = 0 if and only ifa = b,
d(a, b) = d(b, a), andd(a, c) < d(a, b) + d(b, c) hold for alla, b, c.
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B(q.l) q

Lz

Fig. 1. The bisectoB(q, 1), whereg € | andq < I, in the Euclidean metrid(2) and in thel .,-metric defined
by Lo (@, b) = max(|x(a) — x(b)l, ly(@) — y®).

Let| denote a (vertical) line. By
d(p,l) ;== min{z € I; d(p, 2)}

we denote the distance between pgireind linel. We haved(p, 1) = 0 if and only if
p €. Now let p be a point, and lat denote a point or a vertical line. Let

B(p,r) = {zd(p, 2 =d(r, 2)},
D(p,r) = {zd(p,2) <d(r, 2},

and putC(p,r) = D(p,r) U B(p,r). The setB(p, r) is called thebisectorof p andr
(see Figure 1). It need not be a curvelinit contains quarter-planes if the points are
diagonal vertices of a square. For a pgirdnd nonnegative distanag thed-circle for
p with distancex is defined agz; d(p, z) = «}.

We consider the following class of metrics in the plane.

DEFINITION 1. A metricd on %2 is calledniceif:

1. Eachd-circle contains a standard circle, and vice versa.

2. Eachd-circle is contained in a standard circle.

3. For any two pointsaa and c there exists a poinb ¢ {a, c} such thatd(a,c) =
d(a, b) + d(b, c) holds.

4. If p,r are two points, or a point and a line, then the boundamg(ad, r) consists of
two curves each of which is homeomorphic to a line. The intersection of two such
curves consists of finitely many connected components.

The curves referred to in property 4 of Definition 1 will be the edges of the Voronoi
diagram. However, we can choose between the left and the right boundary curve of
B(p.r), C(p.r) N D(r, p) or C(r, p) N D(p.1).

In order to make a consistent choice,$t {py, ..., pm, |} be a set ofm points and
one vertical line|, and let< be a total order oi%. By dM we denote the boundary of a
setM.
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DEFINITION 2. For sitesp,r € S, p #7, let

D(p,r)UB(p,r) if p=<r,

R(p,1) = {D(p,r) if r<np.

Then
VR(p. S) := [ R(p.1)

reS

r£p
is theVoronoi region of p with respect to, &nd

V(S = JoRp.9

peS

is theVoronoi diagram of S

Clearly,dR(p,r) = dR(r, p) holds. We denote thiseparating curvéoy J(p, ).

The Voronoi regions form a disjoint decomposition of the plane. It can be derived
from property 3 of Definition 1 that for any two points,andq, there exists d-straight
pathfrom p to g, satisfyingd(a, ¢) = d(a, b) +d(b, c) for any three consecutive points
a, b, andc on the path. Since the Voronoi regiod&(p, S) ared-star shaped-each
d-straight path fronp to a point inVR(p, S) is contained irVR(p, S)—we obtain the
following consequence:

LEmMmA 3. For each point pe S, VR(p, S) is connectedThe Voronoi region of line |
is connected if no pointin S lieson |

The Voronoi diagram is a planar graph of linear complexity whose edges consist of
pieces of bisecting curve¥(p, r), and whose faces are the Voronoi regions. However,
the regions may contain one-dimensional pieces (cut-points whose removal leaves the
region disconnected). Examples are shown in Figure 2 fol_themetric and for the

VR(p,S)

i

Moscow metric

Fig. 2.LetS={p,q,r}andp < q,r. Then the regioWVR(p, S) contains one-dimensional pieces. The thick
half-line in the left picture and the shaded quarter-plane in the right picture consist of points equally far from
p, 9, andr; they belong to the region gf.
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Moscow metric, where distance is defined by minimum length paths that consist only
of segments radial to the centgrand of segments of circles aroundsee [12]. If the
region of sitep has a cut pointy, thenp must, with respect te, be the minimum of all
other sites whose regions are adjacent.to

3. Review of the Wavefront Algorithm for the Euclidean Metric. LetS= {p,...,

pn} be a set oh point sites in the plane. We want to construct the Euclidean Voronoi
diagramV (S). To this end we compute, for each valug ifom —oo to oo, the Voronoi
diagramV (S), where

S={peSx(p <thUfl}.

Herel; denotes the vertical line whosecoordinate equals. Thoughl; works as the
sweepline it is most useful to add it to the set of sites.

First, we sort the pointg; by theirx-coordinates. We may without loss of generality
assume that the poinfs have pairwise different coordinatgsp; ).

In Figure 3 two Voronoi diagram¥/,(S) andV (S), are depicted. We first discuss the
situation attime:. Since none opy, . .., psliesonlind, the bisecting curve3(p;, ;) =
B(pi, l;) are parabolae. In this example, all of them contribute tontheefront W, i.e.,
to the boundary of the Voronoi regiofR(l;, S). The points on the-side of J(p, ;)
are closer tg than tal;, so they ara priori closer top than to any lind,, wheret < t’,

® Ds

Fig. 3. The Euclidean Voronoi diagrams(S) andV ().
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and to any point site to the right &f Consequently, ds moves on, the waves move on
as well, whereas the Voronoi regions\6S ) that do not contribute to the wavefront do
not change anymore.

There are two possible events that call for an update of the wavefront, namely when a
new wave appears W, or when an old wave disappears. The first type of event is called
asite eventin Figure 3 it occurs when the sweepline hits the point giteShortly after,
at timet’, there is a new wave formed by a segmentl¢ps, |;/) glued onto the wave
of ps (which now contributes two segments to the wavefidh). When the sweepline
hits ps the new wave starts out as a left half-line; see Figure 1.

Let p, g denote two point sites whose waves are adjacelt;inThe bisector ofp
andq gives rise to an edge of (S) to the left of W;. Its prolongation into the region
of |, is called aspike In Figure 3 spikes are depicted by dashed lines. The spikes can
be thought of as tracks the waves move along. A wave disappears from the wavefront
once it has reached the point where its two neighboring spikes cross. This is called a
spike eventAt point v in Figure 3 a spike event could occur. Without sfig the wave
of ps would disappear, after reachimgand the neighboring waves pf and ps would
become adjacent. However, after detecting pig@oint v’ gives rise to an earlier spike
event that occurs when the wavef (together with the wave ofs) arrives at’.

If, at time t;, all point sites have been detected and all pending spike events have
been processed, the diagr&fiS) can be obtained frond (S, ) simply by removing the
wavefront.

To implement this algorithm the segments of the wavefront can be stored in a balanced
binary tree and a priority queue maintained for the site and spike events. Together with
the initial sorting step, all this can be done in ti@&nlogn) and spaced(n), in the
worst case.

4. Proofs of Wavefront Properties for the General Case. In the general case there
are two additional types of events. Two nonintersecting waves may touch, and then
intersect {ouch event and of two intersecting waves one may outrun the othasg
even). These event types are illustrated in Figure 6. They do not occur in the Euclidean
metric because any two parabolBép, |) and B(q, |) intersect, ifp andq are not on
|. Also, we have to replace the intuitive arguments given in Section 3 by formal proofs
based on the properties of nice metrics, as stated in Definition 1.

Let p1, ..., pn denote the given point sites. As before, let

S={peSx(p <t}U{l}.

As tie break ordex in Definition 2 of the Voronoi diagram we choose the order induced
by the (uniquex-coordinates; thus, the lingis always the maximal element of all sites
currently considered. It is this choice &fthat helps us cope with deformations.

First, we study the behavior of a single wavep, |;), ast grows bigger.

LEMMA 4. For every point pthe function f(t) = d(p,ly), t > x(p), is strictly
increasing and continuoudhe function §(t) is unboundegthat is, f,(t) — oo for
t — oo
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p----9
r

Fig. 4. The point-to-sweepline distance increases continuously.

PrROOE Letx(p) <t < t/, and letr denote al-straight path fronp to a pointq’ € |y
satisfyingd(p, q) = d(p, l); see Figure 4. The pathintersect$; at some point|, and
we obtaind(p, It) < d(p,q) <d(p,q’) =d(p, ). Hence,f,(t) is strictly increasing.
In order to show the continuity of,(t) we consider al-straight path$ from p to I
ending inr, whered(p, r) = d(p, ;). Letr’ be the point oty with y(r) = y(r’). Then
d(p,ly) <d(p,ly) <d(p,lp) +d(, ). If |t' —t| — 0, thend(r,r’) — 0 and, hence,
| fp(t") — fo(t)| — 0. The unboundedness §f(t) follows from the assumption that the
d-circles are bounded. O

Now we show that the waves keep moving, as the sweepline proceeds.

LEMMA 5. For anyt < t/, and for any point p with ¥p) < t, the bisecting curve
J(p, ly) is contained in the domain @, lv/). In particular, J(p, 1) N I(p, lv) = @.

PrROOE Letw € J(p,lt) € B(p, lt), as shown in Figure 5. From Lemma 4 it follows
thatd(w, lv) > d(w, It) = d(w, p). Hencew € D(p, ly). O

As aconsequence, the Voronoiregion¥@f ) can only grow bigger, as the sweepline
proceeds.

Jpl) Il

Fig. 5. The waves keep moving, as the sweepline proceeds.
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LEMMA 6. For any t < t/, and for any point site pe S, we have VRp, S) C
VR(p, §); equality holds if the Voronoi region of p in(\&) does not share an edge
with the wavefrondVR(¢, S).

PrOOF Lemma 5 impliesR(p, I;) € R(p,ly) for each point sitep € S. For each
point siteq € S — § we haveVR(p, S) C R(p, ). Namely, ifz belongs to the region
of pin V(S), then, in particularz € R(p, l;), henced(p,2) < d(z ;) < d(z q);
the latter could be an equality if € |;. This impliesz € C(p,q) = R(p, q), due
top<aqg. O

Next, we show that there is no bound to the expansion of a wave.

LEMMA 7. Let pe S, and let ze D(l, p). Then there is a real numbet t- t such
that z lies on or to the left of (b, It/).

PrROOF At timet we haved(z |;) < d(z, p). Due to Lemma 4 the value af(z, I;)
is continuously increasing, astends tooo (it may be decreasing first, i lies to
the right ofl;). Thus, there is a unique such thatd(z, ;) = d(z, p), which means
z e B(p, ly) C R(p, l¢). O

DEFINITION 8.  For each point to the right of pointp let tieacp, 2) = inf{t; z €
R(p, I1)}.

To simplify the discussion we assume that the biseBtgp, I;) is a curve, i.e., that
B(p, ;) = J(p, ) holdsif p £ |. This can be shown to be true for all symmetric convex
distance functions. The case whdsép, |;) contains two-dimensional pieces does not
cause any problems. Under this assumptiieH p, 20 marks the unique time when
J(p, lt) hits z.

Now we look at the possible interaction of two waves.

DerFINITION 9. Two bisecting curves](p, g) and J(q, r), are said tacrossat point

v if, in a neighborhood of, one piece ofl(p, q) is a Voronoi edge that separates the
regions ofp andq in the Voronoi diagranV ({p, g, r }), and the other piece af(p, q)

is not.

This definition is symmetric i (p, q) andJ(q, r).

Two bisectors)(p, |;) andJ(q, l;) can cross at most twice, or the Voronoi diagram of
{p, q, It} would have a disconnected Voronoi region, contradicting Lemma 3. It is easy
to distinguish the two vertices that two bisectors represented in the wavefront may have
in common. Namely, the cyclic sequences of Voronoi regions in counterclockwise order
around them are different; see, for example, the waves aihd pg in Figure 3.

DEFINITION 10. Forp,q € § let

tstar(t’, P, @) = inf{t > t"; J(p, I;) crosses)(q, I;) with region order(p, g, I)},
tsiop(t’s P, @) = supt > t'; J(p, |;) crosses)(q, I;) with region order(p, g, I1)}.
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Fig. 6. Attime t; a touch event occurs. At tintg, theg-wave outruns th@-wave, giving rise to a pass event.

If J(p, ly) is strictly abovel(q, lv) thentsan(t’, p, q) marks the time when the two
curves touch, as depicted in Figure 6, if they ever do. Otherwjggt’, p, q) = oc.

Once two such bisectors have started to intersect, they can only get disentangled if one
of them passes the other, because they never recede, due to Lemma 5. In Figure 6 this
happens at time = tsop(ts, P, 9).

Next, we look at the wavefrom; = dVR(ly, S) as a whole. Sinck is maximal with
respect to<, its Voronoi region does not contain cutpoints, according to Definition 2. The
wavefront can consist of finitely many disconnected pieces that are separated by parts
of VR(l;, §) extending to infinity. Each wavefront segment consists of finitely many
waves, some of which may have degenerated into points. Conceptually, we assume that
the “essential” part of the diagram is encirled by a closed clirgensisting of a segment
of I; and ac-shaped segment to the left, so large that only semi-infinite bisectors are
outside ofl", which either coincide or stay disjoint. Each of the wavefront segments hits
" at two points, thereby introducing a top—down order among these segments, just as if
they were connected.

The right drawing of Figure 3 shows that the same site may contribute more than one
wave to the wavefront.

LEMMA 11. At each time tthe number of waves in Mé O(n).

PROOF  Since any two bisecting curves can cross at most twice, the assertion follows
from the fact thak,(n) = O(n); see [1]. O

As in Section 3 we denote the part\iiR(l;, ) of the curve bisecting the sites of two
neighboring waves df\; aspike It is easy to see that the two spikes gb-avave inW,
can cross at most once, and that they do not intersect at all if they belong to the same
bisecting curve.
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5. The General Wavefront Algorithm. During the sweep, we maintain the combina-
torial structure of the wavefrom; = aVR(,, S), i.e., the sequence of boundary edges
of VR(l;, §) in top—down order, and the event queQe In the latter, future events of
four types are stored, together with the time when they will occur:

e Site eventsFor each point sitg to the right ofl; the timex(p).

e Spike eventsFor each pair of spikes of pwave inW; that cross at point the time
treacH P, v); See Definition 8.

e Touch events.For each pair of disjoint segments\0f the timetg(t, p, ), if less
thanoo, if the lowest wave of the upper segment ip-a&vave and the uppermost wave
of the lower segment isgwave; see Definition 10.

e Pass eventstor each end of a segment\ the timetsog(t, p, 9), if less tharmo, if
the last wave in the segment igpawave, its predecessoigawave, and if thep-wave
is above they-wave.

We assume that events scheduled for the same time are sorted in such a way that spike
events come first, next pass events, then touch events, and finally site events.
The correctness of the wavefront approach is due to the following:

LEmmA 12. The wavefront can only change its structure when one of the above events
occurs

PROOF Suppose that no event occurs within the time intefvat”). Then disjoint
wavefront segments remain disjoint, because there is no touch event. If a wave outruns
its neighbor, the latter must be situated at the end of a wavefront segment (otherwise
there would be a spike event before), but such pass events do not ogtut’in, by
assumption.

Therefore, the waves run along their spikes. Since the spikes do not cross it follows
that no wave can disappear froi .

Suppose that at time e (t/,t”) a new wave of sitgp appears. Themp belongs to
S/, and has, due to Lemma 6, already contributed one or several waVés. ftdone
of them has yet disappeared. For egetvave inW; we consider al-straight arc top;
since it is contained in the region @f it must pass through p-wave of W,.. Since the
latter contains fewep-waves thai\;, there must be two paths leading through the same
p-wave of W ; see Figure 7. Each wave @ between thep-waves these paths start
from is separated from its site—a contradiction. Therefore, the sequence of waves in the
wavefront does not change before titfie O

If the two spikes of ap-wave cross at point, then thep-wave reaches at time
treac P, v) @and not before, by definition. However, some other part of the wavefront
could reachy at an earlier time.

LEMMA 13. Assume thatthe first eventin @ a spike evenand letv be the cross-point
associated with itThenv lies in front of W, i.e., in VR(;, S).

PROOF Suppose the spike event is scheduled for time teacH P, v). If SOMe piece
of the wavefront reaches before timet’, then it is bound to hit theo-wave head-on
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Fig. 7. The wave ofg cannot be connected tpby a path contained in the region @f

before the latter arrives at However, then there must be a spike event beforetima
contradiction. O

Next, we describe how to updaté and Q; on processing an event.

5.1. Spike Events When a spike event occurs we delete the corresponding wave from
the wavefront. If any of the two spikes involved has had a later cross-point with its other
neighbor, this spike event is deleted fr@x. For example, in Figure 3 we would at time
to, (') delete the event associated withFinally, we form the spike of the two newly
adjacent waves and compute the cross-points with its neighbors. The corresponding spike
events are inserted intQ;. They could occur at timg too, but they would be processed
before the sweepline moves on.

Multiple spike events (leading to Voronoi vertices of degree larger than three) are dealt
with like simple ones. If we have a sequence of spikes crossing at the same ptiat)
all the associated waves arrivevadit the same time. Within this sequence, neighboring
pairs of spikes can be processed in any order.

5.2. Touch and Pass EventsWhen two formerly disjoined segments 84 become
united we have to update the sequence of waves, because the piece of the encircling
curveTl that has separated the two segments disappears. A new spike appears between
the newly touching waves. We compute the cross-points with its neighbors, and insert
any resulting spike event into the queQe

Similarly, if a wave at the end of a wavefront segment is outrun by its neighbor, we
delete it fromW;, and remove fronQ; the spike event possibly caused by the spike
between these two waves.

5.3. Site Events When the sweepline hits a new sigeat timet, we insert a new wave
into the wavefront\;. Before that, we have processed all other events oftitnat were
stored in the queue.

From the examples depicted in Figure 1 we know that the new \Bagel;) can be
a curve througly that is still folded, like the left half-line i, or one that has already
begun to open up, like the contour of the left quarter-plané jn We treat the first
situation as a special case of the second. Thus, for each of the two &B¢g,df) we
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have to find the first point where it crosses the wavefront. This is greatly facilitated by
the following observation.

LEMMA 14. Let A be an arc of By, l;), where q € I;. Then there is at most one
cross-point of A with \W namelythe first point on A that belongs toW

PrOOF The first pointw of W; on Amust be a cross-point. Namelyifbelongs to the
wave of sitep € §, thenp < g < I holds, by definition of<. However, thenA stops
being a(q, I;)-Voronoi edge at poini, even if it only touches the wavefront. In fact, we
havew € B(p,l;) N B(q, ) € B(p,q) € R(p,q), sow belongs to the region gpb,
and notg, in V({p, q, It}). Moreover, once has touched the wavefront it cannot return
into the region of; either the region of| or the region of; would not be connected.
This shows that there can be only one cross-point. O

Thanks to Lemma 14 we can locate each of the two cross-poismi;) with W,
by abinary searclon the ordered sequence of wave\in We start with the wave in
the middle ofW; and test if arcA has a cross-point with. If not, we check whethes
lies above or belowA, to direct the further search. Note that this search works correctly
even ifW; is noty-monotone.
Once both cross-points have been found, the new wave is inserted into the wavefront.

LEMMA 15. The waves of What are covered by the new wavédgl;) how become
Voronoi edges separating the regions of their point site froreeg Figures.

PrOOF  For the two points markedandz we haved(r, x) < d(x, l;) < d(x, q), hence
X € R(r, q) because of < q. Also, we havel(z, q) = d(z, |;) < d(r, ), which implies
z<€ R(q,r) foreachr € S. O

After inserting the new wave we check its two spikes for cross-points with their
neighbors, and insert the resulting spike events into the event queue. Before that, we
remove fromQ; all spike events involving spikes that are covered by the new wave.

Fig. 8. The part ofwW; covered by the newy-wave belongs t¥ (S).
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Note that, forl, we need to consider only spike events and site events, and Lemmas 14
and 15 are obvious for this special case.

THEOREM16. The Voronoi diagram of n points based on a nice metric in the plane can
be computed by the wavefront algorithm in optimal tim@ g n), using linear space

PrOOE  Only the performance bounds need proof. Due to Lemma 11, the update oper-
ations onW; and Q; can be carried out in tim® (logn) per event, and linear space is
sufficient to hold these structures. Clearly, we hawgite events an@®(n) spike events,

each giving rise to a Voronoi vertex. Each touch or pass event results in an unbounded
Voronoi edge. Hence there a@(n) events altogether. O

Here we assume th& (1) implementations of the followinglementary operations
are available. To find out if and where two neighborimgpikes cross, and to test if and
where a segmerttof a bisectorB(p, |) is crossed by an ard of B(q, |) starting from
g € |, or whetherc lies above or belowA. Finally, to compute the functiongacH p, 2),
tstart(t,’ pv q)i andtStOp(t,7 p’ q)

6. Conclusion. We have shown that the wavefront approach to computing the Voronoi
diagram is very natural, that it applies to a variety of interesting metrics, and that it can
easily cope with all kinds of degeneracies. These properties should make it a tool well
suited for practical applications.

An obvious question is if the wavefront algorithm can handle even more general
situations than point sites in nice metrics. For example, as long as there is a substitute
for d-straight paths that connect each point to its site, a further generalization seems
possible. Another open problem is whether the approach can also be applied to general
(not necessarily symmetric) convex distance functions. Second, sites other than points
should be considered. We expect that without major modifications the Voronoi diagram
of n line segments can be computed, as is the case for Fortune’s approach [9] that uses
a geometric transform.

Also, itwould be possible to use curves different from a vertical line for the sweep. For
example, an expanding circle would allow us to compute the Voronoi diagram of a large
set of pointdocally, if the sites are given in increasing distance from the query point.

The existing general Voronoi diagram algorithms make use of the fact that the bisector
of two sites is homeomorphic to a curve, and not to a circle. However, this condition is
violated, e.g., if the sites are disjoint convex curve segments, or for point sites on the
surface of a cone [7]. We think it is one of the major open problems to invent a general
algorithm that can deal with this case, too.
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