Theory Comput. Systen8), 547-558 (1997)

Theory of
Computing
Systems

© 1997 Springer-Verlag
New York Inc.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm
for Coarse-Grained Multicomputers*

F. Dehne! X. Deng? P. Dymond? A. Fabri? and A. A. Khokhat

1School of Computer Science, Carleton University,
Ottawa, Ontario, Canada K1S 5B6
dehne@scs.carleton.ca

2 Department of Computer Science, York University,
North York, Ontario, Canada M3J 1P3
{deng,dymon§i@cs.yorku.ca

3Department of Computer Science, Utrecht University,
3508 TB Utrecht, The Netherlands
andreas@cs.ruu.nl

4School of EE and Department of Computer Science, Purdue University,
West Lafayette, IN 47907, USA
ashfag@cs.purdue.edu

Abstract. We present a randomized parallel algorithm for constructing the three-
dimensional convex hull on a geneneprocessor coarse-grained multicomputer
with arbitrary interconnection network and p local memory per processor, where
n/p > p>*t® (for some arbitrarily smalk > 0). For any given set oh points
in 3-space, the algorithm computes the three-dimensional convex hull, with high
probability, in O((nlogn)/p) local computation time an@®(1) communication
phases with at mogD(n/p) data sentreceived by each processor. That is, with
high probability, the algorithm computes the three-dimensional convex hull of an
arbitrary point set in timeO((nlogn)/p + I'n), wherel', , denotes the time
complexity of one communication phase. The assumptiom > p?* implies a
coarse-grained, limited parallelism, model which is applicable to most commercially
available multiprocessors.

In the terminology of the BSP model, our algorithm requires, with high proba-
bility, O(1) supersteps, synchronization period= ®((nlogn)/p), computation
costO((nlogn)/p), and communication cof((n/p)g).

* This work was partially supported by the Natural Sciences and Engineering Research Council of Canada
and the ESPRIT Basic Research Actions No. 7141 (ALCOM lI).

548 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar
1. Introduction

1.1. The Model

Speedup results for theoretical PRAM algorithms do not necessarily match the speedups
observed on real machines [6], [35]. Given sufficient slackness in the number of proces-
sors, Valiant's BSP approach [36] simulates PRAM algorithms optimally on distributed
memory parallel systems. Valiant points out, however, that one may want to design algo-
rithms that utilize local computations and minimize global operations. The BSP approach
requires thag (= local computation spe¢tbuter bandwidth) is low, or fixed, even for an
increasing number of processors. Gerbessiotis and Valiant [22] describe circumstances
where PRAM simulations cannot be performed efficiently, among others if the factor
g is high. Unfortunately, this is true for most currently available multiprocessors. The
algorithm presented here considers this case for the three-dimensional convex hull prob-
lem. Furthermore, as pointed out in [36], the cost of a message also contains a constant
overhead cost. The value ofs can be fairly large and the total message overhead cost
can have a considerable impact on the speedup observed (see, e.g., [16]).

We therefore use a slightly enhanced version of the BSP model, referred to as a
coarse-grained multicomputenodel. Itis comprised of a set pfprocessor®, .. ., Py
with O(n/p) local memory per processor and an arbitrary communication network (or
shared memory). Algorithms consist of alternating local computation and global com-
munication rounds. Each communication round consists of routing a dirgiation
with h = O(n/p),! i.e., each processor sen@¢n/ p) data and receive®(n/p) data.

We require that all information sent from a given processor to another processor in one
communication round is packed into one message. In the BSP model, a communication
round is equivalent to a superstep with communication €ugh/ p)g).

Finding an optimal algorithm in the coarse-grained multicomputer model is equiv-
alent to minimizing the number of communication rounds as well as the total local
computation time. This considers all parameters discusssed above that affect the final
observed speedup, and it requires no assumptian &arthermore, it has been shown
that minimizing the number of supersteps also leads to improved portability across dif-
ferent parallel architectures [36], [18]. The above model has been used (explicitly or
implictly) in parallel algorithm design for various problems [11], [15]-[17], [19], [27]
and has shown very good practical timing results.

1.2. The Three-Dimensional Convex Hull Problem

For the three-dimensional convex hull problem studied in this paper, Amato and Preparata
[5] give an almost work optimal deterministic N@lgorithm for the CREW PRAM.
Chow [13] presented a® (log® n)-time algorithm for the EREW PRAM as well as a
polylogarithmic-time algorithm for the cube connected cycles interconnection network
with distributed memory. Reif and Sen [34] were the first to give a time and work optimal
randomized algorithm for the CREW PRAM. Goodretal. [25] adapted this algorithm

1 X = O(f(n)) denotesX = O(f (n)) with high probability. More precisely = O(f (n)) if and only
if (Ve > co > 1) prob{X > cf(n)} < 1/n9© wherecy is a fixed constant angl(c) is a polynomial inc with
g(c) — oo for c — oo [31].

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 549

for an external memory model with an array of disks and multiple processors. For higher-
dimensional convex hulls Amatet al. [4] presentedO(logn)-time algorithms with
O(nlogn+n'¥/2y work. Dehneet al. [15] proposed an algorithm for the coarse-grained
multicomputer model. The time complexity@((nlogn)/p + [, p), assuming/p >

p® (¢ > 0) and uniform point distribution. Under this assumption, the algorithm performs
only a constant number of communication pha$gs, denotes the time complexity of
one communication phase with at m@tn/ p) data sentreceived by each processor.

1.3. The Results

In this paper we improve considerably on previous results in [15] and [17]. We present
a randomized parallel algorithm fgr-processor coarse-grained multicomputers with
local memories of siza/p > p?** (¢ > 0 arbitrarily small) and arbitrary interconnec-
tion network, which computes the convex hullrfrbitrary points in 3-space in time
O((nlog, n)/p + I'n,p).

Every processor spends a total local computation tim&efnlogn)/p). The
algorithm uses onlyO(1) global communication phases with at mastn/p) data
senyreceived by each processor.

With respect to [15], the algorithm presented here allows for an arbitrary input
distribution. In particular, it allows for inputs created by mapping a two-dimensional
Voronoi diagram problem to a three-dimensional convex hull problem [12] (which could
not be handled in [15]). The techniques used in this paper are very different from the
ones presented in [15] and [17]. The randomization methods presented are very different
from the ones previously reported, e.g., in [34] and related papers.

Using Valiant’s terminology for the BSP model [36], our algorithm requires, with
high probability, onlyO(1) supersteps, synchronization peribd= ®((nlogn)/p),
computation cosD((nlogn)/p), and communication co€((n/ p)g). Itis not obvious
how to achieveD (1) supersteps by techniques described in [25] and [34] or divide-and-
conquer methods.

2. Outline of the Algorithm

Let Sbe a set oh points in 3-space (in general position).

Input Each point ofS is stored with exactly one processor. Proceggostoresn/p
points of S.

Output Processop; stores a seE; of O(n/p) edges of CHS), 1 <i < p. Each edge
of CH(S) is stored with exactly one processor.

1. Computing a sample convex hull
All processorsp; compute globally a random samgRec Sof sizeO(n/ p).
Ris broadcast to all processors.
Each processor computes the convex hull(&H We can assume without loss
of generality that the origin lies in the interior of €R) and that each face is a
triangle. The points inside CHR) are removed.

550 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Fig. 1. AsetR of faces (dark shading), and the §gtof faces which are edge-adjacent to faceRoflight
shading).

2. Computing the generating sets
With each face of CH(R) associate a cong; and a closed half-spadé,. The
coneC; is defined by the origin as apex and rays starting at the origin and passing
through the three vertices bf The closed half-spadd; is defined by the plane
throught and does not contain the origin. L&t and T; denote the subsets of
points of S that are not inside CHR) but contained irC; and H;, respectively.
(Note thatK; andT; contain the vertices df)
Partition the set of faces of GIR) among thep processors. LeR; be the subset
of faces assigned to procesgmr 1 < i < p. Details on how the set of faces
of CH(R) is partitioned is discussed in Section 3.2. I@t be the subset of
faces of CHR) which are not inR, but edge adgacent to at least one fac&of
1<i < p.SeeFigure 1 foranillustration. Defife= (U;.r KU (U cq, T,
l<i<p
Processomp; computesS and its convex hull CKS), 1 <i < p. The points
inside CHS) are removed.

3. Disconnecting internal edges
Each processop; creates two copies of each edge w) of CH(S), one with
key v and one with keyw. All these edges are sorted globally with respect to
their endpoints.
For each endpointand incident edgév, w) consider the induced ray starting at
v and passing througlh. The convex hull CKIR,) of the setR, of rays induced
by the incident edges af is computed. The incident edges inside (&H) are
removed, ana is removed ifv is inside CHR,).
Each remaining edge is sent back to processqy if e was originally part of
CH(S).

4. Selecting the global convex hull edges in each generating set
(a) Each processqn computes for each triangteof R, the point of § with

maximum distance to the plane definedtbyVe refer to such a point as a
furthest pointin §.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 551

(b) On each processaqs; let G; be the subgraph of Ct§) induced by those
edges that remain after Step 3. Each procegsmomputes the seE; of
edges ofG; reachable irG; from a furthest point irf§.

3. Algorithm Details and Analysis

We now discuss in more detail the steps outlined in the above algorithm and give a
probablistic analysis. Lét € N be a parameter to be determined later.

3.1. Computing a Sample Convex Hull

We need the following:

Lemma 1[31]. Consider a random variable X with binomial distributidret n be
the number of trialseach of which is successful with probability The expectation of
X'is E(X) = nq.

(a) profX > cng} < e"W/2C-"d forc > 1.
(b) Letp > 4 (not necessarily fixgdIf B2ng > « In(n) for some constant > 0,
then X= O(8nQ).

We now outline how to select a random samplec S of size O(n/p). Each
processorm; performs a biased random coin flip for each poinSdtored atp;, such
that each point is selected with probabilipk/n. From the above lemma it follows that
IR| = O(pk) and thatitk = €2(In(n)), then the number of points selected by a processor
pi is O(K).

Since we storeR at each processor, it is necessary {fiRit< O(n/p). Hence, we
obtain:

Requirement 1. k < n/p?.

In order to compute the convex hull CR) of R we apply any optimal sequential
(O((n/p) log,(n/ p)) time) three-dimensional convex hull algorithm [14], [33].

3.2. Computing the Generating Sets

In Step 2 of the algorithm we compugesubsetsS of S, such that each edge of the
convex hull CHS) is generated in the computation of a convex hull(Ghl. Before we
give an algorithm for computing the generating sgtsve show that in Sfg2 a superset
of the set of convex hull edges is generated.

Lemma 2. Every edge o€H(S) is an edge of at least or@H(S), 1 <i < p.
Proof. Let (v, w) be an edge in CK5). Consider the liné(v, w) parallel to (v, w)

and contained in the plane defined fayw and the origin such tha{v, w) is tangent
to the sample convex hull GH#R). Recall that the origin lies inside GIR). The line

552 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Fig. 2. Two-dimensional illustration of the proof of Lemma 2.

I (v, w) intersects an edgeof CH(R) (if it intersects at a vertex we consider any edge
incident to this vertex). See Figure 2 for a two-dimensional illustration (two-dimensional
projection). Let’ andt” be the faces of CKR) adjacent t@. By construction there exists

at least oneR such tha{t’,t”} N R # @. It follows from the convexity of CKIR) that

(e UTe) € § = (Urer KO U (Ukeq T Thus,{v, w} C § and, hence(v, w) is an
edge of CHS). O

We next discuss how we can constrpgienerating setS . Itisimportant to establish
that noS contains more tha®(n/ p) points ofS.

For each face of CH(R) we can easily computg;|, the number of points in a
coneC;, by constructing a subdivision hierarchy [20] for the convex polyhedrotRyH
On this subdivision hierarchy we perform a ray-shooting query for each pains,
using a ray that starts at the origin and passes threugach query can be answered in
time O(log|CH(R)|). The search structure is of sig&|CH(R)|) and can be computed
sequentially in timeO(|CH(R)|). Each point is contained in exactly one cone. Each
processor performs the ray-shooting queries for its point set, anpl thsults for each
of then/ p faces are added after a global sort of the faces.

Lemma 3.

(a) For any fixed c> 5, with probability at leastlL — 1/n°* there exists no triangle
t such thati T;| > c((nIn(n))/ pk).

(b) For any fixed ¢ 5, with probability at leastl — 1/n°* there exists no triangle
t such thaK¢| > c((nIn(n))/pk).

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 553

Proof. (a) Consider a fixed > 5. For some fixed triangl¢, prol{|Ti| = j} <
(1 — pk/n)! and

nin(n) n .
prob{|Tt|zc oK }5 > prob| T = j}

j=c((nIn(n))/pk)

c((nin(n))/ pk)
- <n_cnln(n)> <1_ p_k)
pk n
nIn(n) 1 n/pky cln(n)
N <n_c pk) <<1_ n/pk>)
< <n _ At In(n)) e cinm,
pk

As there are less thar? possible triangles,

prob{there exists & with |T;| > c((nIn(n))/pk)}
< n3(n — c((nIn(n))/ pky)e—cnm,

The claim follows from
3 n_Cnln(n) ochhn) 1
pk

- nC—4
o n*n3(n— Cn In(n) < shm

pk J —

nin(n)
< (€C—=4In(n) +3In(n) +In{n-c ok <c In(n)
1
& c—4c< m(cln(n) —4In(n)) =c— 4
(b) Follows immediately, sinc&; C T; for each face of CH(R). O

It is easy to partition the faces of GR) into p subsetsR; such that, for eaclw;,
> ter |Ktl = O(n/p). However, a seR from such a partitioning can hav@(pk)
edge-adjacent faces notft and can induce a s& containingO((n/ p) log, n) points.
Our construction of the setsR; is based on the following separator theorem:

Lemma 4[28]. Let G be any m-vertex planar grapfihen the vertices of G can be
partitioned in three sets)yU, and \4, such that no edge joins a vertex inWith a vertex
in Vs, neither \{ nor \;, have total size exceediryn/3, and separator U contains no
more than2/2,/m/(1 — \/g) vertices Furthermore V, U, and \4 can be determined
sequentially in time @m).

We apply the separator theorem to the dual gr&bf CH(R). Define the cost
of a node ofG corresponding to a faceof CH(R) as|K¢|. In order to partition the
vertices ofG into p subsetsM,, ..., Wy, we recursively apply the separator theorem

554 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

until the total node cost of every subgraph is at mogp. This yields less than |2
subproblems and we pair them arbitrarily. Sirigg| < (cnIn(n))/pk, there are at
mostl = log, p + log, In(n) + log, c levels of recursion to reduce the total node cost
of each subgraph ta/p. At theith level, the total number of nodes in (up to®
separators is bounded by 2d,/m/1.5 ~, whered = 2+/2/(1 — \/g) andm = 6(pk).
The total number of nodes in all separators obtained in this procedure is bounded by
Yi_,2-dy/m/1.5"1 = O(pyKIn()).

Let B be the multiset of points contained in sét$or facest corresponding to some
separator, counting the multiple presence of points. The total nurBbef such points

is bounded byD (pv/kIn(n)) timesO((nlogn)/pk), which isO((nIn(n)+/IN(N))/k).
Requirement 2. k > (I In(n)/In(n))2.

Choosingk > (I In(n)4/In(n))?, we obtain|B| = O(n/l). A point is in B if and
only if it is bounded away from the origin by one ©f for somet in the separators. The
complement ofB is the set of points in the convex hull defined by all the half-spaces
containing the origin and bounded by a hyperplapdor all t in one of the separators.
This convex hull can be constructed sequentially within t@gnlogn)/p). In time
O(log(JR])) we determine whether each point does not belorig). tbhen we determine
those points ofB which correspond to the first level separator. All these points are
assigned t&§, 1 < 1 < p. After removing these points frof, the remaining points in
B can be partitioned into two parts: Those in Skt&heret corresponds to a vertex
and those in seff wheret corresponds to a vertex Wp. This partition can be obtained
using a Kirkpatrick subdivision hierarchy for the convex TRIDNV(R) in O(log(|R|))
time for each point inB. Therefore, for each point iB, the number of operations on
each level isO(logn) and the total number of operations blevels isO(l|B|logn),
which isO(nlogn). Since each point dB requires the same number of operations, they
can be distributed over thp processors so that each processor néads logn)/p)
operations.

Asthe level of recursionincreases from 1 tthe number of adjacent faces decreases
geometrically. The number of faces which are edge-adjacent to a face(@®)@R, is
bounded by

| |
Y JGIICHR) = VICHR) Y /(3)i = O(/ICHR)]) = O(/pk).
j=1 j=0
Hence, it follows from Lemma 3 that

S| = 6(%+\/ﬁ<”'”(”)>.

pk

Since it is necessary th&t is of sizeO(n/ p) we obtain:
Requirement 3. k > pIn?(n).

Requirements 1-3 hold if/p > p?*¢ for some fixece > 0.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 555

3.3. Disconnecting Internal Edges

In Step 3 of the algorithm we start removing from generating Settsose edges that are
not edges of CKS).

Amato and Preparata [5] observed that, given a set of Rayis R3 which all start
at vertexv, the problem of computing their convex hull CR,) can be reduced to a
two-dimensional convex hull computation. The algorithm first determines a piane
that does not pass throughand intersects all rays &,. If there is no such plangl,,
thenv is inside the convex hull CER,) = R3. Henceyp is inside CHS). If such a plane
H, exists, we can determine the convex hull@) by computing the two-dimensional
convex hull of the intersection points of the rays with.

We execute a sequential algorithm®,| < O(n/p). Otherwise, we reduce the
problem to solving, in parallel, the following linear programming problem:

Let the planeH, be defined by equaticex + by 4 ¢z = d. It passes through and
all verticesw; of edgeq(v, w;) lie on one side oH,. Let (x, Vi, z) be the coordinates
of pointwj. This defines the constrairas; + by, + cz > d for the verticesw; and the
function f (a, b, ¢) = ax, + by, + ¢z, — d, with (x,, Y., Z,) as coordinates of vertex
v. This problem can be solved in parallel tirG(n log, n)/p + Ts(n, p)) with O(1)
communication rounds [17].

Lemmab5. After execution of Stepthe following hold

(a) No edge ofCH(S) is removed
(b) The edges that are contained @H(S) form a single connected component
which does not contain any vertex or edge that is n@&hi(S).

Proof. (a) Step 2 removes only edges and vertices which lie inside the convex hull
CH(R,) of rays incident to a vertex. Clearly, an edge inside GRR,) also lies inside
CH(S).

(b) Assume that a vertex not in GB) is connected to a vertaxin CH(S) by some
path of edges remaining after Step 3. Consider the edge of this path inciderftis
edge is deleted in Step 3 as it lies inside(@})); a contradiction. O

3.4. Selecting the Global Convex Hull Edges in Each Generating Set

Step 4(a) computes for each trianglle R the point of§ that has maximal distance to
the plane through. Such a furthest point is clearly in G85).

To determine the furthest points f& we use a subdivision hierarchy [20] for the
convex polyhedron CEHg). We perform for each plane through a triangl&jra search to
determineitstangentsto GH). The size of the search structur€g|CH(S)|) anditcan
be constructed sequentially in tif&|CH(S)|). The sequential search needs logarithmic
time for each triangle. Hence, the time complexity of Step 4(& (R | l0g,|S).

In Step 4(b) each processpr computes the union of those connected components
of G; that contain a furthest point if. The sequential time complexity 8(|Gj|) =
o(sD.

556 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Lemma 6.

(a) Every edge o€H(S) is contained in at least one set,H <i < p.
(b) Noset E, 1 <i < p, contains an edge that is not @H(S).

Proof. (a) Consider an edge, w) of CH(S). By Lemma 2, there exists a sgtsuch
that (v, w) is in CH(S). From Lemma 5 it follows thatv, w) is not deleted in Step 3.
Due to the definition oR;, v is contained irH; for somet € R, and CHS) N H; C S.
By Lemma 5 and the fact thad; is a half-space it follows that the edges incident to
CH(S) N H; form a connected component. Furthermore, a poir ivith maximum
distance to the plane defined bis in CH(S) N H;. Hence(v, w) € E;.

(b) Follows immediately from Lemma 5. O

4. Summary

Lemmas 2, 5, and 6 imply the following:

Theorem 1. The convex hull of n points Brspace can be computed on a p-processor
coarse-grained multicomputer withyp > p?*¢, e > 0,intimeO((nlog, N)/p+Th p).

By standard transformation of two-dimensional Voronoi diagram construction to three-
dimensional convex hull computation [12] we obtain:

Corollary 1. The Voronoi diagram of a set of n points in the Euclidean plane can be
computed on a p-processor coarse-grained multicomputer with>n p*e, e > 0,in
time O((nlog, N)/p + I'n p).

Note that in order to compute the Voronoi diagram, the algorithm can be simplified.
We do not need Step 4 of the algorithm, as the Voronoi diagram problem is equivalent
to a convex hull problem where all points are vertices of the convex hull. All internal
edges which are produced in Step 2 of the algorithm are removed in Step 3.

References

[1] A.Aggarwal, A.K. Chandra, and M. Snir. On Communication Latency in PRAM ComputatiRios.
SPARY, pages 11-21.

[2] A. Aggarwal, B. Chazelle, L. Guibas, «f)‘D[mIaing, and C. Yap. Parallel Computational Geometry.
Algorithmica Vol. 3, pages 293-327, 1988.

[3] N. Alonand N. Meggido. Parallel Linear Programming in Fixed Dimension Almost Surely in Constant
Time. Proc. FOC0, pages 574-582.

[4] N.M. Amato, M. Goodrich, and E. Ramos. Parallel Algorithms for High-Dimensional Convex Hulls.
Proc. 35th Annual IEEE Symposium on Foundations in Computer Scigracges 683—694, 1994.

[5] N.M.Amato and F.P. Preparata. An N®arallel 3D Convex Hull AlgorithmProc. 9th Annual ACM
Symposium on Computational Geomepgges 289-297, 1993.

[6] R.J.AndersonandL. Snyder. AComparison of Shared and Nonshared Memory Models of Computation.
Proceedings of IEEPVoI. 79, No. 4, pages 480-487, 1995.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 557

(7]
(8]
(9]
(20]
(11]
(12]
(23]
(14]

[15]

[16]
[17]
(18]
[19]
[20]
[21]

[22]

(23]
(24]
(25]
(26]

[27]
(28]

[29]
[30]

(31]
(32]
(33]

(34]

M.J. Atallah and M.T. Goodrich. Efficient Parallel Solutions to Some Geometric Problemmal of
Parallel and Distributed Computing/ol. 3, pages 492-507, 1986.

M.J. Atallah and M.T. Goodrich. Parallel Algorithms for Some Functions of Two Convex Polygons.
Algorithmica \ol. 3, pages 535-548, 1988.

M.J. Atallah and J.-J. Tsay. On the Parallel-Decomposability of Geometric Protfeats5th Annual

ACM Symposium on Computational Geomgpages 104-113, 1989.

K.E. Batcher. Sorting Networks and Their ApplicatioRsoc. AFIPS Spring Joint Computer Confer-
ence pages 307-314, 1968.

G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, and M. Zagha. A Comparison of
Sorting Algorithms for the Connection Machine CMRroc. SPAA1, pages 3-16.

K.Q. Brown. Voronoi Diagrams from Convex Hullsiformation Processing Lettersol. 9, pages 223—
228, 1979.

A. Chow. Parallel Algorithms for Geometric Problems. Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1980.

K.L. Clarkson, K. Mehlhorn, and R. Seidel. Four Results on Randomized Incremental Constructions.
Computational Geometry Theory and Applicatidl. 3, No. 4, pages 185-212, 1993.

F. Dehne, A. Fabri, and C. Kenyon. Scalable and Architecture Independent Parallel Geometric Algo-
rithms with High Probability Optimal TimeRroc. 6th IEEE Symposium on Parallel and Distributed
Processingpages 586-593, 1994.

F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable Parallel Geometric Algorithms for Coarse Grained
MulticomputersProc. 9th Annual ACM Symposium on Computational Geomptiges 298—-307, 1993.

X. Deng. A Convex Hull Algorithm for Coarse Grained Multiprocesséhsc. 5th International Sym-
posium on Algorithms and Computatigrages 162-173, 1994.

X. Deng and P. Dymond. Efficient Routing and Message Bounds for Optimal Parallel AlgorRioas.
IPPS1995, Santa Barbara, pages 556-562, April 1995.

X. Deng and N. Gu. Good Programming Style on Multiprocesdnec. IEEE Symposium on Parallel

and Distributed Processindpallas, pages 538-543, October 1994.

D.P. Dobkin and D.G Kirkpatrick. Fast Detection of Polyhedral Intersecfldreoretical Computer
ScienceVol. 27, pages 241-253, 1983.

H. EdelsbrunneAlgorithms in Combinatorial Geometrig ATCS Monographs on Theoretical Computer
Science, Vol. 10. Springer-Verlag, Berlin, 1987.

A.V. Gerbessiotis and L.G. Valiant. Direct Bulk-Synchronous Parallel Algorithnsc. 3rd Scandi-
navian Workshop on Algorithm Theoryages 1-18. Lecture Notes in Computer Science, Vol. 621.
Springer-Verlag, Berlin, 1992.

P. Gibbons. A More Practical PRAM Modé?roc. 1989ACM Symposium on Parallel Algorithms and
Architecturespages 158-168, 1989.

M.T. Goodrich. Planar Separators and Parallel Polygon Triangulation. To ap@earival of Computer

and System Science

M.T. Goodrich, J.J. Tsay, D.E. Vengroff, and J.S. Vitter. External-Memory Computational Geometry.
Proc. 34th IEEE Symposium on Foundations of Computer Scigrages 714—723, 1993.

F.T. LeightonIntroduction to Parallel Algorithms and Architecturesrrays TreesHypercubesMorgan
Kaufmann, San Mateo, CA, 1992.

Hui Li and K.C. Sevcik. Parallel Sorting by Overpartitionifigroc. SPAA4, pages 46-56, 1994.

R.J. Lipton and R.E. Tarjan. A Separator Theorem for Planar Gr&A# Journal on Applied Math-
ematics Vol. 36, No. 2, pages 177-189, 1979.

K. Mehlhorn.Graph Algorithms and NP-CompleteneSpringer-Verlag, New York, 1984.

R. Miller and Q.F. Stout. Efficient Parallel Convex Hull AlgorithnSEE Transactions on Computers

Vol. 37, No. 12, pages 1605-1618, 1988.

K. Mulmuley. Computational Geometnyan Introduction Through Randomized AlgorithrRsentice-

Hall, New York, 1993.

C.H. Papadimitriou and M. Yannakakis. Towards an Architecture Independent Analysis of Parallel
Algorithms.Proc. 20th Symposium on Theory of Computipgges 510-513, 1988.

F.P. Preparata and M.l. Sham@amputational Geometran Introduction Springer-Verlag, New York,
1985.

J.H. Reif and S. Sen. Optimal Parallel Algorithms for 3D Convex Hulls and Related ProtSéfid.

558 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Journal of Computing\Vol. 21, pages 446—485, 1992, pages 394-404, 1989, with corrigendsidh
Journal of ComputingVol. 23, pages 447-448, 1994.

[35] L. Snyder. Type Architectures, Shared Memory and the Corollary of Modest Potémtialal Review
of Computer Scien¢&/0l. 1, pages 289-317, 1986.

[36] L.G. Valiant. A Bridging Model for Parallel Computatio@ommunications of the ACM/l. 33,
pages 103-111, 1990.

[37] L.G. Valiant. General Purpose Parallel Architectundandbook of Theoretical Computer Science
edited by J. van Leeuwen, pages 943-972. MIT Pigssvier, Cambridge, MMAmsterdam, 1990.

Received Octobed0, 1995 and in revised form April5, 1996,and in final form Septembdi7, 1996.

