
Theory Comput. Systems30, 547–558 (1997) Theory of
Computing

Systems
© 1997 Springer-Verlag

New York Inc.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm
for Coarse-Grained Multicomputers∗

F. Dehne,1 X. Deng,2 P. Dymond,2 A. Fabri,3 and A. A. Khokhar4

1School of Computer Science, Carleton University,
Ottawa, Ontario, Canada K1S 5B6
dehne@scs.carleton.ca

2 Department of Computer Science, York University,
North York, Ontario, Canada M3J 1P3
{deng,dymond}@cs.yorku.ca

3Department of Computer Science, Utrecht University,
3508 TB Utrecht, The Netherlands
andreas@cs.ruu.nl

4School of EE and Department of Computer Science, Purdue University,
West Lafayette, IN 47907, USA
ashfaq@cs.purdue.edu

Abstract. We present a randomized parallel algorithm for constructing the three-
dimensional convex hull on a genericp-processor coarse-grained multicomputer
with arbitrary interconnection network andn/p local memory per processor, where
n/p ≥ p2+ε (for some arbitrarily smallε > 0). For any given set ofn points
in 3-space, the algorithm computes the three-dimensional convex hull, with high
probability, in O((n logn)/p) local computation time andO(1) communication
phases with at mostO(n/p) data sent/received by each processor. That is, with
high probability, the algorithm computes the three-dimensional convex hull of an
arbitrary point set in timeO((n logn)/p + 0n,p), where0n,p denotes the time
complexity of one communication phase. The assumptionn/p ≥ p2+ε implies a
coarse-grained, limited parallelism, model which is applicable to most commercially
available multiprocessors.

In the terminology of the BSP model, our algorithm requires, with high proba-
bility, O(1) supersteps, synchronization periodL = 2((n logn)/p), computation
costO((n logn)/p), and communication costO((n/p)g).

∗ This work was partially supported by the Natural Sciences and Engineering Research Council of Canada
and the ESPRIT Basic Research Actions No. 7141 (ALCOM II).

548 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

1. Introduction

1.1. The Model

Speedup results for theoretical PRAM algorithms do not necessarily match the speedups
observed on real machines [6], [35]. Given sufficient slackness in the number of proces-
sors, Valiant’s BSP approach [36] simulates PRAM algorithms optimally on distributed
memory parallel systems. Valiant points out, however, that one may want to design algo-
rithms that utilize local computations and minimize global operations. The BSP approach
requires thatg (= local computation speed/router bandwidth) is low, or fixed, even for an
increasing number of processors. Gerbessiotis and Valiant [22] describe circumstances
where PRAM simulations cannot be performed efficiently, among others if the factor
g is high. Unfortunately, this is true for most currently available multiprocessors. The
algorithm presented here considers this case for the three-dimensional convex hull prob-
lem. Furthermore, as pointed out in [36], the cost of a message also contains a constant
overhead costs. The value ofs can be fairly large and the total message overhead cost
can have a considerable impact on the speedup observed (see, e.g., [16]).

We therefore use a slightly enhanced version of the BSP model, referred to as a
coarse-grained multicomputermodel. It is comprised of a set ofp processorsP1, . . . , Pp

with O(n/p) local memory per processor and an arbitrary communication network (or
shared memory). Algorithms consist of alternating local computation and global com-
munication rounds. Each communication round consists of routing a singleh-relation
with h = Õ(n/p),1 i.e., each processor sendsÕ(n/p) data and receives̃O(n/p) data.
We require that all information sent from a given processor to another processor in one
communication round is packed into one message. In the BSP model, a communication
round is equivalent to a superstep with communication costÕ((n/p)g).

Finding an optimal algorithm in the coarse-grained multicomputer model is equiv-
alent to minimizing the number of communication rounds as well as the total local
computation time. This considers all parameters discusssed above that affect the final
observed speedup, and it requires no assumption ong. Furthermore, it has been shown
that minimizing the number of supersteps also leads to improved portability across dif-
ferent parallel architectures [36], [18]. The above model has been used (explicitly or
implictly) in parallel algorithm design for various problems [11], [15]–[17], [19], [27]
and has shown very good practical timing results.

1.2. The Three-Dimensional Convex Hull Problem

For the three-dimensional convex hull problem studied in this paper, Amato and Preparata
[5] give an almost work optimal deterministic NC1 algorithm for the CREW PRAM.
Chow [13] presented anO(log3 n)-time algorithm for the EREW PRAM as well as a
polylogarithmic-time algorithm for the cube connected cycles interconnection network
with distributed memory. Reif and Sen [34] were the first to give a time and work optimal
randomized algorithm for the CREW PRAM. Goodrichet al. [25] adapted this algorithm

1 X = Õ(f (n)) denotesX = O(f (n)) with high probability. More precisely,X = Õ(f (n)) if and only
if (∀c > c0 > 1) prob{X ≥ c f (n)} ≤ 1/ng(c) wherec0 is a fixed constant andg(c) is a polynomial inc with
g(c)→∞ for c→∞ [31].

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 549

for an external memory model with an array of disks and multiple processors. For higher-
dimensional convex hulls Amatoet al. [4] presentedO(logn)-time algorithms with
O(n logn+nbd/2c)work. Dehneet al. [15] proposed an algorithm for the coarse-grained
multicomputer model. The time complexity is̃O((n logn)/p+0n,p), assumingn/p ≥
pε (ε > 0)and uniform point distribution. Under this assumption, the algorithm performs
only a constant number of communication phases.0n,p denotes the time complexity of
one communication phase with at mostÕ(n/p) data sent/received by each processor.

1.3. The Results

In this paper we improve considerably on previous results in [15] and [17]. We present
a randomized parallel algorithm forp-processor coarse-grained multicomputers with
local memories of sizen/p ≥ p2+ε (ε > 0 arbitrarily small) and arbitrary interconnec-
tion network, which computes the convex hull ofn arbitrary points in 3-space in time
Õ((n log2 n)/p+ 0n,p).

Every processor spends a total local computation time ofÕ((n logn)/p). The
algorithm uses onlyÕ(1) global communication phases with at mostÕ(n/p) data
sent/received by each processor.

With respect to [15], the algorithm presented here allows for an arbitrary input
distribution. In particular, it allows for inputs created by mapping a two-dimensional
Voronoi diagram problem to a three-dimensional convex hull problem [12] (which could
not be handled in [15]). The techniques used in this paper are very different from the
ones presented in [15] and [17]. The randomization methods presented are very different
from the ones previously reported, e.g., in [34] and related papers.

Using Valiant’s terminology for the BSP model [36], our algorithm requires, with
high probability, onlyO(1) supersteps, synchronization periodL = 2((n logn)/p),
computation costO((n logn)/p), and communication costO((n/p)g). It is not obvious
how to achieveO(1) supersteps by techniques described in [25] and [34] or divide-and-
conquer methods.

2. Outline of the Algorithm

Let Sbe a set ofn points in 3-space (in general position).

Input: Each point ofS is stored with exactly one processor. Processorpi storesn/p
points ofS.
Output: Processorpi stores a setEi of O(n/p) edges of CH(S), 1≤ i ≤ p. Each edge
of CH(S) is stored with exactly one processor.

1. Computing a sample convex hull
All processorspi compute globally a random sampleR⊂ Sof sizeO(n/p).
R is broadcast to all processors.
Each processor computes the convex hull CH(R). We can assume without loss
of generality that the origin lies in the interior of CH(R) and that each face is a
triangle. The points inside CH(R) are removed.

550 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Fig. 1. A setRi of faces (dark shading), and the setQi of faces which are edge-adjacent to faces ofRi (light
shading).

2. Computing the generating sets
With each facet of CH(R) associate a coneCt and a closed half-spaceHt . The
coneCt is defined by the origin as apex and rays starting at the origin and passing
through the three vertices oft . The closed half-spaceHt is defined by the plane
throught and does not contain the origin. LetKt andTt denote the subsets of
points ofS that are not inside CH(R) but contained inCt andHt , respectively.
(Note thatKt andTt contain the vertices oft .)
Partition the set of faces of CH(R) among thep processors. LetRi be the subset
of faces assigned to processorpi , 1 ≤ i ≤ p. Details on how the set of faces
of CH(R) is partitioned is discussed in Section 3.2. LetQi be the subset of
faces of CH(R) which are not inRi but edge adgacent to at least one face ofRi ,
1≤ i ≤ p. See Figure 1 for an illustration. DefineSi = (

⋃
t∈Ri

Kt)∪(
⋃

t∈Qi
Tt),

1≤ i ≤ p.
Processorpi computesSi and its convex hull CH(Si), 1 ≤ i ≤ p. The points
inside CH(Si) are removed.

3. Disconnecting internal edges
Each processorpi creates two copies of each edge(v,w) of CH(Si), one with
key v and one with keyw. All these edges are sorted globally with respect to
their endpoints.
For each endpointv and incident edge(v,w) consider the induced ray starting at
v and passing throughw. The convex hull CH(Rv) of the setRv of rays induced
by the incident edges ofv is computed. The incident edges inside CH(Rv) are
removed, andv is removed ifv is inside CH(Rv).
Each remaining edgee is sent back to processorpi if e was originally part of
CH(Si).

4. Selecting the global convex hull edges in each generating set
(a) Each processorpi computes for each trianglet of Ri the point ofSi with

maximum distance to the plane defined byt . We refer to such a point as a
furthest pointin Si .

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 551

(b) On each processorpi let Gi be the subgraph of CH(Si) induced by those
edges that remain after Step 3. Each processorpi computes the setEi of
edges ofGi reachable inGi from a furthest point inSi .

3. Algorithm Details and Analysis

We now discuss in more detail the steps outlined in the above algorithm and give a
probablistic analysis. Letk ∈ N be a parameter to be determined later.

3.1. Computing a Sample Convex Hull

We need the following:

Lemma 1 [31]. Consider a random variable X with binomial distribution. Let n be
the number of trials, each of which is successful with probability q. The expectation of
X is E(X) = nq.

(a) prob{X > cnq} ≤ e−(1/2)(c−1)2nq, for c > 1.
(b) Letβ ≥ 4 (not necessarily fixed). If β2nq ≥ α ln(n) for some constantα > 0,

then X= Õ(βnq).

We now outline how to select a random sampleR ⊂ S of size Õ(n/p). Each
processorpi performs a biased random coin flip for each point ofS stored atpi , such
that each point is selected with probabilitypk/n. From the above lemma it follows that
|R| = Õ(pk) and that ifk = Ä(ln(n)), then the number of points selected by a processor
pi is Õ(k).

Since we storeR at each processor, it is necessary that|R| ≤ Õ(n/p). Hence, we
obtain:

Requirement 1. k ≤ n/p2.

In order to compute the convex hull CH(R) of R we apply any optimal sequential
(O((n/p) log2(n/p)) time) three-dimensional convex hull algorithm [14], [33].

3.2. Computing the Generating Sets

In Step 2 of the algorithm we computep subsetsSi of S, such that each edge of the
convex hull CH(S) is generated in the computation of a convex hull CH(Si). Before we
give an algorithm for computing the generating setsSi , we show that in Step 2 a superset
of the set of convex hull edges is generated.

Lemma 2. Every edge ofCH(S) is an edge of at least oneCH(Si), 1≤ i ≤ p.

Proof. Let (v,w) be an edge in CH(S). Consider the linel (v,w) parallel to(v,w)
and contained in the plane defined byv, w and the origin such thatl (v,w) is tangent
to the sample convex hull CH(R). Recall that the origin lies inside CH(R). The line

552 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Fig. 2. Two-dimensional illustration of the proof of Lemma 2.

l (v,w) intersects an edgee of CH(R) (if it intersects at a vertex we consider any edge
incident to this vertex). See Figure 2 for a two-dimensional illustration (two-dimensional
projection). Lett ′ andt ′′ be the faces of CH(R) adjacent toe. By construction there exists
at least oneRi such that{t ′, t ′′} ∩ Ri 6= ∅. It follows from the convexity of CH(R) that
(Tt ′ ∪ Tt ′′) ⊂ Si = (

⋃
t∈Ri

Kt) ∪ (
⋃

t∈Qi
Tt). Thus,{v,w} ⊂ Si and, hence,(v,w) is an

edge of CH(Si).

We next discuss how we can constructpgenerating setsSi . It is important to establish
that noSi contains more thañO(n/p) points ofS.

For each facet of CH(R) we can easily compute|Kt |, the number of points in a
coneCt , by constructing a subdivision hierarchy [20] for the convex polyhedron CH(R).
On this subdivision hierarchy we perform a ray-shooting query for each points ∈ S,
using a ray that starts at the origin and passes throughs. Each query can be answered in
time O(log|CH(R)|). The search structure is of sizeO(|CH(R)|) and can be computed
sequentially in timeO(|CH(R)|). Each point is contained in exactly one cone. Each
processor performs the ray-shooting queries for its point set, and thep results for each
of then/p faces are added after a global sort of the faces.

Lemma 3.

(a) For any fixed c≥ 5,with probability at least1−1/nc−4 there exists no triangle
t such that|Tt | ≥ c((n ln(n))/pk).

(b) For any fixed c≥ 5,with probability at least1−1/nc−4 there exists no triangle
t such that|Kt | ≥ c((n ln(n))/pk).

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 553

Proof. (a) Consider a fixedc ≥ 5. For some fixed trianglet , prob{|Ti | = j } ≤
(1− pk/n) j and

prob

{
|Tt | ≥ c

n ln(n)

pk

}
≤

n∑
j=c((n ln(n))/pk)

prob{|Tt | = j }

≤
(

n− c
n ln(n)

pk

)(
1− pk

n

)c((n ln(n))/pk)

=
(

n− c
n ln(n)

pk

)((
1− 1

n/pk

)n/pk)c ln(n)

≤
(

n− c
n ln(n)

pk

)
e−c ln(n).

As there are less thann3 possible triangles,

prob{there exists at with |Tt | ≥ c((n ln(n))/pk)}
≤ n3(n− c((n ln(n))/pk))e−c ln(n).

The claim follows from

n3

(
n− c

n ln(n)

pk

)
e−c ln(n) ≤ 1

nc−4

⇔ nc−4n3

(
n− c

n ln(n)

pk

)
≤ ec ln(n)

⇔ (c− 4) ln(n)+ 3 ln(n)+ ln

(
n− c

n ln(n)

pk

)
≤ c ln(n)

⇔ c− 4≤ 1

ln(n)
(c ln(n)− 4 ln(n)) = c− 4.

(b) Follows immediately, sinceKt ⊂ Tt for each facet of CH(R).

It is easy to partition the faces of CH(R) into p subsetsRi such that, for eachRi ,∑
t∈Ri
|Kt | = O(n/p). However, a setRi from such a partitioning can haveO(pk)

edge-adjacent faces not inRi and can induce a setSi containingO((n/p) log2 n) points.
Our construction of thep setsRi is based on the following separator theorem:

Lemma 4 [28]. Let G be any m-vertex planar graph. Then the vertices of G can be
partitioned in three sets V1,U , and V2, such that no edge joins a vertex in V1 with a vertex
in V2, neither V1 nor V2 have total size exceeding2m/3, and separator U contains no

more than2
√

2
√

m/(1−
√

2
3) vertices. Furthermore V1, U , and V2 can be determined

sequentially in time O(m).

We apply the separator theorem to the dual graphG of CH(R). Define the cost
of a node ofG corresponding to a facet of CH(R) as |Kt |. In order to partition the
vertices ofG into p subsetsW1, . . . ,Wp, we recursively apply the separator theorem

554 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

until the total node cost of every subgraph is at mostn/p. This yields less than 2p
subproblems and we pair them arbitrarily. Since|Kt | ≤ (cn ln(n))/pk, there are at
mostl = log2 p+ log2 ln(n) + log2 c levels of recursion to reduce the total node cost
of each subgraph ton/p. At the i th level, the total number of nodes in (up to 2i−1)

separators is bounded by 2i−1d
√

m/1.5i−1, whered = 2
√

2/(1−
√

2
3) andm= θ(pk).

The total number of nodes in all separators obtained in this procedure is bounded by∑l
i=1 2i−1d

√
m/1.5i−1 = O(p

√
k ln(n)).

Let B be the multiset of points contained in setsTt for facest corresponding to some
separator, counting the multiple presence of points. The total number|B| of such points
is bounded byO(p

√
k ln(n)) timesO((n logn)/pk), which isO((n ln(n)

√
ln(n))/

√
k).

Requirement 2. k ≥ (l ln(n)
√

ln(n))2.

Choosingk ≥ (l ln(n)
√

ln(n))2, we obtain|B| = O(n/ l). A point is in B if and
only if it is bounded away from the origin by one ofTt for somet in the separators. The
complement ofB is the set of points in the convex hull defined by all the half-spaces
containing the origin and bounded by a hyperplaneTt , for all t in one of the separators.
This convex hull can be constructed sequentially within timeO((n logn)/p). In time
O(log(|R|))we determine whether each point does not belong toB. Then we determine
those points ofB which correspond to the first level separator. All these points are
assigned toSi , 1≤ 1≤ p. After removing these points fromB, the remaining points in
B can be partitioned into two parts: Those in setsTt wheret corresponds to a vertex inV1

and those in setsTt wheret corresponds to a vertex inV2. This partition can be obtained
using a Kirkpatrick subdivision hierarchy for the convex hullCONV(R) in O(log(|R|))
time for each point inB. Therefore, for each point inB, the number of operations on
each level isO(logn) and the total number of operations onl levels isO(l |B| logn),
which isO(n logn). Since each point ofB requires the same number of operations, they
can be distributed over thep processors so that each processor needsO((n logn)/p)
operations.

As the level of recursion increases from 1 tol , the number of adjacent faces decreases
geometrically. The number of faces which are edge-adjacent to a face of CH(R) in Ri is
bounded by

l∑
j=1

√
(1

2)
j |CH(R)| =

√
|CH(R)|

l∑
j=0

√
(1

2)
j = O(

√
|CH(R)|) = Õ(

√
pk).

Hence, it follows from Lemma 3 that

|Si | = Õ

(
n

p
+
√

pk
n ln(n)

pk

)
.

Since it is necessary thatSi is of sizeÕ(n/p) we obtain:

Requirement 3. k ≥ p ln2(n).

Requirements 1–3 hold ifn/p ≥ p2+ε for some fixedε > 0.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 555

3.3. Disconnecting Internal Edges

In Step 3 of the algorithm we start removing from generating setsSi those edges that are
not edges of CH(S).

Amato and Preparata [5] observed that, given a set of raysRv in R3 which all start
at vertexv, the problem of computing their convex hull CH(Rv) can be reduced to a
two-dimensional convex hull computation. The algorithm first determines a planeHv

that does not pass throughv and intersects all rays ofRv. If there is no such planeHv,
thenv is inside the convex hull CH(Rv) = R3. Hence,v is inside CH(S). If such a plane
Hv exists, we can determine the convex hull CH(Rv) by computing the two-dimensional
convex hull of the intersection points of the rays withHv.

We execute a sequential algorithm if|Rv| ≤ O(n/p). Otherwise, we reduce the
problem to solving, in parallel, the following linear programming problem:

Let the planeHv be defined by equationax+ by+ cz= d. It passes throughv and
all verticeswi of edges(v,wi) lie on one side ofHv. Let (xi , yi , zi) be the coordinates
of pointwi . This defines the constraintsaxi + byi + czi ≥ d for the verticeswi and the
function f (a, b, c) = axv + byv + czv − d, with (xv, yv, zv) as coordinates of vertex
v. This problem can be solved in parallel timẽO((n log2 n)/p+ Ts(n, p)) with O(1)
communication rounds [17].

Lemma 5. After execution of Step3 the following hold:

(a) No edge ofCH(S) is removed.
(b) The edges that are contained inCH(S) form a single connected component

which does not contain any vertex or edge that is not inCH(S).

Proof. (a) Step 2 removes only edges and vertices which lie inside the convex hull
CH(Rv) of rays incident to a vertexv. Clearly, an edge inside CH(Rv) also lies inside
CH(S).

(b) Assume that a vertex not in CH(S) is connected to a vertexv in CH(S) by some
path of edges remaining after Step 3. Consider the edge of this path incident tov. This
edge is deleted in Step 3 as it lies inside CH(Rv); a contradiction.

3.4. Selecting the Global Convex Hull Edges in Each Generating Set

Step 4(a) computes for each trianglet ∈ Ri the point ofSi that has maximal distance to
the plane throught . Such a furthest point is clearly in CH(S).

To determine the furthest points forRi we use a subdivision hierarchy [20] for the
convex polyhedron CH(Si). We perform for each plane through a triangle inRi a search to
determine its tangents to CH(Si). The size of the search structure isO(|CH(Si)|)and it can
be constructed sequentially in timeO(|CH(Si)|). The sequential search needs logarithmic
time for each triangle. Hence, the time complexity of Step 4(a) isO(|Ri | log2|Si |).

In Step 4(b) each processorpi computes the union of those connected components
of Gi that contain a furthest point inSi . The sequential time complexity isO(|Gi |) =
O(|Si |).

556 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Lemma 6.

(a) Every edge ofCH(S) is contained in at least one set Ei , 1≤ i ≤ p.
(b) No set Ei , 1≤ i ≤ p, contains an edge that is not inCH(S).

Proof. (a) Consider an edge(v,w) of CH(S). By Lemma 2, there exists a setSi such
that(v,w) is in CH(Si). From Lemma 5 it follows that(v,w) is not deleted in Step 3.
Due to the definition ofRi , v is contained inHt for somet ∈ Ri , and CH(S)∩ Ht ⊂ Si .
By Lemma 5 and the fact thatHt is a half-space it follows that the edges incident to
CH(S) ∩ Ht form a connected component. Furthermore, a point inSi with maximum
distance to the plane defined byt is in CH(S) ∩ Ht . Hence,(v,w) ∈ Ei .

(b) Follows immediately from Lemma 5.

4. Summary

Lemmas 2, 5, and 6 imply the following:

Theorem 1. The convex hull of n points in3-space can be computed on a p-processor
coarse-grained multicomputer with n/p ≥ p2+ε, ε > 0, in timeÕ((n log2 n)/p+0n,p).

By standard transformation of two-dimensional Voronoi diagram construction to three-
dimensional convex hull computation [12] we obtain:

Corollary 1. The Voronoi diagram of a set of n points in the Euclidean plane can be
computed on a p-processor coarse-grained multicomputer with n/p ≥ p2+ε, ε > 0, in
time Õ((n log2 n)/p+ 0n,p).

Note that in order to compute the Voronoi diagram, the algorithm can be simplified.
We do not need Step 4 of the algorithm, as the Voronoi diagram problem is equivalent
to a convex hull problem where all points are vertices of the convex hull. All internal
edges which are produced in Step 2 of the algorithm are removed in Step 3.

References

[1] A. Aggarwal, A.K. Chandra, and M. Snir. On Communication Latency in PRAM Computations.Proc.
SPAA89, pages 11–21.

[2] A. Aggarwal, B. Chazelle, L. Guibas, C.́O’Dúnlaing, and C. Yap. Parallel Computational Geometry.
Algorithmica, Vol. 3, pages 293–327, 1988.

[3] N. Alon and N. Meggido. Parallel Linear Programming in Fixed Dimension Almost Surely in Constant
Time.Proc. FOCS90, pages 574–582.

[4] N.M. Amato, M. Goodrich, and E. Ramos. Parallel Algorithms for High-Dimensional Convex Hulls.
Proc. 35th Annual IEEE Symposium on Foundations in Computer Science, pages 683–694, 1994.

[5] N.M. Amato and F.P. Preparata. An NC1 Parallel 3D Convex Hull Algorithm.Proc. 9th Annual ACM
Symposium on Computational Geometry, pages 289–297, 1993.

[6] R.J. Anderson and L. Snyder. A Comparison of Shared and Nonshared Memory Models of Computation.
Proceedings of IEEE, Vol. 79, No. 4, pages 480–487, 1995.

A Randomized Parallel Three-Dimensional Convex Hull Algorithm 557

[7] M.J. Atallah and M.T. Goodrich. Efficient Parallel Solutions to Some Geometric Problems.Journal of
Parallel and Distributed Computing, Vol. 3, pages 492–507, 1986.

[8] M.J. Atallah and M.T. Goodrich. Parallel Algorithms for Some Functions of Two Convex Polygons.
Algorithmica, Vol. 3, pages 535–548, 1988.

[9] M.J. Atallah and J.-J. Tsay. On the Parallel-Decomposability of Geometric Problems.Proc. 5th Annual
ACM Symposium on Computational Geometry, pages 104–113, 1989.

[10] K.E. Batcher. Sorting Networks and Their Applications.Proc. AFIPS Spring Joint Computer Confer-
ence, pages 307–314, 1968.

[11] G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, S.J. Smith, and M. Zagha. A Comparison of
Sorting Algorithms for the Connection Machine CM-2.Proc. SPAA91, pages 3–16.

[12] K.Q. Brown. Voronoi Diagrams from Convex Hulls.Information Processing Letters, Vol. 9, pages 223–
228, 1979.

[13] A. Chow. Parallel Algorithms for Geometric Problems. Ph.D. thesis, University of Illinois at Urbana-
Champaign, 1980.

[14] K.L. Clarkson, K. Mehlhorn, and R. Seidel. Four Results on Randomized Incremental Constructions.
Computational Geometry Theory and Application, Vol. 3, No. 4, pages 185–212, 1993.

[15] F. Dehne, A. Fabri, and C. Kenyon. Scalable and Architecture Independent Parallel Geometric Algo-
rithms with High Probability Optimal Time.Proc. 6th IEEE Symposium on Parallel and Distributed
Processing, pages 586–593, 1994.

[16] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable Parallel Geometric Algorithms for Coarse Grained
Multicomputers.Proc. 9th Annual ACM Symposium on Computational Geometry, pages 298–307, 1993.

[17] X. Deng. A Convex Hull Algorithm for Coarse Grained Multiprocessors.Proc. 5th International Sym-
posium on Algorithms and Computation, pages 162–173, 1994.

[18] X. Deng and P. Dymond. Efficient Routing and Message Bounds for Optimal Parallel Algorithms.Proc.
IPPS1995, Santa Barbara, pages 556–562, April 1995.

[19] X. Deng and N. Gu. Good Programming Style on Multiprocessors.Proc. IEEE Symposium on Parallel
and Distributed Processing, Dallas, pages 538–543, October 1994.

[20] D.P. Dobkin and D.G Kirkpatrick. Fast Detection of Polyhedral Intersection.Theoretical Computer
Science, Vol. 27, pages 241–253, 1983.

[21] H. Edelsbrunner.Algorithms in Combinatorial Geometry. EATCS Monographs on Theoretical Computer
Science, Vol. 10. Springer-Verlag, Berlin, 1987.

[22] A.V. Gerbessiotis and L.G. Valiant. Direct Bulk-Synchronous Parallel Algorithms.Proc. 3rd Scandi-
navian Workshop on Algorithm Theory, pages 1–18. Lecture Notes in Computer Science, Vol. 621.
Springer-Verlag, Berlin, 1992.

[23] P. Gibbons. A More Practical PRAM Model.Proc. 1989ACM Symposium on Parallel Algorithms and
Architectures, pages 158–168, 1989.

[24] M.T. Goodrich. Planar Separators and Parallel Polygon Triangulation. To appear inJournal of Computer
and System Science.

[25] M.T. Goodrich, J.J. Tsay, D.E. Vengroff, and J.S. Vitter. External-Memory Computational Geometry.
Proc. 34th IEEE Symposium on Foundations of Computer Science, pages 714–723, 1993.

[26] F.T. Leighton.Introduction to Parallel Algorithms and Architectures: Arrays,Trees,Hypercubes. Morgan
Kaufmann, San Mateo, CA, 1992.

[27] Hui Li and K.C. Sevcik. Parallel Sorting by Overpartitioning.Proc. SPAA94, pages 46–56, 1994.
[28] R.J. Lipton and R.E. Tarjan. A Separator Theorem for Planar Graphs.SIAM Journal on Applied Math-

ematics, Vol. 36, No. 2, pages 177–189, 1979.
[29] K. Mehlhorn.Graph Algorithms and NP-Completeness. Springer-Verlag, New York, 1984.
[30] R. Miller and Q.F. Stout. Efficient Parallel Convex Hull Algorithms.IEEE Transactions on Computers,

Vol. 37, No. 12, pages 1605–1618, 1988.
[31] K. Mulmuley. Computational Geometry: an Introduction Through Randomized Algorithms. Prentice-

Hall, New York, 1993.
[32] C.H. Papadimitriou and M. Yannakakis. Towards an Architecture Independent Analysis of Parallel

Algorithms.Proc. 20th Symposium on Theory of Computing, pages 510–513, 1988.
[33] F.P. Preparata and M.I. Shamos.Computational Geometry: an Introduction. Springer-Verlag, New York,

1985.
[34] J.H. Reif and S. Sen. Optimal Parallel Algorithms for 3D Convex Hulls and Related Problems.SIAM

558 F. Dehne, X. Deng, P. Dymond, A. Fabri, and A. A. Khokhar

Journal of Computing, Vol. 21, pages 446–485, 1992, pages 394–404, 1989, with corrigendum inSIAM
Journal of Computing, Vol. 23, pages 447–448, 1994.

[35] L. Snyder. Type Architectures, Shared Memory and the Corollary of Modest Potential.Annual Review
of Computer Science, Vol. 1, pages 289–317, 1986.

[36] L.G. Valiant. A Bridging Model for Parallel Computation.Communications of the ACM, Vol. 33,
pages 103–111, 1990.

[37] L.G. Valiant. General Purpose Parallel Architectures.Handbook of Theoretical Computer Science,
edited by J. van Leeuwen, pages 943–972. MIT Press/Elsevier, Cambridge, MA/Amsterdam, 1990.

Received October30, 1995,and in revised form April15, 1996,and in final form September17, 1996.

