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Randomized Parallel List Ranking for
Distributed Memory Multiprocessors’

Frank Dehne? and Siang W. Song?

We present a randomized parallel list ranking algorithm for distributed memory
multiprocessors, using a BSP type model. We first describe a simple version
which requires, with high probability, log(3p) + log In{n) = O(log p + log log 1)
communication rounds (f-relations with 4= O(n/p)) and O(n/p)) local com-
putation, We then outline an improved version that requires high probability,
only r<(4k +6)log(3 p)+8 = O(k log p) communication rounds where k=
min{i=0[In"*"n < (3 p)**'}. Note k <In*(n) is an extremely small number.
For 1< 10" and p =4, the value of & is at most 2. Hence, for a given number
of processors, p, the number of communication rounds required is, for all practi-
cal purposes, independent of #. For n < 1, 500,000 and 4 < p < 2048, the number
of communication rounds in our algorithm is bounded, with high probability,
by 78, but the actual number of communication rounds observed so far is 25 in
the worst case. For n< 10" and 4 < p < 2048, the number of communication
rounds in our algorithm is bounded, with high probability, by 118: and we con-
jecture that the actual number of communication rounds required will not
exceed 50. Our algorithm has a considerably smaller member of communication
rounds than the list ranking algorithm used in Reid-Miller’s empirical study of
parallel list ranking on the Cray C-90."" To our knowledge, Reid-Miller’s algo-
rithm'" was the fastest list ranking implementation so far. Therefore, we expect
that our result will have considerable practical relevance.
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2 Dehne and Song
1. INTRODUCTION

1.1. The Model

Speedup results for theoretical PRAM algorithms do not necessarily match
the speedups observed on real machines.”**’ Given sufficient slackness in
the number of processors, Valiant’s BSP approach’ simulates PRAM
algorithms optimally on distributed memory parallel systems. Valiant
points out, however, that one may want to design algorithms that utilize
local computations and minimize global operations.‘* >’ The BSP approach
requires that g (=local computation speed/router bandwidth) is low, or
fixed, even for increasing number of processors. Gerbessiotis and Valiant'®’
describe circumstances where PRAM simulations can not be performed
efficiently, among others if the factor g is high. Unfortunately, this is true
for most currently available multiprocessors. The algorithm presented here
considers this case for the list ranking problem. Furthermore, as pointed
out in Ref. 4, the cost of a message also contains a constant overhead cost
s. The value of s can be fairly large and the total message overhead cost can
have a considerable impact on the speedup observed (see e.g., Ref. 7).

We are therefore using a slightly enhanced version of the BSP model,
referred to as coarse grained multicomputer model.”"®’ 1t is comprised of a
set of p processors P,,..., P, with O(n/p) local memory per processor and
an arbitrary communication network (or shared memory). All algorithms
consist of alternating local computation and global communication rounds.
Each communication round consists of routing a single A-relation with
h=0(n/p),* ie., each processor sends O(n/p) data and receives O(n/p)
data. We require that ad information sent from a given processor to another
processor in one communication round is packed into one message. In the
BSP model, a computation/communication round is equivalent to a super-
step with L = (n/p) g (plus the previous “packing requirement”).

Finding an optimal algorithm in the coarse grained multicomputer
model is equivalent to minimizing the number of communication rounds as
well as the total local computation time. This considers all the discussed
parameters that are affecting the final observed speedup and requires no
assumption on g. Furthermore, it has been shown that minimizing the
number of supersteps also leads to improved portability across different
parallel architectures."*>'" This model has been used (explicitly or
implicitly) in parallel algorithm design for various problems'” '>"'*) and
has shown very good practical timing results.

+O(n) denotes O(n) “with high probability.” More precisely, X = O(f(n)), if and only if
gh p 3 p
(Ve ey > 1) Prob{ X = ¢f(n)} < 1/n* where ¢, is a fixed constant and g(¢) is a polynomial
in ¢ with g(¢) — o« for ¢ = o '
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1.2. The List Ranking Problem

Consider a linear linked list consisting of a set S of n nodes and, for
each node xS, a pointer (x — next(x}) to its successor, next{x), in the list.
Let A€ S be the last list element and next(1) = A. The list ranking problem
consists of computing for each x €S the distance of x to 4, referred to as
dist(x).

We assume that, initially, every processor stores n/p nodes and, for
each of these nodes, the pointer (x — next(x)) to the next list element. See
Fig. 1. As output we require that every processor stores for each of its n/p
nodes x € S the value dist(x).

A trivial sequential algorithm solves the list ranking problem in optimal
linear time by traversing the list. Several PRAM list ranking algorithms
have been proposed.''®'” Wyllie!'® proposed a non-optimal O(log n) time
algorithm with total work greater than O(n). The first optimal O(logn)
EREW PRAM algorithm is due to Cole and Vishkin.!'”" Another optional
deterministic algorithm is given by Anderson and Miller.?” Parallel
list ranking algorithms using randomization were proposed by Miller and
Reif 22> The algorithms use O(n) processors. The optimal algorithm
by Anderson and Miller'?® improves this by using an optimal number of
processors. A 0(\/(n)) time mesh algorithm is described in Ref. 24. Reid-
Miller" presented an empirical study for the Cray C-90 which will be dis-
cussed in the next subsection. See Section 6 for some of the many applica-
tions of list ranking.

1.3. The Results

We present a randomized parallel list ranking algorithm for the coarse
grained multicomputer model discussed earlier. We first describe a simple
version which requires, with high probability, log(3p) +log In(n) =
O(log p + log log n) communication rounds. Then, we outline an improved

Proc.1 Proc.2 Proc.3 Proc.4
: f

e —

Fig. 1. A linear linked list stored in a distributed memory multi-
processor.
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version which requires, with high probability, only r < (4k + 6) log(3 p) + 8 =
O(k log p) communication rounds where k =min{i >0[In"*"n < (3 p)**'}.

We observe that k<In*(n) is an extremely small number. For
n<10'°" and p >4, the value of k is at most 2. That is, for a given number
of processors, p, the number of communication rounds required is, for all
practical purposes, independent of n.

For n< 10" and 4 < p <2048, the number of communication round,
r, is bounded, with high probability, by 118. See Table 1. Note that, this is
only an upper bound on the number of communication rounds. For
100,000 <7 < 1,500,000 and 4 < p <2048, 0 with high probability, r is

Table . Values of k and R:=(4k+6)log{2p)+8 [Upper Bound on r]
for Various Combinations of n and p

p= 4 8 16 32 64 128 256 512 1024 2048

n kR kKR kR kR kR kR kR kR. kR kR
10 118 0,26 0532 ;38 0:44  0;50  0;56  0;62  0:68 0;74
1019 118 1:38  0:32 0:38  0:44 0;50  0;56  0:62 0,68 074
W18 1;38 1;48  0:38  0;44  0;50  0;56  0;62 0,68 0;74
109 118 1538 1548 1558 0:44 0:50 0;56 0:62 0:68  0:74
1Y 118 1038 1348 1358 1i68 ;50 0:56  0:62  0;68  0:74
10”"(:’ ;18 1;38  1:48 {;58 1; 68 1;78 0,56 0:62 0:68 0.74
1077 1,18 1:38 ;48 ;58 1368 178 1;88 0:62 0,68 074
10 18 1338 1348 155§ 1:68 1578 1588 1598 0:68  0;74
101 1518 1538 148 ;S8 1368 1578 1588 198 11108 0;74
100 118 1:38 0 148 1;S8 0 ;68 178 1:88 1198 10108 L 1IS
100 1s 138 1; 48 1:58 1; 68 1;78 1; 88 1;98 1;108 1,118
100 118 1538 1:48 1358 168 1578 1:88 ;98 1108 Lil18
100 18 1,38 1548 ;S8 168 1078 1588 1398 15108 1118
1010 2:22 1538 1348 ;S8 168 1378 1;88 1398 11108 118
o 222 138 1,48 1;58 0 1;68 ;78 1:88 ;98 1108 L1118
100 2.2 1338 1,48 1:58 1;68 1078 188 1198 15108 15118
10 209 138 1;48 1:58 1: 68 1;78 1; 88 1;98 1.108 1:118
100 222 1338 1348 1558 1368 1,78 188 1:98 13108 1118
oo 2022 1338 1348 1558 1,68 1,78 1588 198 1,108 LIS
(010" 2:22 1:38 1:48 1:58 1; 68 ;78 1,88 1;98 1;108 1:;118
009" 2,22 1338 1:48 ;58 1,68 178 1588 ;98 1108 1 LIS
01 222 1;38 1;48 1358 168 1078 1388 1398 11108 118
o™ 222 ;38 1;48 ;58 ;68 1;78  1;88  1;98  1;108 11118
1010 2:22 1:38 1;48 1: 58 1;68 ;78 1: 88 1;98 1:108 1;118
10 222 ;38 ;48 1358 1;68  1;78 1188 198 1108 1118
1000 222 138 1:48 1:58 1; 68 1,78 1:88 1,98 1;108 ;118
101" 222 1:38 1348 LS8 168 178 ;88 1:98 L1108 LI
101 222 1038 148 1358 1568 178 1588 1598 1108 1518
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pounded by 78 in the worst case. See Table 1I. We simulated 100 test runs
of our algorithm for each of the n, p combinations shown in Table II. The
observed numbers of communication rounds actually required were always
much lower, and never exceeded 25.

Forn< 10" and 4 < p <2048, the number of communication rounds
in our algorithm is bounded, with high probability, by 118, and we conjec-
ture that the actual number of communication rounds required will not
exceed 50.

Our randomization technique is very different from the ones used in
Refs. 21-23. In this model, our algorithm uses considerably fewer com-
munication rounds than others. /! 1671920 2%

The simple version of our algorithm is a generalization of the algo-
rithm used in Reid-Miller’s'"” empirical study of parallel list ranking for the
Cray C-90 in shared memory mode. The analysis of our simple list ranking
algorithm improves the estimates on the load imbalance provided in Ref.
{ Our improved algorithm also applies to the Cray C-90. Since it requires
significantly fewer communication rounds than the algorithm used in Ref.
1. we expect that our result will considerably improve the running times
observed. To our knowledge, Reid-Miller’s algorithm'" was the fastest list
ranking implementation so far. Therefore, we expect that our result will
have considerable practical relevance.

As with Reid-Miller’s algorithm‘“ we will, in general, assume that
n> p (coarse grained), because this is usually the case in practice. Note,
however, that our results hold for arbitrary ratios n/p.

1.4. Overview

In the remainder of this paper, we will first prove a result on random
sampling in linear linked lists. In Section 3, we outline the simple version
of our algorithm which is based on a single random sampling of list nodes.
In Section 4, we introduce an incremental method to improve the first
sample. We present a considerably improved list ranking algorithm, which
is the main result of this paper. In Section 5, we discuss the results of our
simulation of the improved list ranking algorithm. Finally, in Section 6, we
outline some applications.

2. RANDOM SAMPLING IN LINEAR LINKED LISTS

Consider a lineal linked list with a set S of n nodes. In this section we
will show that if we select n/p random elements (pivots) of S then, with
high probability, these pivots will split S into sublists whose maximum size
is bound by 3p In(n); see Fig. 2.
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Table Il. Worst Case Values of m, and r for m{>* and r°***
p= 4 8 16 32 64 128 256 512 1024 2048
n k k k k k K k k k k
R R R R R R R R R R
m® o o om omd om omd omd™ om om”
'.ohs ',nlyv ruh.\' I,uhx ruh.v rnh\- rnhx ’,ub,\ rnh,v ,.n/m
100,000 1 1 | 1 1 0 0 0 0 0
18 38 48 58 68 50 56 62 68 74
28 39 119 238 409 1400 2421 5900 9136 17158
8 13 16 19 22 12 13 14 15 16
200.000 1 1 I 1 1 0 0 0 0 0
18 38 48 58 68 50 56 62 68 74
35 2 127 283 444 1690 3023 5447 11047 17921
9 14 16 20 22 12 13 14 15 16
300,000 1 1 1 1 | 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
31 65 130 235 468 859 3038 5076 9432 19636
8 14 17 19 22 25 13 14 15 16
400,000 1 1 1 1 1 I 0 0 0 0
18 38 48 58 68 78 56 62 68 74
35 75 134 226 441 925 3497 6394 11627 17252
9 14 17 19 22 25 13 14 5 16
500,000 1 1 1 1 1 0 0 0 0
1 38 48 58 68 78 56 62 68 74
32 72 17 264 474 860 3150 6144 11179 21552
8 14 16 20 22 25 13 14 15 16
600,000 1 1 I 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
33 78 132 246 458 1015 2934 6295 11409 26526
9 14 17 19 22 25 13 14 15 16
700,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
32 69 122 244 467 882 3420 6605 11622 21028
8 14 16 19 22 25 13 14 15 16
800,000 i 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
35 79 147 260 510 989 4216 5905 11098 28814
9 14 17 20 22 25 14 14 15 16
900,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
33 76 132 240 536 887 3023 6909 12244 24516
9 14 17 19 23 25 13 14 15 16

“k, R:=(4k +6)log(3p)+38, m

obs
A

and r** for various combinations of n and p. (For each
combination of # and p, the m® and r** shown are the worst case values observed during

P s £
100 test runs.)
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Table ll. Continued

p= 4 8 16 32 64 128 256 512 1024 2048
i . kK k k k k k k k
R R R R R R R R R R
mem sbs g m®  om om om s g mp
s obs s pobs pobs s pobs pobs b pobs
1.000.000 1 1 1 I 1 i 0 0 0 0
18 38 48 58 68 78 56 62 68 74
40 69 127 264 440 851 3406 7924 11861 21552
9 14 16 20 22 25 13 14 15 16
1100000 1 1 | i ! 1 0 0 0 0
18 38 43 38 68 78 56 62 68 74
38 83 136 241 531 996 3469 6120 11938 23631
9 14 17 19 23 25 13 14 15 16
1,200,000 1 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74
36 75 134 279 510 974 3412 6394 11627 22720
9 14 17 20 22 25 13 14 15 16
1.300,000 i 1 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74

33 76 133 254 605 1011 4216 6390 11258 20613
14 17 19 23 25 14 14 15 16
1.400.000 1 ! 1 1 1 1 0 0 0 0

18 38 48 58 68 78 56 62 68 74
32 70 141 259 605 924 3722 6394 11627 22720
8 14 17 20 23 25 13 14 15 16
1,500,000 1 I 1 1 1 1 0 0 0 0
18 38 48 58 68 78 56 62 68 74

33 89 172 270 551 903 3893 6120 11938 23631
9 14 17 20 23 25 13 14 15 16

We recall the following Lemma from Blelloch ez al,''? in a slightly
modified form for linked lists (rather than for arrays).

Lemma 1. xk<n randomly chosen elements of S (pivots) partition
list S into sublists S, such that the size of the largest sublist is at most n/x
with a probability of at least

1 ~k
I —2x{1——
i < 2x>

0= =)= @5 O @ O=0= 0= 0= 0= 0> 0=0>0

Fig. 2. A linear linked list with random pivots.
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Proof. (Analogous to Blelloch et al''*’) Assume that the nodes of S
are sorted by their rank. This sorted list can be viewed as 2x segments of
size n/2x. If every segment contains at least one pivot (chosen element),
then max, ¢ ;< « |S;| <n/x. Consider one segment. Since the pivots are
chosen randomly, the probability that a specific pivot is not in the segment
is (1 —(1/2x)). Since xk pivots are selected independently, the probability
that none of the pivots are in the segment is (1 — (1/2x))**. Therefore, even
assuming mutual exclusion, the probability that there exists a segment
which contains no pivot is at most 2x(1—(1/2x))™. Hence, every
segment contains at least one pivot with the probability being at least
T—2x(1 = (1/2x))*. O

Corollary 1. xk<n randomly chosen pivots partition list S into
xk 4 1 sublists S, such that there exists a sublist S; of size larger than c(n/x)
with a probability of at most (2x/c)(1 —(¢/2x))* < (2x/c) e V2~

Lemma 2. Consider vk <n randomly chosen pivots which partition
S into xk + 1 sublists S;, and let m=max, ;< |S:|. H A >=1n(x)+ 2 In(n)
then Prob{m > c(n/x)} <1/n‘, ¢>2.

Proof. Corollary 1 implies that
2x

- —(1/2) ck

n
Probim>c—r<—e¢
X c

We observe that, for ¢ > 2,

In(x) +2 In(n) <k
2 2>
=l <l>+2 In(n) <k
C C
2> k
=In <—Y> + ¢ In(n) <&
c 2

ckj2

X
=—n‘<e
c

= Prob {m>cz}<n_" ]
X

Theorem 1. n/p randomly chosen pivots partition S into (n/p) + 1
subsists S; with m =max, . ;< , |S;| such that

1

o

n

Prob{m = c3p In(n)} < c>2
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proof. Let x=n/3pIn(n), k=In(x)+2 In(n) = 3 In(n) — In(3p In(n)).
Then xk =(n/p)31n(n)—In(3pin(n))/3 In(n) <n/p, and Theorem 1

follows from Lemma 2. -

5. A SIMPLE ALGORITHM USING A SINGLE
RANDOM SAMPLE

In this section we will present a simple list ranking algorithm which

requires, with high probability, at most log(3p)+log In(n) = O(log p +
log log n) communication rounds. This algorithm is based on a single
random sample of nodes. We will later improve the performance of the
algorithm by improving the sample through a sequence of sampling
rounds.

Consider a random set S'=S of pivots. For each xeS let
nextPivot(x, S') refer to the closest pivot following x in the list S.
(W.lo.g assume that the last element, A, of S is selected as a pivot and
let nextPivot(4, S') =4 Note that for x# A, nextPivot(x,S')#x.) Let
distToPivot(x, S') be the distance between x and nextPivot(x, S') in list S.
Furthermore, let m(S, ') =max .y distToPivot(x, S').

The modified list ranking problem for S with respect to S’ refers to the
problem of determining for each x e § its next pivot nextPivot(x, S") as well
as the distance distToPivor(x,S’). The input/output structure for the
modified list ranking problem is the same as for the list ranking problem.

3.1. Algorithm 1

(1) Select a set S'= S of O(n/p) random pivots as follows: Every
processor P, makes for each xeS stored at P, an independent
biased coin flip which selects x as a pivot with probability 1/p.

(2) All processors solve collectively the modified list ranking problem
for S with respect to S’ (details will be discussed later).

(3) Using an all-to-all broadcast, the values nextPivot(x, S') and
distToPivot(x, S') for all pivots xe S’ are broadcast to all
processors.

(4) Using the data received in Step 3, each processor P; can solve the
list ranking problem for the nodes stored at P, sequentially in
time O(n/p).

—End of Algorithm—

For the correctness of Step 1, we recall the following in Lemma 3.
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Lemma 3. [Ref 10] Consider a random variable X with binomial
distribution. Let n be the number of trials, each of which is successful with
probability g. The expectation of X is E(X)==ng and

Prob{X >cng} e "= 1Pm forany c¢>1

In order to implement Step 2, we simply simulate the standard
recursive doubling technique. (For all x in parallel: WHILE next(x) %
nextPivot(x, S’} DO next(x) := next(next(x)).) From Theorem 1 it follows
that, with high probability, m(S, S') <3pin(n). Hence, Step 2 requires,
with high probability, at most log(3p In(n))=1og(3p) + log In{(n) com-
munication rounds. Step 3 requires 1 communication round, and Step 4 is
straightforward. In summary, we obtain Theorem 2.

Theorem 2. Algorithm 1 solves the list ranking problem using,
with high probability, at most 1+log(3p)+loglin(n) communication
rounds and O(n/p) local computation.

We observe that, if n/p <e'*" for some a> 1 then,

This implies the following Corollary.

Corollary 2. If n/p<e'®”, for some constant a>1, then the
number of communication rounds required by Algorithm 1 is bounded by
24+ (ax+1)log(3p) = O(log p).

4, IMPROVING THE MAXIMUM SUBLIST SIZE

We will now present our algorithm which improves the maximum sub-
list size obtained in Algorithm 1 and solves the list ranking problem by
using, with high probability, only r < (4k + 6) log(3 p) + 8 communication
rounds and O(n/p) local computation where

k:=min{i=0{ln"*Yn<(3p)**"}

Note that k <In*(n) is an extremely small number (see Table I). Figure 3
illustrates In"*"'n and (3 p)**"' as functions of i, as well as their intersec-
tion point k.
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Fig. 3. In“*"n and (3p)¥*" as functions of i, and their intersection point k.

The basic idea of the algorithm is that any two pivots should not be
closer than O(p) because this creates large “gaps” elsewhere in the list. If
two pivots are closer than O(p), then one of them is “useless” and should
be “relocated.” The nontrivial part is to perform the “relocation” without
too much overhead and such that the new set of pivots has a considerably
better distribution. The algorithm uses three colors to mark nodes: black
(pivot), red (a node close to a pivot), and white (all other nodes).

4.1. Algorithm 2

(1) Perform Step 1 of Algorithm 1. Mark all selected pivots black
and all other nodes white.

(2) Fori=1,.,2do

(2a) For each black node x, all nodes which are to the right of
x (in list S) and have distance at most 2 p are marked red.
Note: previously black nodes (pivots) that are now
marked red are no longer considered pivots.

(2b) For each black node x, all nodes which are to the left of
x (in list S) and have distance at most § p are marked red.

(2¢) Every processor P, makes for each white node x € S stored
at P, and independent biased coin flip which selects x as a
new pivot, and marks it black, with probability 1/p.
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(2d) Every processor P, marks white every red node xe S
stored at P,.

(3) Let S"eS be the subset of black nodes obtained after Step 2.
Continue with Steps 2-4 of Algorithm 1.

—End of Algorithm—

Observe that Steps 2a and 2b have to be performed in a left-to-right
scan, respectively, as if executed sequentially. We can simulate this sequen-
tial scanning process in the parallel setting because the number of pivots is
bounded by n/p. For Step 2a, we build linked lists of pivots by computing
for each of them a pointer to the next pivot of distance at most 2p/3, if any,
and the distance. These linked lists of pivots are compressed into one pro-
cessor and we run on these lists a sequential left-to-right scan to mark
pivots red. We return the pivots to their original location and mark every
nonpivot red for which there exists a nonred pivot that attempts to mark
it red. Step 2b is performed analogously. Note that each node x requires a
pointer to its predecessor prev(x) in the linked list. All prev(x) values can
be easily computed with one communication round and O(n/p local com-
putation.

Let r be the number of communication rounds required by Algorithm
2. We will now show that, with high probability,

r < (4k + 6) log(3 p) + 8 = O(k log p)

Let n, be the maximum length of a contiguous sequence of white nodes
after the ith execution of Step 2b, and define n,=n.

Let S, be the set of black nodes after the ith execution of Step 2c,
1 €i<k, and let S, be the set of black nodes after the execution of Step 1.
Note that, in Step 3, $'=S,. Define m,=m(S,) for 0 <i<k.

Lemma 4. With high probability, the following holds:
(a) my=nand n,<3plnn,_,), 1<i<k
(b) m;<3pln(n,),0<i<k
Proof. 1t follows from Theorem 1 that, with high probability,
Ry=Hn
my < 3p In(n)
and, for a fixed 1 <i<k
n,<m;_,

m,; < 3pIn(n,)
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Since k <In*(n) and log*(n) 1/n“ < 1/n“ 7, £¢>0, the above bounds for n,
and m; hold, with high probability, for all I <i<k. O

Lemma 5. With high probability, for all 1 <i<k,

(a) n,<3p(2In(3p) +In""(n))
(b) m;<6pIn(3p)+3pn"* (n)

Proof.

(a) Applying Lemma 4 we observe that

n, <3pIn(n)
1, < 3p In(3p In(n))
=3p(In(3p) + In In(n))
1, < 3p In(n,)
<3p(In(3p) + In(In(3p) + In In(n)))
<3p(In(3p) +In In(3p) + In In In(n))
ny<3pIn(n,)

< 3p(In(3p) +In In(3p) +InIn In(3p) + IninInIn(n))

n,<3p(2In(3p) + In"(n))
(b) It follows from Lemma 4 that

m,; < 3p In(n,) < 3p In(3p(2 In(3p) +In'"(n)))
<3p(In(3p) + n(2) + In''(3p) + In'"* 1(n))

< 6p In(3p) +3p In"* V(n) d

Theorem 3. Algorithm 2 with high probability, solves the list
ranking problem with r < (4k +6) log(3 p) + 8= O(k log p) communication
rounds and O(n/p) local computation.

Proof. The total number of communication rounds in Algorithm 2
with high probability, is bounded by
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2k log(3 p) +log(m,) + 1
< 2k log(3 p) +log(6p) + log In(3p) +log(3p) +log In* *1(n) + 1
<(2k+3)log(3 p) +1log9+logd.5+logn*(n)+1
<(2k+3)log(3 p) +logIn**(n)+8
<log((2 p)** ) +log In** V(n) + 8
<2log((3 )3 +8if (*) In*+ N(n) < (3 p)*+?
< (4k + 6) log(3 p) + 8= O(k log p)

Condition (*) is true because we selected k=min{i>0|In"*"'n<
(3 p)**'}. Note that, this bound is not tight. O

5. SIMULATION RESULTS

We simulated the behavior of Algorithm 2. In particular, we simulated
how this method improves the sample by reducing the maximum distance,
m;, between subsequent pivots. We examined the range of 4 < p <2048 and
100, 000 < n < 1, 500, 000 as shown in Table Il and applied Algorithm 2 for
each n, p combination shown 100 times with different random samples.
Table II shows the values of & and the upper bound R on the number
of communication rounds required according to Theorem 3. We then
measured the maximum distance observed between two subsequent pivots,
m¢™ in the sample chosen at the end of the algorithm, as well as the num-
ber of communication rounds actually required, r*”. Each of the numbers
shown 1s the worst case observed in the respective 100 test runs.

According to Theorem 3, for the range of test data used, the number
of communication rounds in our algorithm should not exceed 78. This is an
upper bound, though. The actual number of communication rounds ob-
served in Table II is 25 in the worst case. The number of rounds observed
is usually around 30% of the upper bound according to Theorem 3. We
also observe that for a given p (i.e., in a vertical column), the values of ’”Z’-m
and m”™ are essentially stable and show no monotone increase or decrease

with increasing n.

6. APPLICATIONS

The problem of list ranking is a special case of computing the suffix
sums of the elements of a linked list. This algorithm obviously can be
generalized to compute prefix or suffix sums for associative operators (by
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replacing the addition operation for node distances by the respective
associative operator). List ranking is a very popular tool for obtaining
merous parallel tree and graph algorithms. " 2* 2%

An important application outlined in Ref. 24 is to use list ranking for
applying Fuler tour techniques to tree problems. As demonstrated by
Atallah and Hambrusch,®* once an efficient distributed memory parallel
list ranking algorithm is available, it is easy to obtain efficient distributed
memory parallel algorithms for the following problems for an undirected
forest of trees: rooting every tree at a given vertex chosen as root, deter-
mining the parent of each vertex in the rooted forest, computing the pre-
order (or postorder) traversal of the forest, computing the level of each
vertex, and computing the number of descendants of each vertex. All these
problems can be easily solved with one or a small constant number of list
ranking operations.

nu

7. CONCLUSION

We presented a randomized parallel list ranking algorithm for dis-
tributed memory multiprocessors using the coarse grained multicomputer
model. The algorithm requires, with high probability, r < (4k + 6)
log(§p)+8=5(k10g p) communication rounds. For all practical pur-
poses, k <2. The algorithm presented improves on the number of com-
munication rounds required in Reid-Miller’s'" list ranking implementation
for the Cray C-90 which was, to our knowledge, the fastest list ranking
implementation to date. Therefore, we expect that our result will have
considerable practical relevance.
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