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Abstract

In this paper we study the problem of computing an exact, or arbitrarily close to exact, solution of an unrestricted point
set stereo matching problem. Within the context of classical approaches like the Marr-Poggio algorithm, this means that
we study how to solve the unrestricted basic subproblems created within such approaches, possibly yielding an improved
overall performance of such methods.

We present an O(n“‘”") time and O(n*) space algorithm for exact unrestricted stereo matching, where n represents the
number of points in each set and k& the number of depth levels considered. We generalize the notion of a -approximate
solution for point set congruence to the stereo matching problem and present an O((&/8)*n*™*) time and O((g/d)n)
space S-approximate algorithm for unrestricted stereo matching (e represents measurement inaccuracies in the image).
We introduce new computational geometry tools for stereo matching: the translation square arrangement, approximate
translation square arrangement and approximate stereo matching tree. © 1997 Published by Elsevier Science B.V.
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the depth (i.e. location in the third dimension) of an
object. The primary computational problem of binoc-
ular stereo, called the stereo matching problem, is to
identify corresponding objects in the two views (see
e.g. [2]). The stereo matching problem has been ex-
tensively studied in the vision literature, see e.g. [2-
7,10-12,14-16,18]. Considerable investigation has
been dedicated to the random-dot stereogram which

1. Introduction

Binocular stereo is a technique used in machine
vision for creating depth perception from two 2-D
images (views) recorded from different angles. The
difference in location of the same object in the two
views, also called binocular disparity, determines
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consists of two synthetic images of uncorrelated dots
that happen to be two views of the same surface. The
question studied is to retrieve depth information in
such a stereogram which contains no other cues be-
sides location (in contrast to, e.g., knowledge-based
approaches which also use shape, intensity, etc.).
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The majority of solutions to the stereo matching
problem presented in the literature use order preserv-
ing restrictions, heuristics, simulated annealing or
other optimization methods. A classical approach is
the Marr-Poggio algorithm [10-12]. It uses several
versions of the image with increasing resolution, and
solves the stereo matching problem for each version
by using the results obtained for the previous ver-
sions together with order preserving restrictions. The
problem is reduced to a large number of unrestricted
stereo matching problems for considerably smaller
subsets and considerably fewer possible depth levels.
We will refer to these problems as the basic subprob-
lems. The Marr-Poggio and related algorithms solve
the unrestricted basic subproblems by brute force.

In this paper we study the problem of computing an
exact, or arbitrarily close to exact, solution for unre-
stricted point set stereo matching. Within the context
of stereo matching approaches like the Marr-Poggio
algorithm this means that we study how to solve the
unrestricted basic subproblems faster than by brute
force and thereby obtain an improved overall perfor-
mance. We show that an unrestricted basic subprob-
lem can be solved in polynomial time without any loss
in accuracy. An arbitrarily close to exact solution can
be found with a further improved time complexity.

The following is the formal definition of the unre-
stricted point set stereo matching problem studied in
the remainder.

Let A ={aj,...,a,} and B ={by,...,b,} be two
sets of points in R? representing two views. A (k,&)-
stereo matching, I, for A and B, where ¢ > 0 and
1 < k < n, is comprised of (a) a partitioning of A
and B into k subsets Aj,..., Ak, and By,..., By, re-
spectively, (b) k bijections [; : B, — A, 1 < i <
k, (called labelings) and (c) k translation vectors
t1,...,t with the following property: Forall | < i<
kand b € B;, dist(b + 1;,1;(b)) < & All distances
dist(., .) will be measured with respect to the L, met-
ric. The (k, €)-stereo matching problem for A and B
consists of finding such a stereo matching, if it exists.

In the above definition, k corresponds to the num-
ber of depth levels to be considered, Ay, ..., A; and
Bi,..., By represent the points in the different depth
layers, and /; : B; — A;, 1 < i < k the matchings be-
tween those points. Due to inaccuracy in measurings,
some degree of noise tolerance is necessary, which is
represented by the factor &.

Note that, in general, the solution is not unique.
In many real life applications, the preferred matching
is indicated by some additional constraints. One such
constraint could be, for example, to minimize .

In Section 2 of this paper we present an algorithm
for solving the (k, £)-stereo matching problem in time
O(n2+#) and space O(n*). Our polynomial time so-
lution is without any loss in accuracy.

The (&, &)-stereo matching problem for the special
case of k =1 is also called the point set congruence
problem, for which an O(n®) time algorithm was pre-
sented in [1].

Let g9 be the smallest & such that A and B have
a (k,g)-stereo matching. Define the d-approximate
(k, €)-stereo matching problem, 0 < 6 < &, as fol-
lows: If |eg —&| > &, find a (k, £)-stereo matching for
A and B (if exists), otherwise return “don’t know™.
The S-approximate (&, £)-stereo matching problem is
a relaxed version of stereo matching, where our algo-
rithm has to produce a correct result only for values
of & outside the §-range of the threshold value &. In
general, this relaxation is not critical in practice, but it
will allow for a considerable speedup of the algorithm.

In Section 3 of this paper we present an algo-
rithm for solving the J&-approximate (k,&)-stereo
matching problem in time O((&/8)*n?"?*) and space
O((&/8)n?)). Again, for |eg — & > 8, our solution
is without any loss in accuracy.

The special case k = 1, called approximate point set
congruence, was introduced in [ 17] and subsequently
also studied in [8]. O((g/8)*n*7) and O((g/8)%n?)
time algorithms, respectively, were presented.

Our methods for the general (k,¢)-stereo match-
ing problem are a nontrivial generalization of {3].
The algorithms in [17] and [8] are based on using
the centroids and lower left corners, respectively, of
the two sets A and B. This is not possible for the
general (k,g)-stereo matching problem, as the par-
titioning into subsets Aj,..., A, and By,..., B is
not given a priori (while for k& = 1 the partitioning
is trivial). Computing this partitioning of A and B is
the major additional problem for stereo matching. We
present a new tool, the translation square arrange-
ment, and a new approximation scheme yielding an
approximate translation square arrangement. Based
on this arrangement, we build an approximate stereo
matching tree which is the main data structure guiding
our algorithm. Our approximation scheme has subtle
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Fig. 1. Two points sets A and B and their translation square
arrangement.

but important differences from [8]. It allows us to
prove some combinatorial properties of the approxi-
mate stereo matching tree and relationships between
approximations and exact solutions which yield the
obtained results.

2. (k, £)-stereo matching

For

a:<a1> €A and b=<hl> € B,
a by

the square with side length 2¢ centered at

_ alfb]
a—b= <a2~b2)

is called the translation square s.(a,b). Notice that
the square s.(a, b) represents all translation vectors f;
such that dist(b + t;,a) < e Wecall S, = {s.(a,b) |
a € A, b € B} the translation square arrangement
(see Fig. 1). Note that |S,| = n®.

Let Rs, denote the set of regions in the plane created
by S.. where all regions not intersecting any s € S;
are identified as one single region called the external
region.

Observation 1. |Rs | = O(|S.|?) = O(n*).

Let G;d' = (Rs,, Eéfj) be the adjacency graph of

Rs, with vertex set Rs, and edge set E;dj connecting
all pairs (ry,r2) of adjacent regions of Ry, that share
a common boundary edge (not just a vertex). Since

Gi?j is planar (except for the subgraph induced by the

node representing the external region) and G‘;‘jj can

be constructed by a standard plane sweep (see e.g.
[13]), we observe the following:

Observation 2. |G| = O(|Rs,|) = O(n*), and G
can be constructed in time O(n* logn).

For a region r € Ry, let
E™(ry={(a.b) € AX B|rCsc(a,b)}

denote the candidate edges induced by r. For k re-
gions rq,...,r; define the translation square graph
Gs¥(ri,....ri) = (AU B ES™(r)) U E§™(r2) U
- UE™(ry)). Note that G§®(ri,. .., r¢) is a bipar-
tite graph.

We now discuss the relationship between the trans-
lation square arrangement and (k,&)-stereo match-
ings. Consider k regions ri,...,r; of Rs, and as-
sume that the translation square graph G?f(rl, RS
has a perfect matching 7. In such a case, the fol-
lowing defines the (k, €)-stereo matching induced by
(ri,...,r¢) and 7, referredtoas I'g (ry, ..., ri): The
subsets A; and B; (1 < i < k) are the sets of point
a € Aand b € B, respectively, incident to those edges
of the perfect matching 7 that are contained in the
edge set Egﬂ"d(ri). The edges of ngf“d(r,) selected in
the perfect matching 7 define labeling /;, and trans-
lation vector ¢; is the centroid (center of gravity) of
ri, 1 < i < k. Note that, any point inside r; could be
selected as a possible translation vector ¢;.

For the remainder, we will omit the subscript € if it
is obvious from the context.

Lemma 3. Every (k,&)-stereo matching of A
and B corresponds to a k-tuple ry,...,ri of re-
gions of Rs such that the translation square graph
G§&(ri,...,re) has a perfect matching, and vice
versa.

Proof. Given k regions ry,...,r; of Rs such that
GgE(ri,...,rx) has a perfect matching =, then
I'T(ry,...,ri) is a (k,&)-stereo matching. On the
other hand, consider a (k, &)-stereo matching I". De-
note with ry,r2,...,r; the k regions of Rs which
contain the k translation vectors of I". All labelings /;
of I', taken together, correspond to a subset of edges
(a,b) in G?g(rl ,...,ry) which is a perfect matching
for Gg®(ry,...,rg). O

Recall the following results from [9] on computing
maximum matchings.
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Lemma 4 (Hopcroft and Karp [9] ).

(a) A maximum matching in a bipartite graph with n
vertices and e edges can be found in time O( n*3)y.

(b) Given a maximum matching in a graph G with n
vertices and e edges, and another graph G' with
the same vertices which differs from G by at most
one edge, then a maximum matching for G’ can
be found in time O(e).

After the following definition, we are ready to
present an algorithm for computing a (k, g)-stereo
matching for two point sets A and B.

For any sequence ¢ = (x1,...,xp) let o!* be
the sequence of k-tuples of elements of ¢ in lex-
icographic order, ie. @¢'¥1 = ((x1..... x5, x1,x1),
(X1, s X1, X1, %2)5 oo (X1, X1, X1, Xp), (X1,
e X1 X2, X))y (xM,...,xM,xM,xM)).

Algorithm 1. (k,¢&)-stereo matching '

|. Compute S, Rs, and the adjacency graph ngj.

2. Consider any (e.g. depth-first) traversal of
Gagj( Rs) starting at some vertex v, traversing the
entire graph G,q(Rs), and returning to the same
vertex 0. This induces a sequence ¢ of regions
r: € Rs which contains each region at least once.
For each k-tuple of regions (ri,....rk) € AR
determine if (he respective translation square graph
G?g(rl, ..., rg) has a perfect matching. Compute
a maximum matching for the first k-tuple by using
Lemma 4(a) and for all subsequent k-tuples by
using Lemma 4(b).

3. If, in Step 2, a graph Gg®(r1, ..., rx) with perfect
matching 7 has been found, report the (k, &)-stereo
matching ' (ry, . .- ,ry) induced by (ri,....7%)
and 7; otherwise report that no (k, €)-stereo
matching exists.

Theorem 5. The (k, &)-stereo matching problem for
two point sets A and B with n points each, e > 0, can
be solved in time O(n2+*) and space O(n*).

Proof. The correctness of Algorithm 1 follows
from Lemma 3. The time complexity of Step 1 is
O(n*logn), see Observation 2. Note that, when
traversing szj in Step 2, any particular region might
be traversed several times. However, the total number
of regions traversed in ¢ is O(|Rs|) = O(n*), see Ob-
servation 2. Hence, the number of k-tuples of regions

enumerated in sequence @!¥! of Step 2 is O(n*"). The
translation square graphs for two consecutive k-tuples
of regions differ in one edge, and the size of each
translation square graph is O(n?). Therefore, the time
for computing/maintaining the maximum matchings
for all k-tuples of regions is O(n*"*). The time for
Step 3 is dominated by the time for Step 2. Thus,
the claimed time complexity for Algorithm 1 follows.
The space requirement of Algorithm 1 is determined
by the space for the adjacency graph G;dj which is
O(n*), see Observation 2. [J

3. Approximate (k, £)-stereo matching

Let g be the smallest & such that A and B have a
(k, £)-stereo matching. We recall the definition of the
S-approximate (k,€)-stereo matching problem, 0 <
8 < &, given in Section 1: If |gg —&| > &, find a (k, &)-
stereo matching for A and B ( if exists), otherwise
return “don’t know”.

For ease of description we assume that £/0 is an
integer. However, all results presented in the remainder
hold for any 0 < & < &.

We define the approximate translation square ar-
rangement, S} as follows: Let the 5-grid be a grid of
horizontal and vertical lines of distance 8, respectively,
covering the entire plane. The line crossings are called
gridpoints. For each translation square s.(a,b) € S;
define as its approximation s;(a.b) the square ob-
tained from s.(a, b) by moving its center to the clos-
est gridpoint. Let S} = {s}(a,b) | se(a,b) € Sg} be
the approximate translation square arrangement.

Note that several translation squares s.(a, b) might
have the same approximation. For each s™ € S; we
define its multiplicity m(s*) = [{se(a,b) € S l
s¥(a,b) = s*}|.

Analogously to Section 2 we define for Sg (in-
stead of S,) its set of regions Rg:-, adjacency graph

Giﬂj, the candidate edges E$™(r) induced by r €

Rg:, the translation square graph G‘;?(m ... rg) for
Fi,r2,.. Tk € Rss, and the induced (k,g)-stereo
matching % (r1,....re) if GSE(ri,....rx) has a

perfect matching 7.

The main advantage of the approximate translation
square arrangement S; is that it has a considerably
smaller number of regions.
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Lemma 6. |Rg+| = O((g/8)|S]) = O((g/d)n?).

Proof. Let B be the set of regions of the §-grid adja-
cent to the border of some s € 7. Since each region
¥ € Rg» contains a (distinct) region of B, it follows
that |{Rs+| < |B|. On the other hand, each s € S has
at most .0(8/5) regions of the 8-grid adjacent to its
border, which implies that |B| = O((g/8)n?). O

If Gts‘tf(r, +...»7%) has a perfect matching =
for some k regions ry,...,r; € Rg» of the ap-
proximate translation square arrangement S*, then
IS (r1,...,r) is called a (k, g, 8)-stereo matching
apf;roximation for A and B.

In the remainder of this section we first show how
to efficiently compute a (k, &, §)-stereo matching ap-
proximation (if exists), and then study how a stereo
matching approximation can be used to solve the &-
approximate stereo matching problem. Note that the
latter problem requires an “exact” (k, €) -stereo match-
ing to be reported if |eg — g] > 6.

When it is obvious from the context, we will omit
the subscript &.

3.1. Computing a (k,&,8)-stereo matching
approximation

Analogously to Section 2 we make the following
observations.

Observation 7.

(a) |G = O(|Rs-|) = O((/8)n?).

(b) Gg‘ij can be constructed in time
O((e/8)n’logn).

Let 7™ be a spanning tree of the adjacency graph
G, rooted at the node representing the external
region. For each node of 7* representing a re-
gion r € Rg+, we will store the centroid of r and
the set Egil"d(r) of candidate edges induced by r.

Storing all sets E§‘_i"d(r) explicitly requires space
O((&/8)n*). In order to reduce this memory size
we will represent all sets Eg*i"d(r) in an incremental

way by storing Egil“d(r) explicitly only for the root
of 7*, and for each edge e = (r),r;) of T* the
change between E3™(r;) and E&™(r,), referred
to as d(e) = A(rl,er). The tree 7°* together with

Ll L P R

Fig. 2. An approximate translation square arrangement and its
approximate stereo matching tree.

the centroids and incremental representation of the
candidate edges is called the approximate stereo
matching tree T*. (See Fig. 2.) It will be our main
tool for computing a stereo matching approxima-
tion.

Lemma 8.

3 Jace)] =O(-§n2).

e€T™

Proof. Foreach edge e = (ry,ry) of T* let its weight
w(e) be the sum of all multiplicities m(s), s € §*,
such that e crosses the boundary of s (i.e., , and
rz are on different sides of the boundary of s). The
weight w(e) is equal to the number of candidate edge

changes, |4(e)]. Let
w(T" )= 3" wiey= Y [4(e)]
lecT™] leeT ™|

denote the total weight of 7*. We will show that
w(T*) =0((g/8)n?).
For each region r € Rg-, let

wilr =Z wie),
( ) [e edge of 7™ incident with r) ( )
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and for each square s € S*, let w(s) be the number
of all edges e € T* that cross the boundary of s. It
follows that

w(T™) =O< Z w(r)) =O<Zm(s)w(s)>.

rERgx scS*

For an s € S* and edge e = (r;,r2) € T*
crossing the boundary of s, r; or rp must be ad-
jacent to the boundary of 5. For each s € §",
the number of regions adjacent to the bound-
ary of s is O(g/d). Hence, w(s) = O(g/d),
and w(7*) = O((8/5)le€5*lm(s))‘ Since
Z[xes*] m(s)=|S]= O(n?), it followsthat w(7™) =
O((g/d)n?). O

Corollary 9. The approximate sterco matching tree
T* (together with the incremental representation of
candidate edges) is of size O((g/d) n?), and can be
built in time O((g/8)n*log(&/dn)).

Algorithm 2. Computing a (k, &, 8)-stereo matching

approximation ‘

1. Compute S*, Rs«, GE;CP , and the approximate stereo
matching tree T* (together with the incremental
representation of candidate edges).

2. Consider a depth-first traversal of 7, starting at
the root, traversing 7*, and returning to the root.
This induces a sequence @ of regions r; € Rg+
which contains each region at least once. For
each k-tuple of regions (ri,...,re) € P de-
termine if the respective translation square graph
G;S%(rl ,...,ri) has a perfect matching. Compute
a maximum matching for the first k-tuple by using
Lemma 4(a) and for all subsequent k-tuples by
using Lemma 4(b).

3. If, in Step 2, a graph G??(r‘,...,rk) with
perfect matching 7 has been found, report
F A G ri); otherwise report thatno (k,&,0)-
stereo matching approximation exists.

Theorem 10. A (k,&,8)-stereo maiching approxi-
mation for two point sets A and B with n points each,
k>2,0<e&<8, (ifexists) can be computed in time
O((&/8)*n*"**) and space O((g/8)n?).

Proof. The correctness of Algorithm 2 follows imme-
diately from the definition of a (k, &, 8)-stereo match-
ing approximation. The time complexity of Step 1 is

Fig. 3. Containment relationships between translation squares and
their approximations. (a) 5;5/2((1, b). (b) se(a, b). (c) Center
of se(a,b). (d) s;‘_é/z(u, b). (e) Center of ‘Y:—a/z(“’ b) and
“:+5/2(“’ b).

O((g/®) n?); see Lemma 6, Observation 7, Lemma 8
and Corollary 9. Note that, when traversing T in
Step 2, any particular region might be traversed several
times. However,the total number of regions traversed
in @ is O(|Rs)) = O((g/8)n?), see Observation 7.
Hence, the number of k-tuples of regions enumerated
in sequence @'% of Step 2 is O((g/8)*n**). From
Lemma 8 it follows that the total number of edge up-
dates for maintaining the translation square graphs for
all k-tuples of regions of @ is also O( (8/8)*n*). The
time per edge update for maintaining the maximum
matchings for a translation square graphis 0(n?), see
Lemma 4(b). Hence, the time complexity for Step 2is
O((&/8)*n**). The time for Step 3 is dominated by
the time for Step 2. Thus, the claimed time complex-
ity for Algorithm 1 follows. The space requirement of
Algorithm 2 is determined by the space for 7* which
is O((g/8)n?), see Observation 9. [J

3.2. Solving the 8-approximate (k,€)-stereo
matching problem

We will now study the relationship between
(k, &, 8)-sterco matching approximations and the 6-
approximate (k, &)-stereo matching problem. Note
that the latter problem requires not a stereo matching
approximation but an “exact” (k,&)-stereo matching
to be reported if |go — &] > 6.
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Lemma 11. Ife < gy — J then there exists no (k,e+
8/2, 8)-stereo matching approximation for A and B.

Proof. Assume that ¢ < g — 6 and there ex-
ists a (k,e + 6/2,8)-stereo matching approxima-
tion /" for A and B. Hence, there exist & regions
Fi,..., 'k € RS*»/ such that G§¢  (ry,...,r¢) has
e+8/2 €48/2
a perfect matching 7 and I” = I'.  (ry,...,r¢).
ct8/2
For any (a,b) € A x B we observe that s;&/z(a,b)

is contained in s.,s(a,b), see Fig. 3. Thus, all
edges of Gtss*g (ry,...,rg) are also edges of
e18/2

t
G;g‘(l’],..

&+

., 7r), and 77 is also a perfect matching for
Gtssfm (ri1,...,ry). Therefore, it follows from Lemma 3
that FSTM(" ..., Tg) is a (k, & + 8)-stereo matching
for A, B. A contradiction, since e + 6 < gy. [

Lemma 12. Ife > gy + 6 then there exists a (k,& —
8/2, 8)-stereo matching approximation for A and B.

Proof. Assume that £ > g5 + 6. Hence there exists
a (k,e — &)-stereo matching I” for A and B. Con-
sider the regions ry,...,ry € Rs, _, defined in the
proof of Lemma 3, such that G?iﬁ(rl, ..., rt) has
a perfect matching 7 and I = I'y _(r1,....r¢).
Since s._s(a,b) is contained in s;‘_a/z(a,b) for
all (a,b) € A x B (see Fig. 3), it follows that

all edges of G‘;?fﬁ(r], ...,ry) are also edges of
tsg . .
GS:,S/Z(”’ ...,rg) and 7 is also a perfect matching
for G (ry,...,rx). Hence, I'T. (ri,...,rg) is
& —8/2 c—5/2

a (k,e — 8/2, 8)-stereo matching approximation for
Aand B. [

Lemma 13. Ife > gy + 6 then every (k,e —8/2,8)-
stereo matching approximation for A and B is also a
(k, g)-stereo matching for A and B.

Proof. Assume thate > gy +dandlet I"bea (k,e —
8/2, 8)-stereo matching approximation for A and B.
Consider the regions ry,...,r; € Rs. . and per-
fect matching 7 for G?? (r},...,ry) such that I' =
& 6/2
F’ST:?M(rT, ...,r;). Let I be composed of a parti-
tioning into subsets A; and B;, labelings /;, and trans-
lation vectors ¢; (1 < i < k) as given in the defi-
nition of I'.  (r},...,ry). Recall that ¢; is a point
e —6/2

inside r; (1 < i < k). Let r; be the region of Rg,

that contains ¢; (1 < i < k). Since sz_s/z(a,b) is

contained in s.(a,b) for all (a,b) € A X B (see

Fig. 3),alledges in Gg¥  (r},...,r;) are also edges
£—8/2

tsg
of Gg-(ri,..

ing for G$&(ry,...,r), and I is also a (k, &)-stereo
matching for A and B; see Lemma 3. []

., r¢). Hence, 7 is also a perfect match-

The above three lemmas lead to the following al-
gorithm for solving the S-approximate (k, &)-stereo
matching problem.

Algorithm 3. d-approximate (k, €)-stereo matching

1. Using Algorithm 2, attempt to compute a (k,& +
8/2, 8)-stereo matching approximation I"} for A
and B. If no such stereo matching approximation is
found, report “there exists no (k, €)-stereo match-
ing”.

2. Using Algorithm 2 attempt to compute a (k,& —
8/2, 8)-stereo matching approximation I for A
and B. If such a stereo matching approximation
I’> is found, report Iy as a (k,e&)-stereo match-
ing for A and B. Otherwise, report “don’t know:
leo — &] < 67

Theorem 14. The &-approximate (k,&)-stereo
matching problem for two point sets A and B with n
points each, k =2 2, 0 < 8 < g, can be solved in time
O((g/8)* n**?) and space O((g/S)n?).

Proof. The correctness of Algorithm 3 follows from
Lemmas 11, 12, and 13, and its time complexity and
space requirement from Theorem 10. O

4. Conclusion

We presented algorithms for solving the unre-
stricted (k,&)-stereo matching problem in time
O(n***) and space O(n*), and the unrestricted 8-
approximate (k,&)-stereo matching problem in time
O((&/8)*n***) and space O((&/8)n*). To obtain
these results, we introduced the rranslation square
arrangement, approximate translation square ar-
rangement and approximate stereo matching tree.
These structures have some interesting combinatorial
properties which might make them useful for other
applications as well.
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