
Algorithmica (1999) 24: 173–176 Algorithmica
© 1999 Springer-Verlag New York Inc.

Guest Editor’s Introduction

F. Dehne1

During the late eighties, theparallel algorithmsfield was in a serious crisis. Many
problems had been studied, and various upper and lower bounds had been established
for them under different computational models ranging from shared memory models to
network models like hypercubes, two-dimensional meshs, or three-dimensional cubes.
Most commercial parallel machines did indeed, and do still, use one of these four inter-
connection methods. Yet, when it came to implementing the theoretical results on those
machines, the speedups obtained were often very disappointing. Some practitioners even
questioned the usefulness of parallel algorithms altogether.

The nineties have brought a dramatic change to the field with the emergence of
BSP style, coarse-grained, parallel computing models. In his ground breaking paper [4],
Valiant proposed theBulk Synchronous Parallel(BSP) bridging model for parallel com-
putation based on a generic model of a parallel machine; see Figure 1. He introduced
the concept that parallel computation should be modeled as a series of supersteps rather
than individual message passing steps or shared memory accesses. Every BSP algorithm
consists of a sequence of such supersteps, each consisting of various message passing (or
shared memory access) operations. Supersteps are separated by barrier synchronization.
Every message sent in one superstep is available for the recipient only in the subse-
quent superstep. The BSP model made parallel computationcoarse grainedand led to a
substantial reduction in synchronization overhead. TheCoarse-Grained Multicomputer
(CGM) model [1] added strictly coarse-grained communication. A CGM algorithm is a
special case of a BSP algorithm where all communication operations of one superstep
are performed in one, single,h-relation with h ≤ n/p. For this paper,n refers to the
problem size andp to the number of processors.

A comparison of the proceedings of the eminent conference in the field, the ACM
Symposium on Parallel Algorithms and Architectures (SPAA), between the late eighties
and the time from the mid nineties to today reveals a startling change in research focus.
Today, the majority of research in parallel algorithms is within the coarse-grained, BSP
style, domain. What is the problem with fine-grained computing? After all, any fine-
grained algorithm with speedupS for n virtual processors yields, through simplevirtual
processorsimulation, speedupS/(n/p) for p < n real processors. Hence, any parallel
algorithm with linear speedupS= n for n virtual processors yields linear speedupp for
any givenp processors. The virtual processor concept is even built into several parallel
operating systems.

1 School of Computer Science, Carleton University, Ottawa, Ontario, Canada K1S 5B6. dehne@scs.carleton.ca.
http://www.scs.carleton.ca/˜dehne.



174 F. Dehne

Fig. 1.Generic model of a parallel machine.

The major problem is, as usual, in the assumption. In many cases, fine-grained parallel
algorithms do not achieve linear speedup. In particular, their actual implementations do
not usually result in linear speedup. In fact, we often cannot even verify the latter,
since we usually do not haven processors available. Furthermore, many situations exist
where it is even theoretically impossible to obtain linear speedup forp = n. A simple
example is the sorting problem for the mesh. For the following discussion, we refer to
Figure 2 which shows the speedupSof a parallel algorithm as a function of the number
p of processors available. The diagonal (S= p) represents linear speedup. The vertical
line throughp = n represents fine-grained algorithms. Fine-grained algorithm design
attempts to “push” the speedup as high as possible on this vertical line. Assume we
obtain an optimal, but less than linear, speedup represented by pointA. The straight
line, B, from A to the origin represents the speedups obtained through virtual processor
simulation. The main observation is that, even ifA is optimal for p = n, the other
points onB do not necessarily represent optimal speedups for those values ofp. The
curves labeledC and D represent, in many cases, the speedups obtained through BSP
and CGM algorithms, respectively. The main idea is to study in detail the implications of
p < n. Valiant calls it “slack.” CGM algorithms are, in general, more efficient than BSP
because they impose additional constraints on the communication pattern, eliminating
small single messages. Forp = n, curvesC and D reach the same pointA, but for
p < n they are usually much closer to the diagonal. For several problems, the shape of
the entireoptimal curvehas by now been determined. In practice,n/p is usually rather
large and corresponds to the size of the local memory at each processor. Hence, only the
leftmost portions of curvesC andD are often relevant in practice, where the difference
to curveB can be very large.

As indicated above, recent interest in coarse-grained, BSP style, parallel algorithms
has risen sharply, and many other arguments have been brought forward in favor of
them. The most important one is probably that these algorithms, when implemented
on currently available multiprocessors, do actually perform well and exhibit speedups
similar to what was predicted in their analysis. It is important to note, though, that the



Guest Editor’s Introduction 175

Fig. 2.Comparison of speedups for fine-grained, BSP, and CGM algorithms.

current state-of-the-art is clearly not yet the ultimate solution. It is only a first step in, what
we hope is, the right direction. Many systems designers will observe immediately that
some important aspects of today’s commercial multiprocessors are still not accounted
for. There are new results on including memory hierarchies [2]. Network caching is
another important aspect that needs to be studied for this model. The main challenge is
to model the impact of these effects without introducing too many parameters and too
much detail that makes the model impossible to use.

I would now like to turn my attention to this special issue’s contribution to the field of
coarse-grained parallel algorithms. During recent years, a variety of coarse-grained, BSP
style, parallel algorithms has been presented for various problems (see, e.g., [3] for a
survey). The majority of the papers in this special issue continue this work by presenting
algorithms for problems that had previously no coarse-grained parallel solutions or by
improving on previous results. The main goal is to minimize the number of supersteps, the
total amount of data communicated, and the amount of local computation. Another major
goal for many of these papers is to obtain experimental “verification” of the theoretical
results. As we have seen, translating theoretical results into “real” speedups is a nontrivial
issue and needs to be constantly verified. In addition, there is the hope that we will gain
insights that will help improve our model. The papers in this special issue deal with a
variety of topics including string search (Ferragina and Luccio), computational geometry
(Ferreira et al., B¨aumker et al., Belloch et al., Deng and Zhu), matrix operations (McColl
and Tiskin, Lim et al., Kaltofen and Lobo), permutation routing (Cormen and Clippinger),
and parallel selection (Saukas and Song). Two papers study the modeling of bandwidth
(Adler et al.) and the relationship between the BSP and LogP models (Bilardi et al.),
respectively.

Coarse-grained parallel models have brought considerable progress to the parallel
algorithms field but the current state-of-the-art is clearly in need of further research.
This special issue intends to support that process. If it also convinces some new, bright,
graduate students that this is a good field for their thesis research, then we have more
than achieved our goal.



176 F. Dehne

References

[1] F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable parallel geometric algorithms for coarse grained
multicomputers, inProc. ACM 9th Annual Symposium on Computational Geometry, pages 298–307,
1993

[2] F. Dehne, W. Dittrich, and D. Hutchinson, ‘Efficient external memory algorithms by simulating coarse
grained parallel algorithms, inProc. 9th ACM Symposium on Parallel Algorithms and Architectures
(SPAA ’97), 1997, pages 106–115.

[3] S. Goetz, Coarse grained parallel algorithms, a survey, http://www.scs.carleton.ca/˜bsp.
[4] L. Valiant, A bridging model for parallel computation,Communications of the ACM, Vol. 33, No. 8,

August 1994.


